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Abstract
Deep Neural Network (DNN) accelerators enjoy a rise in
popularity due to the ubiquity of DNN applications. Devices
to accelerate DNNs – CPUs, GPUs, ASICs, FPGAs – vary
significantly and pose an increasingly difficult challenge to
extract performance from them. Approaches proposed to
address this problem lack in either portability or extensibility.

Lift is a novel approach that produces performance-portable
GPU and CPU code for linear algebra, sparse matrix and
stencil computations. Lift uses rewrite rules to detect and
transform patterns for parallelism, memory configuration
and instruction set of the target hardware. This paper presents
preliminary work in applying Lift to the generation of opti-
mised code for DNN accelerators by mapping expressions
to coarse-grained ISA primitives; discussion of the additions
to the IR, type system, code generation and rewrite rules
makes a case for extensibility of Lift.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are compute-intensive and
benefit from specialised accelerators. Approaches to hard-
ware acceleration vary from repurposing Graphics Process-
ing Units (GPUs) to designing new Application-Specific In-
tegrated Circuits (ASICs) and synthesising new architec-
tures on Field-Programmable Gate Array (FPGA) devices.
GPUs are a good fit for DNN computations due to the abun-
dance of floating-point units and large memory, that are
required for training and inference in DNNs; they are eco-
nomically affordable for research, small-scale production
and offline mobile computations of DNNs.

ASICs can provide the best performance for DNNs since
they can be tuned for optimal fit in silicon. However, design
and production costs coupled with ever-changing computa-
tional demands of rapidly evolving DNNs make ASICs pre-
rogative of big industry players. Examples of DNN ASICs
include the Tensor Processing Units (TPUs) [6], Huawei Da
Vinci architecture [9], the DianNao family [3] and Movidius
Myriad [5].

FPGAs are a compromise between GPUs and ASICs in
that they allow a great deal of customisability without the
need to bear costs of redesigning silicon. Notable examples
are Microsoft project BrainWave [2], work by Qiu et al. [10],
Suda et al. [14] and Lu et al. [7].

The difficulty with all these platforms is in producing efficient
code that makes optimal use of hardware resources. De-
tecting opportunities to use built-in optimised primitives is
not trivial in itself; so is mapping computations onto hard-
ware in a way that utilises available memory and compu-
tational units in an efficient way. Each platform requires an
unique combination of optimisations and extensive domain
knowledge which makes it costly to produce efficient imple-
mentations across multiple devices.

This paper discusses preliminary work towards extending
performance portability to hardware accelerators for DNNs
with Lift [12]. The functional data-parallel Lift language ab-
stracts algorithms from implementation while capturing
useful algorithmic information; this information is lever-
aged by the compiler for expression transformation using
rewrite rules. The rules are used to explore parallel and
memory mappings, as well as to detect opportunities to use
platform-specific optimised primitives. Lift was shown to
generate efficient OpenCL code for NVIDIA, AMD and ARM
Mali GPUs [4], and Intel CPUs [12] for various applications.
The work presented in this paper discusses how the Lift
compiler is extended to detect patterns that are frequent in
DNN implementations and exploit platform-specific built-in
primitives to accelerate the computation.

This paper offers insights into how rewrite rules can be
used to detect and rewrite combinations of generic primi-
tives into coarse-grained operations supported by the ac-
celerator. The functional programming paradigm makes it
easy to reason about the algorithm both in terms of detect-
ing useful patterns and exploring parallelisation mappings.
Rewriting rules are reused across different platforms and
are extendable to support new platforms and optimisations.
This preliminary work shows Lift could be extended with
new primitives, types, rewrite rules and code generation
stages to support DNN accelerators.

2 BACKGROUND
DNN accelerators based on both ASICs and FPGAs –
BrainWave, TPU, DianNao, Movidius – all rely on matrix
multiplication units to accelerate DNNs since the most
compute-intensive tasks – weighing input data in layers
– can be implemented as homogeneous blocks of GEMV
operations. Making use of these units requires carefully de-
signing the code for maximum unit occupation; combined



with other optimisations such as tiling and memory access
coalescing, the problem of detecting GEMV patterns be-
comes non-trivial. Even more difficult is this task when the
hardware details are subject to change as is the case with
FPGA-based BrainWave devices, which permit tweaking
synthesised architecture.

Lift produces efficient OpenCL code using tiling, loop trans-
formations, data layout and location optimisation, memory
access number reduction [13]. Building on that, we discuss
an extension to the Lift Intermediate Representation (IR)
to allow detection of course-grained operations such as
GEMV.

3 LIFT IR FOR DNNS
3.1 Data types
Lift DNN IR operates on the following types: Int, Floats of
various bit-width and arrays. Int is used for literals. Float8,
Float16 and Float32 types express the varying precision
levels employed by DNN accelerators to reduce the amount
of memory when possible. Arrays are used for storing vec-
tors and matrices. The decision of whether an array is a
vector or a matrix is made using array dimensionality and
its memory type, which is embedded in its address space
and reflects separation of memory banks in hardware.

The type checker traverses the expression to infer and
check the types, which includes validating the requirements
on memory types and array dimensionality imposed by pa-
rameter types and primitives.

3.2 Address spaces
Lift represents the hardware memory types by associating
data with address spaces. For OpenCL, Lift uses Glob-
alMemory, LocalMemory and PrivateMemory. For DNN

accelerators, we generalised these to DRAMMemory, Chip-
Memory, LiteralMemory, InputMemory and OutputMemory.

LiteralMemory is associated with all data that is not materi-
alised in memory such as literals and expressions.

ChipMemory and DRAMMemory address spaces re-
quire specifying memory type as VectorMemType or Ma-
trixMemType.

3.3 Lift primitives for DNNs
Lift primitives are used to specify memory access patterns,
arithmetic operations and address space transfers. The
primitives used for expressing DNNs include:

• Map, Slide, Reduce, Zip, Join and Split – these
generic patterns are discussed in detail in [12].

• toChip moves data from the input memory or DRAM
into the on-chip memory; toDRAM moves data from
the on-chip to DRAM memory; toOutput writes from
the on-chip to output memory.

• Arithmetic operators that are used for neuron acti-
vation in DNNs: Add, Sub, Mul, Div, Neg, Mod,
Tanh, ReLU, Sigm and Max. Depending on argu-
ment types, some of these primitives generate one of
several platform-specific commands; for example, Mul
generates either IntMul, VVMul or MVMul.

4 CODE GENERATION
The code generation starts with searching for patterns that
can be expressed using platform-specific coarse-grained
primitives. The transformed expression is type-checked
again; then, the Lift compiler performs a series of passes
on the expression to infer information on address spaces,



loop counter ranges and memory allocation. The compiler
also traverses the expression Abstract Syntax Tree (AST)
to build Views – data structures representing the memory
access patterns for reading the input data and writing the
output data at each AST nodes. Finally, the gathered infor-
mation is used to build a platform-specific AST. The code
generation process is discussed in more detail below.

During address space inference, the compiler assigns ad-
dress spaces to subexpressions based on explicit memory
transfers (toChip, toDRAM or toOutput), parameter types
and arithmetic operators. This work extends the address
space system to generalise over platform-specific memory
spaces and introduces the concept of memory types for
platforms that separate vector and matrix memory banks
imposing restrictions on valid operations.

The memory allocation pass traverses the expression and
infers the subexpression result memory based on primitives
and data types and address spaces of their arguments. The
allocated memory is either materialised as a buffer or used
in code generation to access generated subexpressions for
nesting.

For example, in an expression such as ReLU(Head(
Transpose(Id(X)))), we allocate memory for each prim-
itive, but only materialise that of Id(), which is an identity
function that forces materialisation of its arguments. The
view of Relu() argument looks like ViewHead(
ViewTranspose(mem123)), where mem123 is the mem-
ory of Id(). The address space of Relu() itself is Lit-
eralMemory, so instead of materialising the generated
expression will be saved for later using its memory as ref-
erence.

During View building, each subexpression is associated
with input and output views for reading and writing into

/ / mapFusion :
Map( f ) (Map( g ) ) ↦ Map( f ( g ) )

/ / mapFissionWithZipOutside :
Map( fun ( x => . . ( f ( Get ( x , i ) ) ) ) ) ( Zip ( . . , y , . . ) ) ↦
Map( fun ( z => . . ( Get ( z , i ) ) ) ( Zip ( . . , Map( f ) ( y ) , . . ) )

/ / vector iseMapZip :
Map( fun ( y => fabstract ( Get ( y , 0) , . . , Get ( y , n ) ) ) ) (

Zip (X0 , . . , Xn) ) ↦ f vectorised (X0 , . . , Xn)

Listing 1: Examples of generic rewrite rules: map fusion joins
maps, map fission splits Maps while taking care of preceding Zips,
vectorisation removes Maps from outside the primitives that
accept argument types on both sides of the rewrite rule

memory. Input views depend on nested expressions: the
view of Map is ViewMap, the view of Zip is ViewZip, etc.
Output views depend on outer expressions: for example,
the output view of an expression followed by Join is ViewS-
plit.

The final major stage is generating platform-specific AST.
During code generation, the compiler lowers the abstract
primitives such as Add and Mul to their typed counterparts
such as IntAdd, VVAdd and MVMul depending on argu-
ment types. This work extends the compiler to allow deep
nesting of generated subtrees as opposed to using memory
to store intermediate results and depending on the platform
compiler such as OpenCL to do copy propagation.

5 EXPLORATION
Rewriting in Lift is used to generate a search space of ex-
pression transformations with varying performance. For
DNN expressions, we reuse generic rules introduced for
OpenCL such as map fusion and fission; shown in Listing 1.



Jo in (Map( row => h ( Reduce (Add ( ) , 0) (
Mul ( row , vec to r ) ) ) ) ( mat r i x ) )

↦ h ( Mul ( matr ix , vec to r ) )

Listing 2: GEMV rewrite rule

Reduce ( f , i n i t ) ↦ f ( i n i t , Reduce ( f , 0) )

Listing 3: The rewrite rule for extracting the initialising expression
from Reduce

To make use of matrix-vector multiplication units in DNN ac-
celerators, the rewrite rule presented in Listing 2 replaces
the GEMV pattern with Mul primitive that is later translated
into a platform-specific command MVMul. For generalis-
ability, this GEMV rule is strict in matching AST nodes, so
the compiler uses other rules to lower expressions to the
matchable form.

Using the rewrite rule shown in Listing 3, Lift hoists the ac-
cumulator value expression outside of Reduce, which can
only be applied to commutative functions. In this rule, zero
has to be the neutral element with respect to f .

An example of rewriting is shown in Listing 4 using an
expression implementing a fully connected layer with a
bias (B) and an activation function (ReLU). In six steps, a
generic Lift expression (top) is transformed into a compil-
able expression (bottom) that benefits from built-in platform-
specific primitives. First, the compiler rewrites the GEMV
pattern in a form where the pattern can be detected by the
corresponding rewrite rule. The first four rewrites extract
the bias value from inside Reduce. Then, Map is replaced
with scalar addition with the addition operator, which can
generate vectorised addition.

1 toOutput (ReLU( Jo in (Map(λ ( neuron => {
2 Reduce (Add ( ) , Get ( neuron , 1) ) (
3 Mul ( Get ( neuron , 0) , toChip (X) ) )
4 } ) ) ) ) ) ( Zip (W, B) )
5

6 ↧ ext ract In i tFromReduce ↧

7

8 toOutput (ReLU( Jo in (Map(λ ( neuron => {
9 Add(Get(neuron, 1),

10 Reduce (Add ( ) , 0 ) (
11 Mul ( Get ( neuron , 0) , toChip (X) ) ) )
12 } ) ) ) ) ) ( Zip (W, B) )
13

14 ↧ mapFissionWithZipOutside ↧

15

16 toOutput (ReLU( Jo in (Map(λ ( neuron => {
17 Add ( Get ( neuron , 1) ,
18 Reduce (Add ( ) , 0) (Get(neuron, 0)) )
19 } ) ) ) ) ) ( Zip (Map(λ(row => Mul(row, toChip(X)))) (W) , B) )
20

21 ↧ mapFissionWithZipOutside ↧

22

23 toOutput (ReLU(Map(λ ( neuron => {
24 Add ( Get ( neuron , 1) , Get(neuron, 0) )
25 } ) ) ) ) ( Zip (Join(Map(Reduce(Add(), 0))(
26 Map(λ ( row => Mul ( row , toChip (X) ) ) ) (W) ) ) ,
27 B) )
28

29 ↧ mapFusion ↧

30

31 toOutput (ReLU(Map(λ ( neuron => {
32 Add ( Get ( neuron , 1) , Get ( neuron , 0) )
33 } ) ) ) ) ( Zip ( Jo in (Map(λ(row => Reduce(Add(), 0)(
34 Mul(row, toChip(X)))))) (W) ,
35 B) )
36

37 ↧ mvMulBui l t In ↧

38

39 toOutput (ReLU(Map(λ ( neuron => {
40 Add ( Get ( neuron , 1) , Get ( neuron , 0) )
41 } ) ) ) ) ( Zip (Mul(W, toChip(X)) , B) )
42

43 ↧ vector izeMapZip ↧

44

45 toOutput (ReLU(Add(Mul(W, toChip(X)), B)))

Listing 4: Fully connected layer rewriting steps



6 RELATED WORK
Delite [15] is a compiler framework that provides tools to
define Domain-Specific Languages (DSL) that reuse paral-
lel patterns, optimise and generate platform-specific high-
performance code using a single backend. Lift benefits
from better performance portability thanks to reusability
of rewrite rules across hardware platforms, whereas Delite
hard-codes device-specific optimisations in each backend.

Halide [11] is another approach to simplify high-performance
code generation: by decoupling algorithm descriptions from
optimisations (schedules), Halide takes the problem of code
tuning out of the hands of the application developer. Simi-
larly to Delite, it suffers from limited portability due to hard-
coded optimisations for a restricted set of platforms.

Building upon Halide principles and IR, TVM [1] and NNVM [8]
together provide a comprehensive framework for cross-
platform optimisation of neural networks. NNVM converts
workloads described in different encodings to a standard-
ised computational graph, while TVM handles high-level
operator fusion, data layout transformation and tensor opti-
misation. TVM lacks in extensibility since each optimisation
is hard-coded as a separate module, whereas Lift can be
extended with principally new optimisations by adding new
rewrite rules.

7 CONCLUSION
This work-in-progress paper describes a case study of how
a function IR, coupled with rewriting, can be used to map
computations onto DNN accelerators such as Brainwave,
TPU and DianNao. This proposed extension of Lift aims to
provide a way to express programs in a high-level platform-
independent language and automatically tune generated
code to various DNN accelerators through optimisation
space exploration. Compared to existing solutions, Lift is

extensible both in terms of optimisation methods and target
platforms through a system of fine-grained rewrite rules and
modular code generators.

Our preliminary work has shown that Lift is able to detect
the most ubiquitous pattern in DNNs: matrix-vector mul-
tiplication. We have shown how to optimise a generic Lift
expression for fully connected layer by transforming it to use
a built-in primitive for GEMV. Stacking the produced expres-
sion, we get a Multilayer Perceptron, a neural architecture
that is responsible for most of the TPU workload in Google
servers [6].

We intend to build up on this in future work by evaluating
the approach on DNN architectures such as VGG, ResNet
and GoogleNet on a range of DNN accelerators such as
TPU, BrainWave, Huawei Da Vinci architecture and Movid-
ius Myriad. We are confident that the technique presented
in this paper is generic enough to work on other types of
layers and different hardware platforms.
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