Extending the SkelCL Skeleton Library for
Stencil Computations on Multi-GPU Systems

Stefan Breuer

stefan.breuer@uni-muenster.de

Michel Steuwer

michel.steuwer@uni-muenster.de

Sergei Gorlatch

gorlatch@uni-muenster.de

Departement of Mathematics and Computer Science
University of Miinster, Germany

ABSTRACT

The implementation of stencil computations on modern, mas-
sively parallel systems with GPUs and other accelerators
currently relies on manually-tuned coding using low-level
approaches like OpenCL and CUDA, which makes it a com-
plex, time-consuming, and error-prone task. We describe
how stencil computations can be programmed in our SkelCL
approach that combines high level of programming abstrac-
tion with competitive performance on multi-GPU systems.
SkelCL extends the OpenCL standard by three high-level
features: 1) pre-implemented parallel patterns (a.k.a. skele-
tons); 2) container data types for vectors and matrices; 3)
automatic data (re)distribution mechanism. We introduce
two new SkelCL skeletons which specifically target stencil
computations — MapOverlap and Stencil — and we describe
their use for particular application examples, discuss their
efficient parallel implementation, and report experimental
results on manycore systems with multiple GPUs.

Keywords
Stencils, Manycores, GPU, OpenCL, Skeletons, SkelCL

1. INTRODUCTION

Stencil computations play an important role in a num-
ber of different application domains including time-intensive
scientific simulations, image processing and others. Mod-
ern manycore architectures with Graphics Processing Units
(GPUs) and other accelerators provide potentially tremen-
dous computing power for challenging applications including
stencil computations.

However, the current programming approaches for many-
core architectures are low level, the most popular examples
being OpenCL [1] and CUDA [2]. These approaches re-
quire the programmer to explicitly manage GPU’s mem-
ory (including memory (de)allocations and data transfers
to/from the system’s main memory) and explicitly specify
parallelism in the computation. This leads to lengthy, low-
level, complicated and, thus, error-prone code. For multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HiStencils 2014 °14 Vienna, Austria

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

GPU systems, programming with CUDA and OpenCL is
even more complex, as both approaches require an explicit
implementation of data exchange between the GPUs, as well
as disjoint management of each GPU, including low-level
pointer arithmetics and offset calculations. When imple-
menting stencil computations, additional challenges arise,
like handling out-of-bound memory accesses and achieving
high performance by making efficient use of the fast but
small local GPU memory.

In this paper, we present our SkelCL [8] approach to high-
level, manycore programming, and we describe how it sim-
plifies stencil programming and achieves competitive perfor-
mance on multi-GPU systems. SkelCL extends the OpenCL
standard by three high-level mechanisms:

1) computations are easily expressed using pre-implemented
parallel patterns (a.k.a. skeletons);

2) memory management is simplified using container data
types for vectors and matrices;

3) data movement in multi-GPU systems are handled au-
tomatically by SkelCL’s (re)distribution mechanism.

For stencil computations, we extend SkelCL with two spe-
cialized skeletons: MapOverlap for simple stencil computa-
tions, and Stencil for more complex, in particular iterative,
stencil computations.

The paper is organized as follows. In Section 2 we intro-
duce stencil computations and their programming on sys-
tems with GPUs. Section 3 presents our SkelCL library for
high-level GPU programming. In the next two sections we
discuss how SkelCL can be used for stencil computations in
single- (Section 4) and multi-GPU systems (Section 5). We
evaluate our approach using two real-world stencil compu-
tations in Section 6, before we compare our approach with
related work and conclude in Section 7.

2. STENCILS USING OPENCL

A stencil computation is a computation pattern on a multi-
dimensional grid, where each point of the grid is updated
(often iteratively) as a function of its neighboring points.
Each point of the grid stores a set of application-dependent
values. The computation performed to update the values of
each point is called the stencil operation. A stencil opera-
tion updates the value of a point depending on the values of
the neighboring points. The points taken into account for a
stencil operation are defined by the stencil shape.

Let us consider how stencil computations are implemented
on manycore systems with GPUs using the state-of-the-art

1 kernel

2 void sobel(global const char* in_img,
3 global char* out_img,

4 int w, int h) {

5 int i = get_global_id (0);

6 int j = get_global_id(1);

7

8 if (i < w & j < h) {

9 char ul = (j-1 > 0 && i-1 > 0)

10 ? in_img [((j-D)*w)+(i-1)] : 0;
11 .

12 char 1r = (j+1 < h && i+1 < w)

13 ? in_img [((j+1)*w)+(i+1)] : 0O;
14

15 out_img[j*w+i] =

16 computeSobel (ul, ..., 1r);

17 }

18 2

Listing 1: Structure of the OpenCL implementation
of Sobel edge detection

OpenCL standard. Listing 1 presents the structure of an
OpenCL implementation of the Sobel operator on one GPU,
a typical stencil computation used in image processing for
detecting edges in images. Lines 9-13 show how the di-
rect neighboring elements, e.g., the upper left (ul) neighbor,
are accessed and passed to a function performing the So-
bel operation in line 16. Many low-level details have to be
considered for a correct implementation, like raw pointer
handling, including index computations (e.g., line 10), and
explicit out-of-bound accesses handling (e.g., line 9).

The OpenCL version is obviously correct, but not efficient:
the fast local GPU memory is not used and the control flow
diverges heavily between different work items, which is dis-
advantageous on current GPU architectures. However, the
corresponding optimizations require a deep knowledge of the
GPU’s architecture and must be programmed and tuned
manually and are, therefore, a complicated task for appli-
cation developers. If the program is to be used on a multi-
GPU system then the application developer has to addition-
ally implement and optimize the explicit data distribution
across GPUs and the communication between them.

3. THE SKELCL SKELETON LIBRARY

We develop SkelCL [8] — a skeleton library for program-
ming systems with Graphics Processing Units (GPUs). By
providing skeletons on container data types, SkelCL alle-
viates programming of systems with GPUs: parallelism is
expressed implicitly, using skeletons, and memory manage-
ment is performed automatically by the SkelCL implemen-
tation built on top of OpenCL. The especially tricky pro-
gramming of multi-GPU systems is greatly simplified by
SkelCL’s data distribution mechanism which automatically
moves data between multiple GPUs.

Algorithmic Skeletons.

In original OpenCL, computations are expressed as ker-
nels, e.g., as in Listing 1, which are executed in a parallel
manner on a GPU; the application developer must explic-
itly specify how many instances of a kernel are launched.
In addition, kernels usually take pointers to GPU mem-

ory as input and contain program code for reading/writ-
ing single data items from/to it. These pointers have to be
used carefully, because no boundary checks are performed
by OpenCL.

To shield the application developer from these low-level
programming issues, SkelCL extends OpenCL by introduc-
ing high-level programming patterns, called algorithmic skele-
tons [5]. Formally, a skeleton is a higher-order function that
executes one or more user-defined (so-called customizing)
functions in a pre-defined parallel manner, while hiding the
details of parallelism and communication from the user [5].

The current version of SkelCL provides four basic skele-
tons (Map, Reduce, Zip, and Scan) and three more advanced
skeletons (Allpairs, MapOverlap, and Stencil). Due to lack
of space, we only describe the first two basic skeletons here;
the other basic skeletons are described in detail in [8].

The Map skeleton applies a unary function f to each ele-
ment of an input vector [vi,v2,...,vy], ie.:

map f [vi,v2,...,0.] = [f(v1), f(v2),..., f(vn)]

The Reduce skeleton computes a scalar value from a vector

using an associative binary operator &, i.e.
red @ [v1,v2,...,0n] =01 DV2D - D Vs

In SkelCL, rather than writing low-level kernels, the appli-
cation developer customizes suitable skeletons by application-
specific functions which work on basic data types and, there-
fore, they are often much simpler than kernels that work
with pointers. Skeletons can be executed on both single-
and multi-GPU systems; on a multi-GPU system, the cal-
culation specified by a skeleton is performed automatically
on all GPUs of the system.

Container Data Types.

SkelCL offers two container classes — vector and matrix —
which are transparently accessible by both the CPU and the
GPUs. The vector abstracts a one-dimensional contiguous
memory area while the matriz provides an interface to a
two-dimensional memory area.

The advantage of the container data types in SkelCL as
compared with OpenCL is that data transfers between the
memories of the CPU and GPUs are performed implicitly.
All computations in SkelCL accept containers as their in-
put and output. Before execution, the SkelCL implementa-
tion ensures that all input containers’ data is available on
all participating GPUs. This may result in implicit (auto-
matic) data transfers from the CPU memory to GPU mem-
ory, which in OpenCL would require explicit programming.
Similarly, before any data is accessed on the CPU, the im-
plementation of SkelCL ensures that this data on the CPU is
up-to-date. This may result in implicit data transfers from
the GPU which are performed automatically too. Thus, the
container classes free the programmer from low-level oper-
ations like memory allocation (on GPU) and data transfers
between CPU and GPU.

While all data transfers are performed implicitly by SkelCL
we understand that advanced application developers want
fine grained control over the data transfers between CPU
and GPU. For that purpose SkelCL offers a set of APIs de-
velopers can use to explicitly initiate and control the data
transfer to and from the GPU.

CPU

g | || hﬁE

0 GPUs 1 0 GPUs 1
(a) single (b) copy

0 GPUs 1 0 GPUs 1

(c) block (d) overlap

Figure 1: Distributions of a vector in SkelCL.

(Re)Distribution Mechanism.

For multi-GPU systems, SkelCL’s parallel container data
types (vector and matrix) abstract from the separate mem-
ory areas on multiple GPUs, i. e., container’s data is accessi-
ble by each GPU. To simplify the partitioning of a container
on multiple GPUs, SkelCL supports the concept of distribu-
tion that specifies how a container is distributed among the
GPUs. It allows the application developer to abstract from
explicitly managing memory ranges which are shared or par-
titioned across multiple GPUs.

Four kinds of distributions are currently available to the
application developer in SkelCL: single, copy, block, and
overlap (see Fig. 1 for illustration on a system with two
GPUs). If set to the single distribution (Fig. 1a), container’s
whole data is stored on a single GPU (the first GPU if not
specified otherwise). The copy distribution (Fig. 1b) copies
container’s entire data to each available GPU. With the block
distribution (Fig. 1c), each GPU stores a contiguous, disjoint
block of the container. The overlap distribution (Fig. 1d)
is used for the MapOverlap and Stencil skeletons: it stores
on both GPUs a common block of data from the border
between the GPUs.

The application developer can set the distribution of con-
tainers explicitly or every skeleton selects a default distribu-
tion for its input and output containers otherwise. The dis-
tribution of a container can be changed at runtime: this im-
plies data exchanges between multiple GPUs and the CPU,
which are performed by the SkelCL implementation implic-
itly. Implementing such data transfers in standard OpenCL
is a cumbersome task: data has to be downloaded to the
CPU before it can be uploaded to other GPUs, including
the corresponding length and offset calculations; this results
in a lot of low-level code which is completely hidden when
using SkelCL.

4. NEW SKELETONS FOR STENCILS

The idea of our approach is that while the stencil oper-
ation varies for different applications, the overall structure
of stencil computations stays the same. Therefore, stencil
computations can be implemented as a skeleton which is
customized by the application developer with a particular
stencil operation and particular stencil shape.

To simplify the development of stencil applications, we
introduce two specialized skeletons in SkelCL: MapQuver-
lap and Stencil. While MapOverlap supports simple sten-
cil computations, the Stencil skeleton provides support for
more complex stencil computations with more complex sten-
cil shapes and (possibly) iterative execution.

Listing 2 shows the implementation of the Sobel edge de-
tection using the MapOQverlap skeleton. The MapOverlap
skeleton applies a given function func (defined in lines 2-6)
to each element of an input matrix inimgy while taking the

1, Padding::NEUTRAL, 0);

1 MapOverlap<char (char)> sobel(

2 "char func(const char* in_img) {

3 char ul = get(in_img, -1, -1);

4

5 char lr = get(in_img, +1, +1);

6 return computeSobel (ul,..., lr);}",
7

8

9

output = sobel(input);

Listing 2: Implementation of Sobel edge detection
using the MapOverlap skeleton

1 Stencil<char(char)> heatSim(

2 "char func(const char* in) {

3 char 1t = get(in, -1, -1);

4 char tm = get(in, -1, 0);

5 char 1b = get(in, -1, +1);

6 return computeHeat (lt, Ilm, 1b); }",
7 StencilShape(1, 0, 1, 1),

8 Padding::NEUTRAL, 255);

9

10 output = heatSim (100, input);

Listing 3: Implementation of heat simulation using
the Stencil skeleton

neighboring elements within the range [—d, +d] in each di-
mension into account. Here, d is the second parameter (line
7) and two additional parameters define how the skeleton
handles out-of-bound memory accesses (line 8). A helper
function (get) is used to easily access the neighboring el-
ements. The indexes are specified relative to the current
element, e.g. to access the element on the left the function
call get(in, -1, 0) is used.

Special handling is necessary when accessing elements out
of the boundaries of the matrix, e.g., when the item in the
top-left corner of the matrix accesses elements above and
left of it. The MapOverlap skeleton can be configured to
handle such out-of-bound memory accesses in two possible
ways: 1) a specified neutral value is returned; 2) the nearest
valid value inside the matrix is returned. In Listing 2, the
first option is chosen and 0 is provided as neutral value.

Simple stencil computations with a regular stencil shape
can easily be expressed using the MapOverlap skeleton. For
more complex stencil computations, e.g. iterative stencils,
we introduce the more advanced Stencil skeleton.

The MapOverlap Skeleton.

Listing 3 shows the implementation of an iterative stencil
application simulating heat transfer. This application simu-
lates heat spreading from one location and flowing through-
out a two-dimensional simulation space.

Figure 2: Stencil shape for heat transfer simulation

The application developer specifies the function (line 2-6)
describing the computation and, therefore, the stencil shape,
as well as the stencil shape’s extents (line 7) and the out-
of-bound handling (line 8). The stencil shape’s extents are
specified using four values for each of the directions: up,
right, down, left. In the example in Listing 3, the heat
flows from left to right, therefore, no accesses to elements
to the right are necessary and the stencil space’s extents are
specified accordingly (note the 0 in line 7 representing the
extent to the right). Figure 2 illustrates this situation: the
dark gray element is updated by using the values from the
left. The specified stencil shape’s extent is highlighted in
light gray. In our current implementation, the user has to
explicitly specify the stencil shape’s extents, which is neces-
sary for performing the out-of-bound handling on the GPU.
In future work, we plan to automatically infer the stencil
shape’s extents from the customizing function using source
code analysis in order to free the user from specifying this
information explicitly.

Many stencil applications apply a stencil multiple times
for a fixed number of iterations, or until a certain condition
is met. For example, to iterate the heat transfer simulation
for one hundred steps, we specify the number of iterations to
perform when executing the skeleton (line 10). In the future,
we plan to allow the user to specify a custom function which
checks a condition to stop the iterations.

The MapOverlap skeleton can be configured to handle
out-of-bounds accesses by returning the nearest valid value
of the input matrix. Another distinction can be made re-
garding iterations and sequences of stencil operations: using
elements of the initial, user-provided input matrix or using
elements of the current step’s input matrix, which already
was updated during earlier stencil operations. The Stencil
skeleton can be configured to handle out-of-bounds accesses
in both ways, thus offering three possible ways, including
the neutral value. For each of them, there is an own kernel
function, loading appropriate elements into local memory.

The Stencil Skeleton.

Sequence of Stencil Operations.

Many real-world applications perform different stencil op-
erations in a sequence. Let us consider the popular Canny
algorithm which is used for detecting edges in images. For
the sake of simplicity we consider a simplified version, which
applies the following stencil operations in a sequence: first,
a noise reduction operation is applied, e.g., a Gaussian fil-
ter; second, an edge detection operator like the Sobel filter

Stencil<Pixel (Pixel)> gauss(...);
Stencil<Pixel (Pixel)> sobel(...);
Stencil<Pixel (Pixel)> nms (...);
Stencil<Pixel (Pixel)> threshold(...);

StencilSequence <Pixel (Pixel)> canny (
gauss, sobel, nms, threshold);

OISO W~

output = canny(l, input);

Listing 4: Structure of the Canny algorithm as
implemented with a sequence of skeletons.

Figure 3: The MapOverlap skeleton prepares a ma-
trix by copying data on the top and bottom.

is applied; third, the so-called non-maximum suppression is
performed, where all pixels in the image are colored black
except pixels being a local maximum; finally, a threshold op-
eration is applied to produce the final result. A more com-
plex version of the algorithm performs the edge tracking by
hysteresis, as an additional step. This results in detecting
some weaker edges, but even without this additional step
the algorithm usually achieves good results.

In SkelCL, each single step of the Canny algorithm can be
expressed using the Stencil skeleton. The last step, thresh-
old operation, does not need access to neighboring elements,
as the user threshold function only checks the value of the
current pixel. Therefore, this step can be expressed using
SkelCL’s simpler Map skeleton. The Stencil skeleton’s im-
plementation automatically uses the simpler Map skeleton’s
implementation when the user specifies a stencil shape which
extents are 0 in all directions.

To implement the Canny algorithm in SkelCL, the single
steps can be combined as shown in Listing 4. The individ-
ual steps are defined in lines 1-4 and then combined to a
sequence of stencils in line 6 and 7. During execution (line
9), the stencil operation are performed in the order which is
specified when creating the StencilSequence object.

Implementation.

In order to achieve high performance, our implementa-
tions of both the MapOverlap and the Stencil skeleton use
the GPU’s fast local memory. Both implementations per-
form the same basic steps on the GPU: first, the data is
loaded from the global memory into the local memory; then,
the user-defined function is called for every data element by
passing a pointer to the element’s location in the local mem-
ory; finally, the result of the user-defined function is copied
back into the global memory.

Although both implementations perform the same basic
steps, different strategies are implemented for loading the
data from the global into the local memory.

The MapOverlap skeleton prepares the input matrix on
the CPU before uploading it to the GPU: padding elements
are appended; they are used to avoid out-of-bounds mem-
ory accesses to the top and bottom of the input matrix, as
shown in Figure 3. This slightly enlarges the input matrix,
but it reduces branching on the GPU due to avoiding some
out-of-bound checks. In SkelCL a matrix is stored row-wise
in memory on the CPU and GPU, therefore, it would be
complex and costly to add padding elements on the left and
right of the matrix. To avoid out-of-bound accesses for these
regions, the boundary checks are performed on the GPU.

The Stencil skeleton has to use a different strategy in
order to enable the usage of different padding modes and
stencil shapes when using several Stencil skeletons in a se-
quence. As an example, consider two stencil shapes in a
sequence where the first shape defines a neutral element 0
and the second defines a neutral element 1. This cannot be
implemented using MapOverlap’s implementation strategy.
Therefore, Stencil does not append padding elements on the
CPU, but rather manages all out-of-bounds accesses on the
GPU, which slightly increases branching.

5. TARGETING MULTI-GPU SYSTEMS

The implicit and automatic support of systems with mul-
tiple OpenCL devices is one of the key features of SkelCL.
By using distributions, SkelCL completely liberates the user
from error-prone and low-level explicit programming of data
(re)distributions on multiple GPUs.

The MapOverlap skeleton uses the overlap distribution
with border regions in which the elements calculated by a
neighboring device are located. When it comes to iteratively
executing a skeleton, data has to be transferred among de-
vices between iteration steps, in order to ensure that data
for the next iteration step is up-to-date. As the MapOver-
lap skeleton does not explicitly support iterations, its im-
plementation is not able to exchange data between devices
besides a full down- and upload of the matrix. In addition,
data exchange has to be performed after each iteration. We
can enlarge the number of elements in the border regions
and perform multiple iteration steps on each device before
exchanging data. However, this introduces redundant com-
putations, such that a trade-off between data exchange and
redundant computations has to be found.

For the Stencil skeleton, the user can specify the number of
iterations between device synchronisations, where all border
regions are updated with elements from the corresponding
inner border regions of the neighboring device. The border
regions are sized by default in such a way that the spec-
ified number of iterations can be performed without lead-
ing to incorrect results. However, there may be cases in
which a different number of iterations between device syn-
chronizations may result in better performance. Therefore,
Stencil offers the user the possibility to specify that number.
Please note that the implementation of the Stencil skeleton
only exchanges elements from the border region and does
not perform a full down- and upload of the matrix, as the
MapOverlap skeleton does.

Figure 4 shows the device synchronization. Only the ap-
propriate elements in the inner border region are down-
loaded and stored as std: :vectorsin a std: : vector. Within
the outer vector, the inner vectors are swapped pair-wise on
the host, so that the inner border regions can be uploaded
in order to replace the out-of-date border regions.

/7.
i N

AT 272 gz

77
NN\
— - .

Device 1

\A\\ / [] MONNN —, "N\

Device 2

Device 2

Figure 4: Device synchronization for three devices.
Equally patterned and colored chunks represent the bor-
der regions and their matching inner border region. Af-
ter the download of the appropriate inner border regions,
they are swapped pair-wise on the host. Then the inner
border regions are uploaded in order to replace the out-
of-date border regions.

For the first iteration after a device synchronization, there
are as many work-items on the GPU active as there are to-
tal elements on the device. As the first and last rows of
the border regions become invalid within an iteration, the
corresponding work-items become inactive in the following
iteration step. This is done by using an offset and by re-
ducing the number of total work-items when launching the
OpenCL kernel. The Stencil’s four kernel functions (one for
each out-of-bounds handling mode and one for the adapted
Map skeleton) can be used for both single- and multi-GPU
systems.

6. EVALUATION

For evaluating our two skeleton implementations, we study
two stencil applications: 1) the Gaussian blur, a popular
noise reduction technique in image processing, and 2) the
Canny algorithm for detecting edges in images. These two
applications have different characteristics. The Gaussian
blur applies a single stencil computation, possibly iterated
multiple times, for reducing the noise in images. The Canny
edge detection algorithm consists of a sequence of stencil
operations which are applied once to obtain the final result.
For each application, we compare the performance of our
MapOverlap and Stencil skeletons using an input image of
size 4096 x 3072.

The measurements run on a Tesla S1070 computing sys-
tem with 4 GPUs, each providing 4 GB of memory, access-
ing this memory with 102 GB/s, and 240 compute units per
GPU running at 1.44 GHz. The GPUs are connected to the
host system with a quad-core CPU (Intel E5520, 2.26 GHz)
and 12 GB of main memory. 200 runs were performed for
each configuration and the average was calculated; to reduce
measuring inaccuracy, the best and worst 5% measurements
were not considered.

OpenCL Local Memory
M Stencil

B OpenCL Global Memory
B MapOverlap

Time in Seconds

|
T TR
5 Ml
- RN
1 2 3 4 5 6 7

Size of Stencil Shape

Figure 5: Runtime of the Gaussian blur using a
naive OpenCL implementation with global mem-
ory, an OpenCL version using local memory and
SkelCL’s MapOverlap and Stencil skeletons.

Gaussian Blur with a single iteration.

Figure 5 shows the total runtime of the Gaussian blur us-
ing: 1) a naive OpenCL implementation using global mem-
ory, 2) an optimized OpenCL version using local memory,
and 3) the MapOverlap, and 4) the Stencil skeletons for dif-
ferent sizes of stencil shape, correspondingly. We observe
that on larger stencil shape sizes, MapOverlap and Stencil
outperform the naive OpenCL implementation by 65% and
62%, respectively. The optimized OpenCL version, which
copies all necessary elements into local memory prior to cal-
culation, is 5% faster than MapOverlap and 10% faster than
Stencil for small stencil shapes. When increasing the stencil
shape size, this disadvantage is reduced to 3% for MapOver-
lap and 5% for Stencil with stencil shape’s extent of 10 in
each direction.

As expected, the Stencil skeleton’s implementation is slower
for small stencil shapes than the MapOverlap skeleton’s, up
to 32% slower for an stencil shape size of 1. However, this
disadvantage is reduced to 4.2% for an stencil shape size of 5
and becoming negligible for bigger stencil shape sizes. Due
to the increased branching in Stencil’s kernel function, one
might expect a worse runtime for the Stencil skeleton. As
the ratio of copying into local memory decreases in compari-
son to the number of calculations when enlarging the stencil
shape’s extents, the Stencil skeleton kernel function’s run-
time converges to the MapOverlap skeleton’s. The Stencil
skeleton’s disadvantage is also due to its ability to manage
multiple stencil shapes and explicitly support the use of it-
erations. While both features are not used in this use case,
they incur some overhead for the Stencil skeleton as com-
pared to the MapOverlap skeleton for simple stencil compu-
tations.

Figure 6 shows the program sizes (in lines of code) for
the four implementations. The application developer needs
57 lines of OpenCL host code and 13 LOCs for perform-
ing a Gaussian blur with global memory. When using lo-
cal memory, some more arguments are passed to the ker-
nel, increasing the host-LOCs to 65, while the LOCs for
the kernel function, which copies all necessary elements for
a work-group’s calculation into local memory, requires 88
LOCs with explicit out-of-bounds handling and complex in-
dex calculations. MapOverlap and Stencil are similar to use
and both require only 15 LOCs host code and 9 LOCs kernel
code to perform a Gaussian blur. The support for multi-

B Host Code Kernel Code

160

120

Lines of Code (LOC)
ey Q@
o o

o I
OpenCL OpenCL MapOverlap Stencil
Global Memory Local Memory

Figure 6: Lines of code (LOCs) of the Gaussian blur
using a naive OpenCL implementation with global
memory, an optimized OpenCL version using lo-
cal memory and SkelCL’s MapOverlap and Stencil
skeletons.

Gauss
Threshholding

[Data Transfer Il Sobel

| NS

600

450 —

Runtime in Milliseconds
— wW
[ea] o
o (@)

0

Stencil

MapOverlap

Figure 7: Runtime of the Canny algorithm imple-
mented with the MapOverlap and Stencil skeletons.

GPU systems is implicitly given when using SkelCL’s skele-
tons, such that the kernel remains the same as for one-GPU
systems. This is an important advantage of SkelCL over the
OpenCL implementations of the Gaussian blur which are
single-GPU only, and they require additional LOCs when
fitting to multi-GPU environments.

The implementations using MapOverlap and Stencil are
only 5 — 10% slower than an optimized OpenCL implemen-
tation of the Gaussian blur while being much shorter than
the OpenCL version.

Canny edge detection.

Figure 7 shows the absolute runtime of the Canny algo-
rithm (Listing 4). As the MapOverlap skeleton appends
padding elements to the matrix, the matrix has to be down-
loaded, resized and uploaded again to the GPU between each
step of the sequence. This additional work to an increased
time for data transfers. The Gaussian blur with a stencil
shape extent of 2, as well as the Sobel filter and the non-
maximum suppression with a stencil shape of 1, are 2.1 to 2.2
times faster when using MapOverlap. However, the thresh-
old operation, which is expressed as the Map skeleton in
the Stencil sequence, is 6.8 times faster than MapOverlap’s

threshold operation. Overall, when performing sequences of
stencil operations, the Stencil skeleton reduces the number
of copy operations and therefore leads to a better overall per-
formance. When performing the Canny algorithm, Stencil
outperforms MapOverlap by 21%.

Gaussian Blur using multiple GPUs .

Figure 8 shows the speedup achieved on the Gaussian blur
using Stencil on up to four devices. The higher the com-
putational complexity for increasing size of stencil shape,
the better the overhead is hidden, leading to a maximum
speedup of 1.90 for two devices, 2.66 for three devices, and
3.34 for four devices.

4 Devices

3 Devices

1 / 1 Device

123 45 6 7 8 9101112131415 1617 18 19 20

Size of Stencil Shape

Figure 8: Speedup on up to four GPUs.

7. CONCLUSION AND RELATED WORK

In the paper, we describe how stencil computations are
programmed in our SkelCL approach that combines high
level of programming abstraction with competitive perfor-
mance on multi-GPU systems. We introduce two SkelCL
skeletons for stencil computations — MapOverlap and Sten-
cil — and we discuss their efficient parallel implementation,
and report experimental results. We demonstrate that when
executing a single stencil shape once, the MapOverlap skele-
ton should be used; in all other cases, the Stencil skeleton
is the better choice regarding both user comfort and perfor-
mance. Both skeletons meet SkelCL’s requirements of of-
fering high levels of programming abstraction together with
a competitive performance on multiple devices, and yield
much shorter and simpler codes than when using OpenCL.

For future work, we want to study the applicability of
our approach for stencil applications from different fields,
like physical simulations, or solving partial differential equa-
tions. To enable more applications to use SkelCL, we want
to introduce a three-dimensional data structure and adopt
the existing skeletons to it. Furthermore, we are interested
in building a performance model for our skeletons to better
understanding and predicting the runtime of skeleton based
applications on different target architectures.

Several approaches aiming at simplifying GPU program-
ming exist. SkePU [4] provides a vector class similar to our
Vector class, but unlike SkelCL it does not support different
kinds of data distribution on multi-GPU systems. SkelCL
provides a more flexible memory management than SkePU,
as data transfers can be expressed by changing data distri-
bution settings. Thrust [6] provides two vector types similar
to the vector type of the C4++ Standard Template Library.

While these types refer to vectors stored in CPU or GPU
memory, respectively, SkelCL’s vector data type provides
a unified abstraction for CPU and GPU memory. Thrust
also contains data-parallel implementations of higher-order
functions, similiar to SkelCL’s skeletons. SkelCL adopts
several of Thrust’s ideas, but it is not limited to CUDA-
capable GPUs and supports multiple GPUs. Both SkePU
and Thrust provide no explicit support for stencil computa-
tions.

Several projects focus on stencil computations on GPUs.
PATUS [3] is a code generation and tuning framework for
stencil computations. It can generate optimized code for
multicore processors and a single GPU. PARTANS [7] is a
code generation and autotuning framework for stencil com-
putations on multiple GPUs. It automatically distributes
and optimizes stencil computations on multiple GPUs, by
searching for optimal parameters for a given hardware archi-
tecture. These specialized domain-specific approaches can
only be applied to stencil computations, whereas SkelCL is
a general-purpose approach.

8. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments, as well as NVIDIA for their generous
hardware donation used in our experiments.

9. REFERENCES

[1] The OpenCL Specification, November 2012. Version 1.2.

[2] NVIDIA CUDA C Programming Guide, July 2013.
Version 5.5.

[3] M. Christen, O. Schenk, and H. Burkhart. Patus: A
code generation and autotuning framework for parallel
iterative stencil computations on modern
microarchitectures. In Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pages
676687, 2011.

[4] J. Enmyren and C. Kessler. SkePU: A Multi-Backend
Skeleton Programming Library for Multi-GPU Systems.
In Proceedings 4th Int. Workshop on High-Level Parallel
Programming and Applications (HLPP-2010), 2010.

[5] S. Gorlatch and M. Cole. Parallel skeletons. In

Encyclopedia of Parallel Computing, pages 1417-1422.

2011.

J. Hoberock and N. Bell. Thrust: A Parallel Template

Library, 2009. Version 1.1.

T. Lutz, C. Fensch, and M. Cole. PARTANS: An

autotuning framework for stencil computation on

multi-GPU systems. ACM Transactions on Architecture

and Code Optimization (TACO), 9(4):59, 2013.

[8] M. Steuwer and S. Gorlatch. SkelCL: Enhancing
OpenCL for high-level programming of multi-GPU
systems. In M. Victor, editor, Parallel Computing
Technologies - 12th International Conference (PaCT
2018), volume 7979 of Lecture Notes in Computer
Science, pages 258-272. Springer Berlin Heidelberg,
2013.

6

[7

