
A Composable Array Function Interface
for Heterogeneous Computing in Java

Juan José Fumero
University of Edinburgh, UK

juan.fumero@ed.ac.uk

Michel Steuwer
University of Münster, Germany
michel.steuwer@uni-muenster.de

Christophe Dubach
University of Edinburgh, UK
christophe.dubach@ed.ac.uk

Abstract
Heterogeneous computing has now become mainstream with vir-
tually every desktop machines featuring accelerators such as
Graphics Processing Units (GPUs). While heterogeneity offers the
promise of high-performance and high-efficiency, it comes at the
cost of huge programming difficulties. Languages and interfaces
for programming such system tend to be low-level and require ex-
pert knowledge of the hardware in order to achieve its potential.

A promising approach for programming such heterogeneous
systems is the use of array programming. This style of program-
ming relies on well known parallel patterns that can be easily trans-
lated into GPU or other accelerator code. However, only little work
has been done on integrating such concepts in mainstream lan-
guages such as Java.

In this work, we propose a new Array Function interface imple-
mented with the new features from Java 8. While similar in spirit
to the new Stream API of Java, our API follows a different design
based on reusability and composability. We demonstrate that this
API can be used to generate OpenCL code for a simple application.
We present encouraging preliminary performance results showing
the potential of our approach.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Patterns; D.3.4 [Processors]: Code generation,
Compilers

Keywords Array programming, Patterns, GPGPU

1. Introduction
Computer systems have become increasingly complex and hete-
rogeneous in recent years. The introduction of multicore proces-
sors and the widespread use of Graphics Processing Units (GPUs)
for general purpose computations imposes huge challenges on pro-
grammers.

Several programming models have been introduced for writing
code for GPUs, like CUDA [6] and OpenCL [18]. Writing effi-
cient parallel code using these models requires a deep understand-
ing and intimate knowledge of the underlying hardware. Multiple
research projects aim at simplifying programming of parallel hete-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARRAY’14, June 11 2014, Edinburgh, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to ACM..
Copyright c© 2014 ACM 978-1-1-4503-2937-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2627373.2627381

rogeneous systems in general and GPUs in particular. For instance
OpenACC [17] simplifies programming of GPUs by allowing the
programmer to annotate loops to be executed in parallel on a GPU
but this task remains relatively low-level. Higher level abstractions
are necessary to enable non expert programmer to make use of
these modern parallel computer systems.

A better approach consists of using structured parallel program-
ming [15] where common patterns are used to easily express al-
gorithmic ideas as parallel operations on arrays. This style of pro-
gramming is heavily influenced by functional programming and has
been successfully applied to practical use, e.g., in Google’s MapRe-
duce framework [13]. Structured parallel programming helps sim-
plifying the programming of parallel hardware and – at the same
time – enable the compiler to produce efficient parallel code by
exploiting the semantic information embedded in the pattern. This
idea is not new and has already been applied to GPUs by high-level
libraries like Thrust [11] or SkelCL [20] as well as in functional lan-
guages like Haskell [4], SAC [9], or NVIDIA’s NOVA language [5].
This style of programming is also the foundation of languages like
StreamIt [21] or Lime [7] where the application is expressed as a
stream of computation.

Most projects have targeted either functional programming lan-
guages or languages common in the high performance computing
community like C or C++. Only little work has been done to inte-
grate these ideas for programming GPUs into existing mainstream
object oriented languages like Java. The challenge is to design a
system which combines the familiarity of the object oriented lan-
guage with the power and flexibility of parallel patterns to enable
Java programmers to easily and efficiently use GPUs.

Java 8 introduces new features which support a more functional
programming style such as lambda expressions. In addition, the
new Java 8 Stream API allows for writing applications in an array
programming style, which is definitively a step in the right direc-
tion. In this paper we describe our initial design and implementa-
tion of an array based programming interface in Java which makes
extensive use of the new features of Java 8. This paper makes the
following contributions:

• Design of a new API for supporting array programming in Java;
• Development of an OpenCL code generator for our API.

The rest of the paper is organised as follows: Section 2 discusses
some background of parallel array programming and introduces
some of the new features of Java 8. Section 3 presents our new
array programming interface and section 4 explains how we gen-
erate GPU code from Java and execute it. Section 5 evaluates our
approach using an example application. Section 6 discusses related
work and section 7 concludes the paper.

2. Background
Parallel Array Programming Parallel array programming is a
style of programming where programs are expressed as a compo-
sition of patterns or array functions which perform parallel opera-
tions on arrays. These array functions are customised by the appli-
cation programmer using so called user functions which are appli-
cation specific. The most basic array function is map which applies
a user function to each element of an input array. The semantics of
map enable the processing of each element of the array in paral-
lel. Other commonly known array functions include reduce, which
performs a parallel reduction of an array based on its binary user
function, or scan, which can be used to compute a parallel prefix-
sum. These array function are well known operations in functional
programming languages like Haskell, SAC or Scala but are not nec-
essary implemented in a parallel way. Patterns such as map can also
be implemented in other programming languages such as Cilk Plus,
Intel TBB, Intel ARB, and OpenCL [15].

Java GPU Programming Our goal is to offer an easy way to ex-
ploit external devices such as GPUs directly from Java and abstract
away the details of the hardware. Accessing a GPU from Java can
be done using low-level bindings for CUDA or OpenCL [12] which
requires to write a low-level OpenCL kernel. Aparapi [1] and Root-
beer [19] are two libraries that provides a high-level abstraction by
allowing the user to write the kernel directly in Java. However, this
style of programming is still low-level since the hardware features
are directly exposed to the programmer at the Java level.

Stream API and Functional Interface Project Sumatra [2] is a
new approach based on new features of Java 8; the Stream API
and supports for lambdas. It lets the user express the program with
the new Stream API and automatically generates HSAIL low-level
code for AMD GPUs using Graal [8]. The Stream API implements
an array programming model where the user expresses the appli-
cation as a series of stream operations. These stream operations
can take a function as an argument represented by the Function in-
terface in Java 8 which can be expressed with a user function or
lambda expression. Streams are always created from a collection
(arrays for instance) and only executes once a so called terminal
operator is encountered (e.g. reduction or forEach). This design
means that it is not possible to reuse stream once created as they
are tied to a particular collection.

Array Function Interface This paper proposes a new design of
an array programming interface for Java, named ArrayFunction
API, that lifts some of the limitations of the Stream API. All of our
array functions extend the Java function interface, allowing them
be easily composed and passed as input to other array functions.
In addition, we do not rely on terminal operations to start the
computation which means that any composed array function is
reusable. Finally, we have designed our implementation in such a
way that any array function can be run on an OpenCL device (e.g.
a GPU) automatically (although we currently only support the map
function).

3. Array Programming in Java
We now present our ArrayFunction API that enables array pro-
gramming in Java. We first present an example to show how Java
programmers use our API, afterwards we discuss our API design.

3.1 Example: Dot product
We use the dot product computation of two vectors as a simple ex-
ample. The dot product is computed by first multiplying the two
vectors pairwise and then sum up all the intermediate results. List-
ing 1 show the implementation in our ArrayFunction API. As can

1 ArrayFunction dotProduct =
2 ArrayFunction.<Integer ,Integer >zip2()
3 .map(x -> x._1 * x._2)
4 .reduce(x,y -> x+y);
5

6 Integer [] in1 = new Integer[size];
7 Integer [] in2 = new Integer[size];
8 Integer [] out =
9 dotProduct.apply(new Tuple2(in1 , in2));

Listing 1. Dot product Java code with our ArrayFunction API

be seen we first use the zip2 ArrayFunction of our API to pair-
wise combine the two input arrays together (line 3). The <Integer

,Interger> type parameters specifies that the input should be two
arrays of Integer. The output type of the zip2 pattern is automati-
cally inferred as an array of Tuple2<Integer, Integer>. Then, we
map the multiplication operation with a lambda expression (x ->

x._1 * x._2) to every pair of Integers which are represented as
tuples (line 4). Finally, the reduce pattern is used with a lambda
expression to sum up all the elements (line 5). Once the function
representing the dot product computation has been built, the user
can simply run it on an input by calling the apply function which
expects two arrays of Integer in the form of a Tuple2 (line 10).

This example illustrates how we can chain patterns easily with
our API. In addition, the expression is strongly typed as the type
checker automatically infers and verifies at each step that all the
types match.

3.2 Class Hierarchy
Our design is inspired by the Stream API and uses lambda expres-
sions which are part of Java 8. However, in contrast to the Stream
API, we implemented all array operations as functions which in-
herit from the same functional interface. This enables the creation
of reusable composed functions – as seen in the example – which
is fundamentally different from the Stream API where a stream is
tightly coupled with its input data. In addition, this allows us to
nest functions by passing an array function as input to other array
functions such as map.

The UML diagram representing our array function class hierar-
chy is shown in figure 1. The symbols before the signature of each
method in the UML diagram indicates the visibility of each method.
The symbol ”+” indicates a method or field is public whereas "-"
indicates it is private. In the case of the classes, the middle section
represents the fields while the bottom part represents the methods.
The parametric type (or generics) representation is similar to the
one used in Java.

We decided to build our class hierarchy starting with the Func-
tion interface which is part of Java 8. This Function interface is
used to represent unary functions and lambda expressions. Since
Java 8 does not support variadic generics (i.e. a variable number of
type parameter), we implemented several Tuple classes (1 to 8 cur-
rently) to be able to support functions with multiple arguments such
as Zip. Consequently, we have to also duplicates several method
dealing with the zip function as we will see. The addition of vari-
adic generics in Java would certainly be a welcome addition.

The ArrayFunction interface extends the Function interface
and is intended to be used as the top-level interface by the program-
mer. As its name suggests, this interface represents functions that
are applied on arrays. The input elements are of type inT while the
output elements are of type ouT. As can be seen this corresponds to
the inT[] and ouT[] parameter type of the Function interface. The
benefit of extending the Function interface to implement our array

Map<inT, ouT, mapInT>
-pred: ArrayFunction<intT, mapInT>
-f: Function<mapInT, ouT>

+apply(inT[]:input): ouT[]

Reduce<inT, ouT>
-pred: ArrayFunction<inT, ouT>
-f: BiFunction<ouT,ouT,ouT>

+apply(inputT:inT[]): ouT[]

Identity<inT,ouT>
-pred: ArrayFunction<inT, ouT>

+apply(input:inT[]): ouT[]

Zip2<Tuple2<z1inT,z2inT>,Tuple2<z1ouT,z2ouT>>
-pred1: ArrayFunction<zip1inT,zip1ouT>
-pred2: ArrayFunction<zip1inT,zip1ouT>

+apply(input:Tuple2<z1inT,z2inT>[]): Tuple2<z1ouT,z2ouT>[]

«Interface» Function <inT[], ouT[]>

+apply(input:inT): ouT[]

«Interface» ArrayFunction<inT, ouT>

+apply(input:inT[]): ouT[]
+map(f:Function<mapInT, mapOuT>): Map<inT, mapOuT, mapInT>
+reduce(f:BiFunction<ouT,ouT,ouT>): Reduce<inT,ouT>
+id(): Identity<inT,intT>
+static id(): Identity<inT,inT>
+static zip2(): Zip2
+static zip3(): Zip3
+static zip...()
+static zipN(): ZipN

Tuple2<T1,T2>
+_1: T1
+_2: T2

TupleN<T1,T2,...,TN>
+_1: T1
+_2: T2
...
+_N: TN

Tuple3<T1,T2,T3>
+_1: T1
+_2: T2
+_3: T3

...

...

Figure 1. Simplified view of the class hierarchy of our ArrayFunction API

functions is that it is always possible to pass an array function as an
input to another array function like map.

The ArrayFunction interface comprises several methods cor-
responding to the different available functions operating on arrays.
The set of methods is currently limited to map, reduce, id and zip
but we plan to add more functions in the future to support opera-
tions such as flattening, partitioning or stencil computation. These
methods create ArrayFunction subclasses that implement the dif-
ferent operations. For instance the map method, which takes a func-
tion f that is applied to each element of the input array, returns a
Map ArrayFunction object. This design allows us to chain array
functions with one another easily.

3.3 Array Functions Composition
The creation of a new ArrayFunction starts with either the static
id() method or one of the different static zip() methods. The id()
method permits the creation of functions that takes one input array
whereas the zip() methods enable the creation of functions that
operate on multiple input arrays at once. Once created, it is possible
to easily compose array functions together by simply calling one
of the array function methods from the ArrayFunction interface.
We have taken special care to ensure that the results of composing
functions remain strongly typed.

To achieve strong typing, each class implementing the Array-
Function interface is responsible for storing a reference to the
ArrayFunction that created it in the first place. This is done by
having a predecessor (pred) field in each class which is initialised
at construction time when one of the map, reduce, id or zip methods
are called in the ArrayFunction interface. The type information
of the predecessor function is recorded in the predecessor field
to enable static type checking and propagate the input type inT
of the composed function. Note that the inT type represents the
input type of the whole composed function and not the input type
of the specific array operator (map, reduce, ...) being applied. For
example, in case of the Map subclass, the type of the predecessor is
<intT, mapInT> where intT is the input element type and mapInT
the output element type of the predecessor which corresponds to
the input type of the “mapped” function f. The ouT type, which is
the output type of the “mapped” function f will become the new
element output type of the newly created Map ArrayFunction.

3.4 Array Function Execution
Once an array function has been created, we can execute it by
calling the apply method which takes an array as an input of the
element type of the ArrayFunction. In our design, the apply can
either execute the computation in pure Java or execute the code on

1 public outT[] apply(inT[] input) {
2 mapInT [] predResult = pred.apply(in);
3 ouT[] result = new ouT[predResult.length];
4 if (JavaExecution)
5 for (int i=0; i<predResult.length; i++)
6 result[i] = f.apply(predResult[i]);
7 else
8 // OpenCL device execution
9 return result;

10 }

Listing 2. Implementation (pseudo-Java code) of the apply method
of the Map class.

an OpenCL device like a GPU. The decision is currently made with
the use of a global variable that controls the behaviour of all array
functions. Our long term goal is to automatically determine where
to execute the function based on the type of device available, input
size and other characteristics.

The apply method is implemented in each of the Array-
Function subclasses using a similar mechanism. An example for
the Map class is shown in listing 2. First, we execute the apply
method of the predecessor array function (line 2). Then, we cre-
ate the result array for this current array function (line 3). If the
ArrayFunction interface is configured for Java execution we ap-
ply the “mapped” function f to each element of the input array (line
4-6). Otherwise, we execute the function on an OpenCL device
(line 7-8) the details of which will be discussed in the next section.

4. OpenCL Compilation and Execution
This section describes the process leading to the execution of our
array functions on an OpenCL parallel device, like a GPU. Our
code generator is written in pure Java using the Graal API [8]
which exposes an interface to the JavaVM JIT compiler. We cur-
rently only support the map ArrayFunction in our code generator
which means that all the other ArrayFunctions are executed in
pure Java. We intend to lift this limitation in the future by adding
supports for all array function in our code generator.

When we wish to execute an array function on an OpenCL de-
vice, the following events take place at runtime: the code generator
produces the OpenCL kernel code which is immediately compiled
to binary code by the OpenCL vendor compiler; the data is mar-
shalled from Java to C via the Java Native Interface (JNI) and is
transferred onto the device; finally the computation is executed on
the device and the data is returned to Java via JNI. Note that we im-

1 typedef struct { int _1; int _2; } tuple2_t;
2

3 int f(tuple2_t in) { return in_1 * in_2; }
4

5 kernel void map(global tuple2_t* in , uint n,
6 global int* out) {
7 uint gid = get_global_id (0);
8 uint gsz = get_global_size (0);
9 for (uint i=0; i+gid <n; i+= gsz)

10 out[i+gid] = f(in[i+gid]._1, in[i+gid]._2);
11 }

Listing 3. Vector multiplication generated OpenCL code

plemented a cache for already generated kernels so that we do not
need to re-generate and re-compile an OpenCL kernel next time the
array function is executed.

4.1 OpenCL Code Generation
The first stage before being able to execute an array function of our
API on an OpenCL device consists of generating OpenCL code.
As this happens at runtime we can access the internal runtime
representation of the program.

Function Code Generation To produce an OpenCL kernel for
the map array function, we use a template approach that generates
a for loop that distributes work among the different global threads.
In the body of the loop the user provided function is called on every
element of the input array and the results are stored in the output
array. The OpenCL code for the user function, which is written in
Java, is generated by a visitor that traverses the high-level nodes
of the control flow and data flow graph and emits corresponding
OpenCL code. If an error is detected at runtime, the code generator
throws an exception which our library catches. At this moment
the execution is switched from the OpenCL to pure Java code.
In this way, the user code is guaranteed to always be executed.
We currently only support a basic subset of the Java language but
we are planning to extend our work to cover more advanced Java
features in the future (e.g. instance method calls, Object creation).

Data Structure Generation Our code generator currently sup-
ports primitive types, arrays of primitive and tuples. In order to
ensure high performance in the code generated, all the class types
are automatically converted to primitive types whenever possible.
For instance, Integer[] will be converted during code generation
to int[]. We also automatically flatten multi-dimensional arrays by
creating an index array and an array of values. Tuples are implic-
itly known to the backend and converted to equivalent OpenCL/C
structs. We intend to extend our backend in the near future to deal
with arbitrary Objects.

Example Listing 3 shows the OpenCL code generated for the
map(x -> x._1+x._2) array function from the dot product exam-
ple (listing 1). The first line is the data structure declaration cor-
responding to the type of x (Tuple2<Integer, Integer>). For the
lambda expression the function f is generated (line 3) which per-
forms the multiplication. The kernel code starts on line 5 and re-
presents the whole array function which takes an array of tuples as
an input and produces an array of int. The for loop on lines 9-10
maps each thread to one or more elements of the input array and
calls the function f.

4.2 OpenCL Execution
Once the kernel has been generated, we execute it on the OpenCL
device using the JOCL [12] OpenCL Java Bindings. The first step
consists of preparing (a.k.a. marshalling) the data for the execution

1 ArrayFunction bs =
2 ArrayFunction.<Float >id().map(
3 stockPrice -> {
4 float call = computeCallOption (...);
5 float put = computePutOption (...);
6 return new Tuple2 <>(call , put);
7 });
8

9 Tuple2 <Float , Float >[] result =
10 bs.apply(stockPrices);

Listing 4. Implementation of the Black-Scholes Model using the
ArrayFunction API

on the OpenCL device. This involves converting the various Java
data types to primitive types, flattening the array and converting
the tuples. The Tuple classes are lowered to structs using the Struct
class from JOCL.

Once the marshalling has taken place, we can send the data to
the device, execute the kernel and start the unmarshalling process.
This last step converts back the low-level data structures into Java
classes. While these steps currently executes synchronously in our
implementation, we plan to overlap data marshalling, transfer and
execution in the future to reduce the overhead.

All possible errors from the JOCL binding are catched. In the
same way as in the code generator, if an error is detected, a deopti-
misation is performed and the pure Java code is executed.

5. Evaluation
We evaluate our library in a workstation with an AMD Radeon
HD 7970 GPU running OpenCL 1.2. The driver version (1348.5) is
the last one available at the moment of writing this paper. For the
code generator, we have extended the Graal compiler with a new
backend for OpenCL. Graal is compiled with the latest version of
Java 8 (JDK 1.8.0).

Expressing Black-Scholes with the Array Function API For
evaluating our approach we implemented the Black-Scholes model,
which is an application from the field of financial mathematics.
Given an array of stock prices the Black-Scholes model computes
for each stock price a pair of call and put options. Listing 4 shows
how this problem can be implemented with our ArrayFunction
API. The ArrayFunction computing the Black-Scholes model is
defined in lines 1 – 7 using the map array function: for a given stock
price (line 3) the call and put options are computed (line 4 and 5).
The map then returns a pair of these two values represented as a
Tuple2 (line 6). Finally, the computation is applied to the array
of stock prices and produces an array containing the call and put
options (line 9 and 10).

Runtime Experiments Figure 2 shows a comparison between the
runtime of the Black-Scholes application implemented using our
API and pure Java. The benchmark is run with bootStraping
enabled in Graal. This means that the Graal-jit compiler (Graal is
written in Java) first compiles itself before running the application.
We run the the application 100 times per size and we record the
median time.

The first bar show the execution time using the ArrayFunction
API, the second and third bar show two different Java implemen-
tations: in one version the floating point values are represented as
arrays of objects (Float[]) and in the other one as array of primi-
tives (float[]).

We can draw two important conclusions from this comparison.
First, our API introduces almost no overhead in comparison to
a pure Java version using low-level loops to process the data;

200

400

600

800

1000

512
1024

2048
4096

8192

16384

32768

65536

131072

262144

524288

1048576

R
u
n
ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

Input size

ArrayFunction API Java Objects Java Primitive

Figure 2. Runtime comparison of the Black-Scholes application
implemented with ArrayFunction API with Java using objects
and primitive types.

Secondly, for our application the difference between working with
objects or primitive types is small. This is possibly due to the
computational nature of the Black-Scholes application which reads
a data item once and then performs several computations on it.
Therefore, the conversion between object and primitive type only
happens once per data item and is hidden by the computation
time. For this kind of applications our ArrayFunction API is
competitive with primitive-based Java implementation.

Speedup The Figure 3 shows the speedup when our implementa-
tion is executed on the GPU as compared to the execution on the
CPU.

The runtime for the GPU version, includes the times for the
steps described in section 4 like the preparation and transfer of the
input data. The time for generating and building the OpenCL ker-
nel is not included since the kernel is read from the kernel cache we
implemented. Furthermore, the generation and compilation of the
OpenCL kernel can be hidden when being performed concurrently
to the execution of other code as is the case with most modern JIT
compiler. As can be seen, the version using the ArrayFunction
API on the GPU version outperforms the Java versions. With in-
creasing data sizes the advantage of the GPU version increases as
compared to the CPU. The slight drop at 32768 elements is due to
the Java version being jit’ed as the code becomes hotter with larger
input sizes.

Breakdown of the GPU execution time Figure 4 shows a break-
down of the execution time when executing the Black-Scholes ap-
plication on the GPU. The Figure does not contain the kernel gen-
eration and build time, which takes between 100 and 200 millise-
conds in the first iteration. The runtime for marshalling and unmar-
shalling stage are introduced by the transformation between objects
(structs in OpenCL to Tuple2 Objects in Java). Transferring the data
to and from the GPU also takes some time. The actual execution
only takes a fraction of the overall runtime. Nevertheless, as the
impressive speedup in figure 3 shows, its still beneficial to use the
GPU for this application. Future work will focus on reducing the
overhead by overlapping marshalling and data transfer with kernel
execution.

6. Related Work
Array Programming for GPUs A number of new programming
languages have been proposed which generate GPU code based on

10

20

30

40

50

512

0.8

1024

1.5

2048

3.1

4096

6.6

8192

10.3

16384

11.2

32768

7.1

65536

13.4

131072

20.8

262144

30

524288

40.2

1048576

48.6

S
p
e
e
d
u
p
 C

P
U

 v
s
.
G

P
U

Input size

Figure 3. Speedup of overall execution time in GPU over CPU.

0

5

10

15

M
ars

hallin
g

Unm
ars

hallin
g

Send D
ata

Read D
ata

Kern
el E

xe
cu

tio
n

R
u
n
ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

Figure 4. Breakdown of the GPU execution time for an input size
of 1048576 elements.

array functions. Copperhead [3] for instance is a data parallel pro-
gramming language by NVIDIA integrated in Python. HiDP [16]
is a parallel programming language which uses patterns to hierar-
chical structure data parallel computations. NOVA [5] is a func-
tional programming language developed by NVIDIA offering par-
allel patterns as primitive in the language to express parallelism.
StreamIt [21] is an architect independent language for stream pro-
gramming which can be used to generate CUDA code. Lime [7] is
a programming language developed by IBM that extends Java with
concepts similar to StreamIt and can generate OpenCL code.

In contrast to our API all these approaches require programmers
to learn a new programming language which arguably limits their
adoption.

High-level Library-based Approach Several high-level pattern
based programming libraries have been implemented in popular
programming languages. Thrust [11] is a C++ library developed
by NVIDIA which offers a set of customisable patterns to simplify
GPU programming. SkelCL [20] allows to program multi-GPU
systems using high-level patterns in C++.

Java Specification Resquest (JSR) 166 [14] is a framework
based on the fork/join programming model for parallel computation
in Java. The JSR-166 contains a ParallelArray class that provides
parallel operations such as map, reduce, select or apply in a set of
elements. Similarly, River Trail [10] is a JavaScript library which

exposes parallel computation with map and reduce among others.
River Trail has its own data structure to represent parallel arrays.

We differ to these approaches as we build the computation
pipeline independently of the data input, thus allowing multiple
computation in the pipeline with different data sets.

GPU Computing in Java We are not the first to enable GPU
computing in Java. There exists several bindings to OpenCL like
JOCL [12] which require the user to write the function to be exe-
cuted on the GPU to be written in OpenCL. Both Rootbeer [19] and
Aparapi [1], which is an project by AMD, convert Java bytecode to
OpenCL at runtime and, thus, allow for writing all the code in Java.
Nevertheless, these projects are low-level as they require the pro-
grammer to explicitly exploit the parallelism and do not raise the
level of abstraction like our approach does.

7. Conclusion and future work
In this paper we presented our work in progress on the Array-
Function API which aims to be a simple and elegant array pro-
gramming interface in Java. As seen, computations can be trans-
parently executed on GPUs for the map function by generating
OpenCL code from Java code using Graal. Our API design com-
bines high-level functional aspects with object oriented design prin-
ciples and, thus, integrates well into the new Java 8. By introducing
a single interface representing all functions we enable reusability
and composability in our API in form of chaining and nesting of
functions. Preliminary experiments show that we can correctly gen-
erate and execute code for the Blacks-Scholes application.

Our API currently lacks several important features that we plan
to implement in the future. To start, we will add more array patterns
such as partitioning, flattening, stencil computation, ordering and
filtering. We will also add supports for Collections to allow a richer
set of applications to be expressed. Currently, only the map pattern
can be compiled to OpenCL. We intend to add kernel generation
for the other patterns and optimisations such as fusing patterns or
overlapping of computation and communication. At the moment
the decision of where to run each array function is made by setting
a global parameter which is far from ideal for a dynamic system.
To alleviate this problem, we will develop a runtime model that
decides where each array function should be run. Our implemen-
tations also lacks proper handling of exception in OpenCL at run-
time. Currently, we only support exception raised by our backend
(e.g. unsupported features) or by the OpenCL runtime (e.g. device
unavailable). In such cases, we fall back automatically to the pure
Java implementations. We plan to introduce proper Java exception
handling at runtime by adding a mechanism to stop the computation
and fall-back to the sequential Java implementation for accurate ex-
ception handling.

Acknowledgments
We want to thanks Ranjeet Singh for the initial implementation of
the OpenCL backend in Graal. This work was supported by a grant
from Oracle Labs’ External Research Office.

References
[1] Aparapi. https://code.google.com/p/aparapi/.
[2] Project Sumatra. http://openjdk.java.net/projects/

sumatra/.

[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an embedded data parallel language. In Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 47–56, New York, NY, USA, 2011. ACM.

[4] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicore gpus. In
Proceedings of the POPL 2011 Workshop on Declarative Aspects of
Multicore Programming, pages 3–14, 2011.

[5] A. Collins, D. Grewe, V. Grover, S. Lee, and A. Susnea. NOVA: A
functional language for data parallelism. Nvidia, 2013. Technical
Report.

[6] CUDA. Nvidia CUDA. http://developer.nvidia.com/.
[7] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Com-

piling a high-level language for gpus: (via language support for archi-
tectures and compilers). In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[8] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and
H. Mössenböck. Graal ir: An intermediate representation for spec-
ulative optimizations in a dynamic compiler. In Proceedings of the
7th ACM Workshop on Virtual Machines and Intermediate Languages,
VMIL ’13, pages 1–10, New York, NY, USA, 2013. ACM.

[9] J. Guo, W. Rodrigues, J. Thiyagalingam, F. Guyomarc’h, P. Boulet,
and S.-B. Scholz. Harnessing the power of GPUs without losing ab-
stractions in SAC and ArrayOL: A comparative study. In Proceedings
of the IPDPS 2011 Workshop on High-Level Parallel Programming
Models and Supportive Environments, pages 1183–1190, 2011.

[10] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River trail:
A path to parallelism in javascript. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’13, pages 729–
744, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-1. .
URL http://doi.acm.org/10.1145/2509136.2509516.

[11] J. Hoberock and N. Bell. Thrust: A parallel template library. http:
//developer.nvidia.com/thrust.

[12] JOCL. Java bindings for OpenCL. http://www.jocl.org/.
[13] R. Lämmel. Google’s MapReduce programming model – revisited.

Science of Computer Programming, 70(1):1 – 30, 2008.
[14] D. Lea. The java.util.concurrent synchronizer framework. Sci. Com-

put. Program., 58(3):293–309, Dec. 2005. ISSN 0167-6423. . URL
http://dx.doi.org/10.1016/j.scico.2005.03.007.

[15] M. McCool, A. D. Robison, and J. Reinders. Structured Parallel
Programming. Morgan Kaufmann, 2012.

[16] F. Mueller and Y. Zhang. Hidp: A hierarchical data parallel language.
In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), CGO ’13, pages 1–11,
Washington, DC, USA, 2013. IEEE Computer Society.

[17] OpenACC. OpenACC. http://www.openacc-standard.org/.
[18] OpenCL. Opencl. http://www.khronos.org/opencl/.
[19] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. Rootbeer: Seam-

lessly using GPUs from java. In G. Min, J. Hu, L. C. Liu, L. T. Yang,
S. Seelam, and L. Lefevre, editors, HPCC-ICESS, 2012.

[20] M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for high-
level programming of multi-GPU systems. In Parallel Computing
Technologies, volume 7979 of Lecture Notes in Computer Science,
pages 258–272. Springer, 2013.

[21] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
Proceedings of the 19th international conference on Parallel archi-
tectures and compilation techniques, PACT ’10, pages 365–376, New
York, NY, USA, 2010. ACM.

https://code.google.com/p/aparapi/
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
http://developer.nvidia.com/
http://doi.acm.org/10.1145/2509136.2509516
http://developer.nvidia.com/thrust
http://developer.nvidia.com/thrust
http://www.jocl.org/
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://www.openacc-standard.org/
http://www.khronos.org/opencl/

	Introduction
	Background
	Array Programming in Java
	Example: Dot product
	Class Hierarchy
	Array Functions Composition
	Array Function Execution

	OpenCL Compilation and Execution
	OpenCL Code Generation
	OpenCL Execution

	Evaluation
	Related Work
	Conclusion and future work

