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Abstract
Parallel accelerators such as GPUs are notoriously hard to
program; exploiting their full performance potential is a job
best left for ninja programmers. High-level programming lan-
guages coupled with optimizing compilers have been pro-
posed to attempt to address this issue. However, they rely on
device-specific heuristics or hard-coded library implementa-
tions to achieve good performance resulting in non-portable
solutions that need to be re-optimized for every new device.

Achieving performance portability is the holy grail of
high-performance computing and has so far remained an
open problem even for well studied applications like matrix
multiplication. We argue that what is needed is a way to
describe applications at a high-level without committing to
particular implementations. To this end, we developed in
a previous paper a functional data-parallel language which
allows applications to be expressed in a device neutral way.
We use a set of well-defined rewrite rules to automatically
transform programs into semantically equivalent device-
specific forms, from which OpenCL code is generated.

In this paper, we demonstrate how this approach pro-
duces high-performance OpenCL code for GPUs with a well-
studied, well-understood application: matrix multiplication.
Starting from a single high-level program, our compiler auto-
matically generate highly optimized and specialized imple-
mentations. We group simple rewrite rules into more com-
plex macro-rules, each describing a well-known optimization
like tiling and register blocking in a composable way. Us-
ing an exploration strategy our compiler automatically gen-
erates 50,000 OpenCL kernels, each providing a differently
optimized – but provably correct – implementation of ma-
trix multiplication. The automatically generated code offers
competitive performance compared to the manually tuned
MAGMA library implementations of matrix multiplication
on Nvidia and even outperforms AMD’s clBLAS library.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers, Optimization

Keywords Performance Portability, GPU, Code Generation,
Matrix Multiplication, High-level Parallel Programming
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1. Introduction
GPUs (Graphic Processing Units) are the most successful
parallel accelerators used in high-performance computing.
However, producing high-performance code for such devices
is extremely difficult as GPU programming languages (e. g.,
CUDA, OpenCL) expose many low-level hardware details.
The memory hierarchy needs to be managed explicitly and
memory accesses have to be carefully handled to avoid
memory bank conflicts and ensure coalescing. The code also
explicitly controls the mapping of parallelism at multiple
levels: work-groups, threads, warps, and vector units. The
resulting low-level device-tailored code is ultimately not
performance portable.

There have been many efforts to address the challenge of
programmability and performance portability. Projects such
as Delite [19], Lime [6] or SkelCL [17] show promising results
and greatly simplify GPU programming. They all exploit
functional concepts such as composability, immutability and
absence of side-effects to present a high-level interface to
the programmer. However, their implementations still rely
on manually optimized code or on device-specific compiler
heuristics, which are not performance portable.

We argue that solving this problem requires exposing op-
timization choices in the compiler. Petabricks [2] is a good
example of such an approach, where programmers define
alternative implementations of their algorithms. The com-
piler and runtime then select the most appropriate choices.
However, Petabricks is limited to a set of manually provided
application specific options.

In [18], we propose to use a functional intermediate rep-
resentation in the compiler and to express algorithmic and
optimization choices in a unified rule-rewriting system. The
functional representation provides an abstraction to reason
about parallel programs at the algorithmic level and is used
by programmers in a similar way to Delite [19]. In addition, an
OpenCL-specific extension of the intermediate representation
is used internally to functionally express OpenCL paradigms,
such as vectorization, mapping of parallelism and data move-
ment between the different address spaces. The rewrite rules
define the optimization space in a formal way, transforming
the program seamlessly between different algorithmic and
low-level OpenCL-specific forms.

In this paper, we extend our original approach and show
how it works in practice using matrix multiplication as a
case study. Matrix multiplication is arguably one of the most
studied applications in computer science. It is a fundamen-
tal building block of many scientific and high performance
computing applications. Even though it has been studied ex-
tensively for many years, traditional compiler techniques still
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do not deliver performance portability automatically. Naı̈ve
implementations of matrix multiplication deliver very poor
performance on GPUs; programmers are forced to manu-
ally apply advanced optimizations to achieve high perfor-
mance, as we will see in Section 2. These optimizations are
not portable across different GPUs, making manual optimiza-
tion costly and time-consuming.

To the best of our knowledge, we are the first to present a
fully automated compilation technique which generates high
performance GPU code for matrix multiplication for different
GPUs from a single portable source program. Our approach
achieves this by combining algorithmic and GPU specific op-
timizations to generate thousands of provably correct imple-
mentations. Using a pruning strategy, we generate and run
50,000 OpenCL kernels implementing matrix multiplication
on three GPUs from AMD and Nvidia. The best implemen-
tations found match or exceed the performance of several
high-performance GPU libraries on all platforms.
Our paper makes the following key contributions:
• An automated technique for generating high-performance

code from a single portable high-level representation of
matrix multiplication;
• Well-known optimizations for matrix multiplication are

expressed as provably correct and composable macro-rules;
• An exploration strategy based on heuristics for generating

50,000 differently optimized OpenCL kernels;
• Experimental evidence that our approach matches the per-

formance of highly tuned CUDA and OpenCL implemen-
tations on different GPUs.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a motivation. Section 3 gives an overview of
our functional data-parallel language and compiler interme-
diate representation, while section 4 introduces our rewrite
rules and how they are used to encode optimizations. Sec-
tion 5 explains our exploration and compilation strategy. Sec-
tions 6 and 7 show our experimental setup and results. Finally,
section 8 discusses related work and section 9 concludes.

2. Motivation
In this section we illustrate the shortcomings of existing GPU
compilers to produce high-performance code from easy to
write naı̈ve implementations using matrix multiplication as
an example. This results in a difficulty of writing high per-
forming OpenCL programs requiring in-depth knowledge of
various hardware characteristics.

The difficulty to achieve high performance motivates the
need for new compilation techniques capable of automat-
ically producing code close to manually optimized imple-
mentations from an easy to write high-level program.

Easy to Write Version Figure 1 shows the OpenCL kernel of
an easy to write naı̈ve matrix multiplication implementation
using a 2D thread space. The rows of matrix A and the
columns of matrix B are mapped to the first and second
dimension of the iteration space using the thread indices gid0
and gid1. The for-loop performs the dot-product of a row of
A and a column of B in line 6. The final statement stores the
result into matrix C.

While this version is easy to write, no existing compiler can
generate efficient code from it, despite many years of fruitful
research on automatic compiler optimizations. Advanced op-
timizations like the usage of local memory, tiling, or register
blocking are not applied automatically by compilers.

1 kernel mm(global float* A, B, C, int N, K, M) {
2 int gid0 = global_id(0);
3 int gid1 = global_id(1);
4 float acc = 0.0f;
5 for (int i=0; i<K; i++)
6 acc += A[gid1*K+i]*B[i*M+gid0];
7 C[gid1*M+gid0] = acc;
8 }

Figure 1: Naı̈ve OpenCL kernel for matrix multiplication.

1 kernel mm_amd_opt(global float * A, B, C,
2 int K, M, N) {
3 local float tileA[512]; tileB[512];
4
5 private float acc_0; ...; acc_31;
6 private float blockOfB_0; ...; blockOfB_3;
7 private float blockOfA_0; ...; blockOfA_7;
8
9 int lid0 = local_id(0); lid1 = local_id(1);

10 int wid0 = group_id(0); wid1 = group_id(1);
11
12 for (int w1=wid1; w1<M/64; w1+=num_grps(1)) {
13 for (int w0=wid0; w0<N/64; w0+=num_grps(0)) {
14
15 acc_0 = 0.0f; ...; acc_31 = 0.0f;
16 for (int i=0; i<K/8; i++) {
17 vstore4(vload4(lid1*M/4+2*i*M+16*w1+lid0,A)
18 ,16*lid1+lid0, tileA);
19 vstore4(vload4(lid1*N/4+2*i*N+16*w0+lid0,B)
20 ,16*lid1+lid0, tileB);
21 barrier(...);
22
23 for (int j = 0; j<8; j++) {
24 blockOfA_0 = tileA[0+64*j+lid1*8];
25 ... 6 more statements
26 blockOfA_7 = tileA[7+64*j+lid1*8];
27 blockOfB_0 = tileB[0 +64*j+lid0];
28 ... 2 more statements
29 blockOfB_3 = tileB[48+64*j+lid0];
30
31 acc_0 += blockOfA_0 * blockOfB_0;
32 acc_1 += blockOfA_0 * blockOfB_1;
33 acc_2 += blockOfA_0 * blockOfB_2;
34 acc_3 += blockOfA_0 * blockOfB_3;
35 ... 24 more statements
36 acc_28 += blockOfA_7 * blockOfB_0;
37 acc_29 += blockOfA_7 * blockOfB_1;
38 acc_30 += blockOfA_7 * blockOfB_2;
39 acc_31 += blockOfA_7 * blockOfB_3;
40 }
41 barrier(...);
42
43 }
44
45 C[ 0+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_0;
46 C[16+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_1;
47 C[32+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_2;
48 C[48+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_3;
49 ... 24 more statements
50 C[ 0+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_28;
51 C[16+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_29;
52 C[32+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_30;
53 C[48+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_31;
54 } } }

Figure 2: Hand-optimized OpenCL kernel for fast matrix
multiplication on an AMD GPU.
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Figure 3: Performance comparison of matrix multiplication
implementations on an AMD GPU.

Manually Optimized Version Figure 2 shows a manually
optimized version of matrix multiplication tuned for an AMD
GPU. This version performs a tiled matrix multiplication [12,
14] using local memory. Register blocking [14] is used where
each tile is further partitioned into smaller blocks stored in
registers. Please notice that figure 2 shows a shortened version
omitting similar declarations (e. g., see line 5) and statements
(e. g., see line 25). The original source code is 268 lines long.

The implementation in figure 2 takes advantage of many
hardware features such as vectorized loads and local mem-
ory, which involves the use of synchronization primitives.
The parallelism is decomposed and mapped in a very specific
way, taking advantage of the thread hierarchy and increas-
ing registers usage using register blocking. In more detail,
copying the tiles into local memory is performed in lines 17–
21. Lines 24–26 and lines 27–29 perform register blocking for
tile of A and B respectively. Lines 31–39 perform a partial
dot-product between a block of tile A and B and accumulate
temporary results in private memory. Once all the partial dot-
products have been computed and accumulated, lines 45–53
store the final result of the dot-product into global memory.

Performance Comparison Figure 3 shows the performance
comparison of the two versions of matrix multiplication
shown in figure 1 and figure 2 together with two versions
from the AMD clBLAS library. The clBLAS library provides
an expert written implementation of matrix multiplication.
In addition, a tuning script is provided for automatically
choosing implementation parameters for specific GPUs.

We can see from figure 3 that the clBLAS library version
performs 5× better than the naı̈ve version, the tuned library
version 8× better and the hand-optimized version even 10×
better. It is obvious from this data – and maybe not very sur-
prising – that current OpenCL compilers fail to automatically
reach the performance of optimized libraries or hand-tuned
kernels staring from a naı̈ve version. Manual optimizations
are still crucial in OpenCL to achieve high performance and it
is often possible to beat highly optimized library implemen-
tations with manual optimizations and specializations.

Ideally, programmers should write simple programs like
the naı̈ve version and automatically obtain the performance
of the hand-tuned one.

Towards High-Performance Code from High-Level Programs
We argue that automatically producing high-performance
code is possible if we start from a high-level functional pro-
gram representation and keep it in the compiler pipeline for
as long as possible. To this end we define a functional interme-
diate representation [18] and encode compiler optimizations
as rewrite rules which transform the program into semanti-
cally equivalent optimized forms. The rewrite rules express
choices available to the compiler such as how parallelism is
exploited, where data is stored, or if vectorization is applied.

This design offers two main advantages: first, a functional
representation ensures that high-level semantic information
is available to the compiler, reducing the need for compli-
cated static analysis; secondly, the transformations expressed
by the rewrite rules are composable and provably correct,
guaranteeing correctness of the generated specialized code.
As we will see, this design based on a functional represen-
tation of programs leads to a compiler that produces high-
performance code like that shown in figure 2 from a high-
level program comparable to the one shown in figure 1.

3. A Functional Language for Data Parallelism
This section presents our high-level language and how it is
used for matrix multiplication. Programmers use a set of com-
posable data-parallel primitives to express their programs.

We use a functional intermediate representation to pre-
serve the primitives’ high-level parallel semantics which are
exploited by the compiler to perform complex optimizations.

We discuss how the compiler performs optimizations on
its internal representation in section 4.

3.1 Language Tour by Example

Figure 4 shows matrix multiplication expressed in our do-
main specific language embedded in Scala. The code shown
is the entire input from which our compiler generates high-
performance OpenCL code. This representation is purely al-
gorithmic and does not encode any optimization decisions,
which will be made automatically by our compiler later on.

The computation of the dot-product is first defined on
line 1. The zip function combines two arrays into a single
array of pairs. The map function applies a given function, in
this case multiplication (mult), to each element of the input
array. In the example, this results in performing a pairwise
multiplication of arrays a and b. Finally, the reduce function
performs a reduction using the given function (add).

In the definition of matrix multiplication starting on line 6
the two input matrices A and B are applied to the map
function on line 7 and 8. Each matrix is represented as a
two-dimensional array, where the outer dimension contains
the rows and each row is represented as an array of elements.
To access the columns of matrix B we transpose it, i. e., switch
rows and columns, on line 9. Therefore, one can also read
these lines as: “For each row of A and each column of B
compute the dot-product”.

The types for the matrices A and B are given on lines 4
and 5 as nested two-dimensional arrays. We encode the array
length as part of the type using the variables N, M, and K. This
allows to specify that the length of a row of matrix A must
match the length of a column of matrix B.

1 val dotProduct = fun( (a, b) =>
2 reduce(add, 0.0f, map(mult, zip(a, b))) )
3
4 val mm = fun( Array(Array(Float, M), K),
5 Array(Array(Float, K), N),
6 (A, B) =>
7 map(fun(aRow =>
8 map(fun(bCol =>
9 dotProduct(aRow,bCol)), transpose(B))), A))

Figure 4: Source code of matrix multiplication in our func-
tional language embedded in Scala. This is the entire input
from which our compiler generates efficient GPU code.
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1 dotProduct(a, b) = reduce(+, 0, map(×, zip(a, b)))
2 matrixMult(A, B) =
3 map(λ rowA .
4 map(λ colB .
5 dotProduct(rowA, colB), split(n, reorder(idxF, join(B))), A)

Figure 5: Functional compiler intermediate representation of
matrix multiplication.

3.2 Compiler intermediate representation

Internally, our compiler uses a functional intermediate repre-
sentation (IR), introduced in [18], which consists of variables,
like A or b, and three types of functions:

1. predefined scalar functions(+, ×);

2. data-parallel primitives, like map or reduce (see Table 1);

3. lambda expressions, anonymous functions which can nowa-
days be found in all popular programming languages,
written as λ a . body in this paper.

One important note is that these functional expressions are
read from right to left instead of the familiar left-to-right
direction in imperative programming.

Table 1 shows a summary of our data-parallel primi-
tives. The algorithmic primitives correspond directly to build-
ing blocks that are exposed in our Scala front-end. The
OpenCL primitives represent OpenCL paradigms and are di-
rectly mapped to OpenCL code in the back-end.

Matrix Multiplication For the rest of this paper, we will
use the compiler intermediate representation of matrix mul-
tiplication as shown in figure 5. This is a straight forward
translation from the matrix multiplication program written
in our domain specific language shown in figure 4.

The map, zip, and reduce functions used in the original
code are represented with the corresponding primitives in
our IR to preserve their high-level semantics. The transpose
function used in the original program to transpose matrix B
is represented with three primitives in our IR:

transpose = split(n) ◦ reorder(idxF) ◦ join

The circle operator (◦) denotes function composition, i. e.,
f (g(x)) = ( f ◦ g)(x). For transposition, first the join primitive
concatenates all rows of a two-dimensional matrix; then the
reorder primitive reorders the flattened array based on an
index function idxF, which implements the transposition
by remapping the array indices appropriately; finally, the
split(n) primitive does the opposite of join and turns a one-
dimensional array into a two-dimensional matrix with rows
of a given length n. These three operations are not actually
performed in the generated code. Instead, each primitive
produces a compiler internal data structure which influences
how the following primitive accesses its input data. We will
discuss this in more detail in section 4.

3.3 GPU Specific Extensions

The representation of matrix multiplication in figure 5 cap-
tures the algorithmic perspective, but it is far from obvious
how efficient GPU code is generated from this program.
To address this issue, we designed an extension to our IR
specifically targeted for GPU programming and tailored for
the hardware characteristics of modern GPUs. Each OpenCL
primitive from Table 1 is used to express a specific feature
exposed in the OpenCL programming model.

Algorithmic Primitives OpenCL Primitives

map zip mapWorkgroup toGlobal
reduce split mapLocal toLocal
reorder join mapSeq toPrivate

vectorize gather
toVector scatter
toScalar

Table 1: Overview of our functional primitives.

GPU Thread Hierarchy GPUs are organized as multicore
processors with each core executing multiple threads concur-
rently. In OpenCL, this concept is represented by workgroups,
which contain multiple local threads, each of which performs
sequential work.

Similarly, primitives exist in our language to exploit this
hierarchy in the form of the mapWorkgroup, mapLocal and
mapSeq primitives. These variations of the algorithmic map
have the same high-level meaning: they apply the given
function to its input array. At code generation time, the
mapWorkgroup will produce OpenCL code which distributes
the work among workgroups for instance.

Scalar and Vector Units OpenCL exposes the possibility to
use vector units as data types. Declaring a variable of type
float4 for instance, implies that the operations performed
on this variable are executed by vector units. If the hardware
does not support vector operations, the code is scalarized
automatically.

In our IR, we support vectorization of data and, to a limited
form, functions. Vectorization of data is indicated by the use
of the toVector and toScalar primitives. To vectorize a function
f it can be wrapped in the vectorize(f) primitive. Currently
only simple functions, like + or ×, are supported. We plan to
incorporate work on whole-function vectorization [7] in the
future.

GPU Memory Hierarchy OpenCL defines memory address
spaces to reflect the memory hierarchy found in modern GPUs.
Most data resides in global memory but programmers can
explicitly move data into the faster but smaller local memory.
Variables in private memory are stored in registers.

In our IR, copies between memory spaces are explicitly
encoded using the toGlobal, toLocal, and toPrivate primitives.
These primitives accept a function f as its argument and
indicate that f should write its result in the specified memory
space.

Memory Coalescing GPUs are very sensitive to how data
in the global memory is accessed. It is generally beneficial
for concurrently executing threads to access data in small
blocks of a few hundred bytes. These memory accesses are
coalesced by the hardware into a single access instead of
issuing multiple requests.

Our compiler can influence the order in which threads
access memory using the reorder primitive. This primitives
can be either lowered into a gather or scatter primitive. The
gather will reorder the memory reads of the following prim-
itive while scatter will reorder the writes of the preceding
primitive. We will discuss in section 4 when it is legal to au-
tomatically use this primitive to ensure coalesced memory
accesses.
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3.4 Summary

Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the different variants of map.
This enables the compiler to represent different variations of
the matrix multiplication example using a unified IR, where
each variant exploits a different set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules

A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) ◦ map(g)→ map(f ◦ g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-
cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-
join rule transforms a map primitive following a divide-and-
conquer style:

map(f)→ join ◦ map(map(f)) ◦ split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join ◦ mapWorkgroup(mapLocal(f)) ◦ split(n)

This interaction allows our compiler to explore different
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A
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(a) Tiling

A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling

Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) ◦ split(k) ◦ transpose) ◦ split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n × k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is
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used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking

Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations

Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) ◦ map(g)→ reduceSeq(λ(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)→ toScalar ◦ map( vectorize(f) ) ◦ toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(λ arow .
2 map(λ bcol .
3 reduce(+, 0) ◦ map(×) ◦ zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile ◦ map(λ rowOfTilesA .
2 map(λ colOfTilesB .
3 toGlobal(copy2D) ◦
4 reduce(λ (tileAcc, (tileA, tileB)) .
5 map(map(+)) ◦ zip(tileAcc) ◦
6 map(λ as .
7 map(λ bs .
8 reduce(+, 0) ◦ map(×) ◦ zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) ◦ tile(m, k, transpose(B))
13 ) ◦ tile(n, k, A)

Apply blocking rules

1 untile ◦ map(λ rowOfTilesA .
2 map(λ colOfTilesB .
3 toGlobal(copy2D) ◦
4 reduce(λ (tileAcc, (tileA, tileB)) .
5 map(map(+)) ◦ zip(tileAcc) ◦
6 map(λ aBlocks .
7 map(λ bs .
8 reduce(+, 0) ◦
9 map(λ (aBlock, b) .

10 map(λ (a,bp) . a × bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) ◦ zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) ◦ tile(m, k, transpose(B))
17 ) ◦ tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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Figure 8: Exploration and compilation strategy

Memory Coalescing In section 3 we introduced the reorder
primitive, which allows us to specify an index function to
reorder an array. It is important to point out, that this reorder-
ing is not performed in the generated code by producing a
reordered array. Instead, the index computation required to
perform the reordering is delayed until the next primitive
accesses the input array. This is similar to lazy evaluation.
Therefore, a reorder primitive effectively controls how the fol-
lowing primitive will access its input array.

We can take advantage of this design by applying the
following rewrite rule:

map(f)→ reorder(stride−1) ◦ map(f) ◦ reorder(stride)

This rule rewrites an arbitrary map primitive to access its
input array in a strided fashion, enabling memory coalescing.
To ensure correctness, the reordering has to be undone,
by reordering the computed array with the inverse index
function as used before. In situation where each thread
processes multiple data elements in f, this transformation
ensures that these elements are accessed in a coalesced way.

4.5 Summary

In this section, we discussed examples of rewrite rules and
how they are used to implement complex optimizations. Fur-
thermore, we have seen in figure 7 how these optimizations
are combined to transform a simple program into a more op-
timized and specialized form. We eventually reach a program
from which our compiler generates OpenCL code similar to
the highly optimized code shown in figure 2 in the motiva-
tion section. Because the rewrite rules are well-defined and
proven to be correct, we can automate their application and
explore different optimizations for a single program, as we
will discuss in the next section.

5. Exploration and Compilation Strategy
This section describes how we compile a single high-level
program, as seen in figure 4, to OpenCL code by applying
rewrite rules automatically to explore different optimization
choices. Figure 8 gives an overview of our exploration and
compilation strategy. For matrix multiplication, we start from
a single high-level program to generate 46,000 OpenCL ker-
nel in four phases, which we discuss in the following: algo-
rithmic exploration, OpenCL specific exploration, parameter
exploration, and code generation.

5.1 Algorithmic Exploration Using Macro Rules

By design, each rewrite rule encodes a simple transformation.
As discussed in the previous section, more complex optimiza-
tions are achieved by composition.

We decided to guide the automatic rewrite process by
grouping rewrite rules together into macro rules which encode
bigger transformations. A macro rule aims to achieve a
particular optimization goal, such as apply tiling or blocking.
These macro rules are more flexible than the simple rules.
They try to apply different sequences of rewrites to achieve
their optimization goal, whereas a simple rewrite rule always
performs exactly the same transformation. For example, it
might be required to first rewrite the source expression into a
form where the rewrites performing the actual optimization
(e. g., tiling) can be applied.

To explore different algorithmic optimization choices, we
encoded 4 macro rules: 1D blocking, 2D blocking, tiling,
and a tiling optimization applied to the innermost loop.
Starting from the high-level matrix multiplication program
in figure 5, we apply these macro rules at all valid locations
in an arbitrary order leading to approximately 20,000 different
variations.

In order to reduce the search space, we discard programs
which are unlikely to deliver good performance on the GPU
using two heuristics. The first heuristic limits the depth of
the nesting in the program: some rules are always applicable,
however they are unlikely to improve performance after ex-
ploiting all levels and dimensions of the OpenCL thread hier-
archy. Using the first heuristic we decided to focus on around
one hundred rewritten programs. The second heuristic looks
at the distance between the addition and multiplication op-
erations. A small distance increases the likelihood of fusing
these two instructions together and avoiding intermediate
results. The number of expressions after applying the second
heuristic is reduced to 8, which are then passed to the next
phase.

5.2 OpenCL Specific Exploration

For each algorithmically rewritten program, we explore dif-
ferent mapping strategies to the GPU. We chose a fixed map-
ping strategy for the OpenCL thread hierarchy: the two outer-
most map primitives are turned into mapWorkgroup primitives
to perform these computations across a two-dimensional
grid of workgroups. The next two maps are rewritten into
mapLocal primitives to exploit the parallelism inside of a two-
dimensional workgroup. Finally, all further nested map prim-
itives will be executed sequentially. This strategy is common
in GPU programming.

For the memory hierarchy, we explored the usage of
local and private memory. We limited the number of copies
into each memory space to two, to avoid expressions which
perform many meaningless copies.

Starting from the 8 algorithmically rewritten programs, we
automatically generate 760 OpenCL specific programs with
a particular mapping decision encoded.

5.3 Parameter Exploration

Every OpenCL specific program contains parameters, e. g.,
the argument to split(n) controlling the size of a tile or
a block. We performed an automatic exploration of these
parameters by exhaustively picking all possible parameter
values in a reasonable range. Furthermore, we make sure that
the parameters picked will not generate an OpenCL kernel
requiring too much private, local, or global memory. We also
discard parameter combinations leading to an unreasonably
small or high number of workgroups or local threads.

For the 760 OpenCL specific programs we generate around
46,000 fully specialized programs.
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Figure 9: Performance results for matrix multiplication compared against high-performance BLAS libraries.

5.4 Code Generation

For every fully specialized program we generate an OpenCL
kernel. Each fully specialized program encodes a different
implementation of matrix multiplication with a different set
of optimizations applied.

Code generation is straightforward, as all optimization
and implementation decisions have been made by the pre-
vious exploration phases and the program only contains
OpenCL specific primitives (as introduced in section 3, ta-
ble 1). For each primitive a corresponding OpenCL code snip-
pet is emitted to generate the final OpenCL kernel.

5.5 Summary

By defining rewrite rules and expressing larger optimizations
with them, we are able generate tens of thousands of OpenCL
kernel which are all correct by construction. This enables us
to explore combinations of the tiling and register blocking
optimizations combined with strategies for mapping expres-
sions to GPUs and numerical parameters. In section 7 we will
discuss the performance results, but first we briefly discuss
our experimental setup in the next section.

6. Experimental Setup
6.1 Implementation Details

We implemented the functional language in Scala, taking
advantage of Scala’s flexible syntax. The rewrite rules are
encoded using pattern matching. For applying a rewrite rule,
we check if the specified pattern matches and if that is the case
we perform the rewrite. Our internal design is similar to the
higher-order IR presented in [11] and we encode information
about array sizes in a custom type system.

6.2 Hardware Platforms and Input Sizes

We used three platforms: 1) a Nvidia GTX Titan Black (Kepler
architecture) using CUDA 6.0 and driver 331.79; 2) a Nvidia
GTX 480 (Fermi architecture) using CUDA 6.5 and driver
340.65; 3) a AMD HD 7970 (Tahiti architecture) using AMD
APP SDK 2.9.214.1 and driver 1526.3.

We compare against the following high-performance
BLAS libraries: clMAGMA 1.3.0, MAGMA 1.6.1, clBLAS 2.4.0,
and the cuBLAS version bundled with CUDA.

We perform experiments using single precision floating
point numbers with matrix sizes from 10242 to 16, 3842. It
is not possible to run the largest data size on the GTX 480
because of space constraints.

We report the median runtime for 10 executions for each
kernel measured using the device high resolution timers.

7. Results
This section investigates the results obtained by executing the
automatically generated OpenCL kernels on three different
GPUs. We are interested in the highest performance, the time
required to find high-performance kernels, and if there exists
a universally good kernel which can be used for all input
sizes and GPUs.

7.1 Comparison with High-Performance Libraries

We exhaustively executed all generated OpenCL kernel on all
platforms with different data sizes. Figure 9 shows a compar-
ison of the fastest automatically generated kernel compared
against manually implemented high-performance BLAS li-
braries. The left graph shows the performance achieved on
Nvidia Fermi, the middle and right graphs show the perfor-
mance on Nvidia Kepler and AMD Tahiti respectively.

On Fermi we can observe that we achieve 80–90% of the
performance of the highly tuned MAGMA library [8] and
75–77% of the Nvidia provided cuBLAS library. On the more
modern Kepler architecture we outperform MAGMA, im-
plemented in CUDA, by 7–25%, even though the Nvidia
OpenCL tool-chain currently does not support Kepler archi-
tecture specific optimizations. The extremely good results of
cuBLAS compared to any other implementation are due to
hand-optimized assembly level code which overcomes short-
comings of the CUDA compiler [9].

The results for the AMD Tahiti architecture show that we
are able to find OpenCL kernels with faster execution time
as the MAGMA and clBLAS libraries. The performance of
clBLAS is slightly improved using a provided tuning script
which chooses device-specific implementation parameters.

Overall, the results show, that we can automatically gener-
ate code of same or better quality as the state-of-the-art hand
tuned open source BLAS library MAGMA. Furthermore, we
clearly achieve higher performance as clBLAS and show sim-
ilar performance to cuBLAS on the Nvidia Fermi GPU.

7.2 Finding Good Generated Kernels

Figure 10 shows the distribution of performance as well as
the median and quartiles for all 46,000 generated kernels on
the three test platforms for the smallest input size. All three
graphs show a similar shape with poor performance for most
kernels. The maximal performance is only reached by a few
generated kernels. This highlights the difficulty of optimizing
matrix multiplication kernels: only a few kernels find the right
balance for applying the tiling and blocking optimizations,
make good use of the local memory, and chose well suited
implementation parameters.

8 2016/1/19



Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

T
hr

ou
gh

pu
t (

G
F

lo
p/

s)

Figure 10: Distribution of performance for generated kernels.

Figure 11: Performance evolution for randomized search of
automatically generated OpenCL kernels. The dotted line
represents 90% of the performance achieved by the best
kernel. The dots mark how many kernels have to be tested to
reach this performance with a confidence of 95%.

However, despite the overall shape of the optimization
space we can find good performing kernels even when using a
simple random search strategy. Figure 11 shows the evolution
of performance when testing the generated OpenCL kernels
in random order. The y-axis shows performance in GFlops
and the x-axis shows the number of OpenCL kernels tested.

Performance improves quickly for all three platforms. On
the AMD Tahiti architecture after testing only 675 kernels (2%
of the search space), one can expect to find an OpenCL kernel
reaching 90% of the maximum performance with a confidence
of 95%. To reach 90% of the maximum performance with the
same confidence on Fermi, 4,848 kernels (12%) have to be
tested and 15,372 kernels (33%) on Kepler.

For a matrix of size 10242, a single kernel execution
takes on average 10ms (Tahiti), 26ms (Kepler), and 60ms
(Fermi). Even the execution of 15,000 OpenCL kernels can,
therefore, be performed in a reasonable time frame. Overall
the exhaustive execution of all 46,000 OpenCL kernel took
less than an hour on Tahiti and Kepler and about three
hours on Fermi, including the overheads of data transfers and
validation. The generation of all kernels with our prototype
compiler implemented in Scala took about 2 hours and 40
minutes. The compilation of all generated OpenCL kernels to
binaries took 20 minutes for Nvidia and 1 hour for AMD.

Fermi Kepler Tahiti

X X

X X

X X

X X

XX

XX

0

50

100

0

50

100

1024
2

2048
2

1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K 1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K 1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K

The six specialized OpenCL kernels

R
el

at
iv

e 
pe

rf
or

m
an

ce

E
xecuted w

ith input size

Executed on

Figure 12: Performance of the best OpenCL kernels across
platforms and data sizes.

7.3 Cross Platform Performance

Figure 12 shows the performance of six OpenCL kernels
optimized and specialized for a particular configuration of
device and input size executed across all devices and two
input sizes. For example, the graph on the top in the middle
shows the performance of the six optimized kernels executed
on the Kepler GPU with an input size of 10242. We can see that
the kernels optimized for the Fermi GPU (the first two bars)
only achieve 45% of the optimal performance. The kernel
optimized for the AMD GPU (the last two bars) do not even
run on the Kepler GPU, due to resource restrictions (marked
with a cross in the figure).

The performance across input sizes on the same GPU is
usually quite good indicated by a pair of similar graphs:
one on the top for the smaller input size and the other one
below for the larger input size. The performance across GPUs
for a fixed input size varies more widely as one can see by
comparing the graphs horizontally.

Overall, this shows that none of the kernels selected as the
best on each GPU is portable offering good performance on
the other GPUs as well.

7.4 Summary

The results show that our methodology generates high-
performance OpenCL kernels for matrix multiplication with
performance on par or faster than state-of-the-art BLAS
library implementations. The analysis of our data shows,
that is it sufficient to execute a small portion of the search
space to find an high-performance OpenCL kernel. Finally,
we show that no single portable kernel performing well on
all GPUs and input sizes exists. This shows that traditional
approaches, writing specialized kernels manually are non-
portable by design.

8. Related Work
Matrix Multiplication on GPUs

MAGMA [8] develops general templates for different ver-
sions of matrix multiplication with an auto-tuning frame-
work targeting NVIDIA GPUs. The clMAGMA [5] extension
targets AMD GPUs with OpenCL. Other work [12] has used
similar techniques with pre-written kernels and auto-tuning
techniques.
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Other researchers [9] have explored the limitations of GPU
programming languages when using matrix multiplication
as a case study. They conclude that GPU compilers are not
able to perform well with register allocation or instruction
reordering, leading to decreased levels of performance.

All these projects rely on manually written code which
has to be tuned with huge human effort. Our methodology
completely automates the optimization process and generates
high-performance code on par with the best hand-written
OpenCL code.

Polyhedral GPU Compilation

C-to-CUDA [4] and PPCG [20] are both polyhedral compilers.
They create a polyhedral model of the parallel nested loops
in the source code and perform advanced loop optimizations
such as tiling and blocking to static loop nests with affine
loop bounds and subscripts.

Pencil [3] is an intermediate language defined as a re-
stricted subset of C99. It is intended as an implementation
language for libraries and a compilation target by DSLs. It
also relies on the use of the polyhedral model to optimize
code and is combined with an auto-tuning framework.

Our approach is different since we do not rely on heavy
static analysis but instead exploit high-level semantic infor-
mation of our functional patterns such as map and reduce.
In addition, in our approach compiler optimizations are sim-
ply implemented as provably correct rewrite rules, greatly
simplifying the process of writing compiler optimizations.

High-Level GPU Programming Approaches

Many high-level approaches for GPU programming are in-
spired by functional programming.

SkelCL [17] is a high-level pattern-based library imple-
mented in C++. Data parallel patterns are implemented as
fixed OpenCL kernels lacking portability. Accelerate [13] is a
domain specific language embedded in Hasekll for GPU pro-
gramming. The implementation relies on templates of man-
ually written CUDA kernels. Bones [15] is a pattern based
GPU compiler automatically detecting algorithm species and
mapping them to patterns. The pattern implementations are
pre-written and not portable.

Delite [19] is a compiler framework for creating DSLs.
Recently, they explored different strategies for mapping data-
parallel computations onto GPU hardware [10]. Petabricks [2]
allows the user to provide several algorithmic choices or im-
plementations of the same algorithm. Petabricks was recently
extended to generate OpenCL code [16].

These high-level projects rely on manually optimized GPU
code or hard-coded device-specific compiler optimizations
making the generated code not performance portable.

9. Conclusion
This paper has presented a novel technique to automatically
generate performance portable GPU code. Programs are ex-
pressed in a high-level style using a small functional interme-
diate language. A system of rewrite rules encodes algorithmic
and low-level transformations and is used to generate differ-
ent implementations of the same program. By applying the
rewrite rules automatically, the system generates thousands
of semantically equivalent OpenCL kernels.

Using matrix multiplication as a case study, we have
shown how we are able to generate 46,000 differently opti-
mized OpenCL kernels. Out of these, the best generated ker-
nels provide performance on par or even better than state-of-
the-art high-performance OpenCL library implementations

on Nvidia and AMD GPUs. By investigating the performance
among kernels, we have shown that sampling a small fraction
of the generated kernels is sufficient to achieve high perfor-
mance. Furthermore, among all generated OpenCL kernels
there was not a single portable kernel providing good perfor-
mance across all investigated GPUs.
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