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Abstract

Modern parallel hardware promises unprecedented perfor-
mance, for the gifted few experts who can program it cor-
rectly. Code generators from high-level languages provide
an attractive alternative, promising to deliver high perfor-
mance automatically. Existing projects such as Accelerate,
Futhark, Halide, or Lift show that this approach is feasible.
Unfortunately, existing efforts focus on computations over
tensors: regularly shaped higher dimensional arrays. This
limits the expressiveness of these approaches and excludes
many interesting data structures that are commonly encoded
manually in memory, such as trees or triangular matrices.

This paper presents an extended array type that lifts this
restriction. For multidimensional arrays, the size of a nested
array might depend on its position in the surrounding arrays,
enabling the expression of computations over less regularly
shaped data structures. However, position-dependent arrays
bring new challenges for high-performance code generation,
as indexing elements in memory becomes more challenging.

This paper shows how these challenges are addressed by
extending the existing Lift type system and compiler. The
experimental results show that this approach enables the
efficient code generation of triangular matrix-vector multi-
plication, with performance improvements over cuBLAS on
an Nvidia GPU by up to 2X. Furthermore, we show a use case
for a low-level optimization for avoiding unnecessary out-of-
bound checks in stencils, leading to up to 3X improvements
over already optimized generated stencil codes.

CCS Concepts + Software and its engineering — Par-
allel programming languages; Compilers.
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1 Introduction

Domain specific code generators enables the generation of ef-
ficient parallel code from high-level abstractions. These code
generators attempt to fulfill the high-performance needs
of many domains, such as machine learning, that crucially
rely on the efficient exploitation of high-performance hard-
ware such as GPUs. It is extremely challenging, even for
experts, to write correct and efficient programs in low-level
programming approaches such as CUDA or OpenCL. Code
generation from high-level abstractions offers an attractive
alternative and recent research has provided significant ad-
vances with projects such as Accelerate [13], Futhark [11],
Halide [14], and Lift [17, 18]. There is particular interest in
the area of deep learning with projects such as Tensor Com-
prehensions [19], Glow [16] for compiling PyTorch networks,
as well as XLA [8] for compiling TensorFlow graphs.

The focus of existing work in this area has been on com-
putations over regularly shaped higher-dimensional arrays,
know as tensors. Many important application domains fall
into this category, but there also exist many important appli-
cations that require more irregularly shaped data structures.
For instance, triangular matrices are extremely important in
many fields, as they are commonly used to perform efficient
inversion of symmetric matrices [3]. Moreover, many phys-
ical phenomena can be modelled using matrices that have
unusual characteristics, such as banded matrices, or even
more exotic type of matrices [7].

For such applications, irregularly shaped data must cur-
rently be encoded manually in the provided regular-shaped
arrays. This leads to increased complexity, possible ineffi-
ciencies in memory usage and compute time, and ultimately
defies the purpose of a high-level code generator. Encoding
irregularly shaped data explicitly in memory is well known
to low-level programmers who are forced to manually en-
code higher-level data structures in flat memory buffers.
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In this paper, we present our approach to generate effi-
cient parallel code for irregularly shaped data by extending
the functional L1rT intermediate representation and code
generator. Crucially, we show how an extension of the type
system with a limited form of dependent types enables us to
generate efficient parallel code for computations over irreg-
ularly shaped data, without much changes in the way the
L1FT code generator operates. We also tackle the challenges
that such irregularly shaped data bring for memory access
calculation when indexing elements.

High-level L1rT programs are composed of well known
high-level primitives such as map or reduce. Such programs
are transformed by the LIFT compiler into a low-level form
using a set of rewrite rules that are applied in an automated
optimization process. Finally, efficient parallel code is gener-
ated from an optimized low-level program. Our extension
to LIFT ensures that existing primitives continue to work
over irregularly shaped arrays. Furthermore, we add a new
primitive — partition — to break down a one-dimensional
array into an irregularly shaped two-dimensional structure.
This primitive is useful for encoding lower level optimiza-
tions, such as avoiding out-of-bound checks for stencil codes.
Our implementation carefully extends LIFT to reuse as much
existing infrastructure as possible.

Our experimental results demonstrates that the extended
L1FT code generator is capable of generating efficient parallel
GPU code for a number of important use-cases operating on
irregular data. For triangular matrix-vector multiplication,
a crucial numerical kernel included in BLAS, we achieve
performance on par with cuBLAS on an Nvidia GPU and
even a speedup of 2x for certain input sizes. By using the
partition primitive, we improve the performance of GPU
stencil code by avoiding out-of-bound checks resulting in
up to 3X improvements for certain stencil sizes.

To summarize the contributions of this paper:

e We present a generalization of array types capable of rep-
resenting irregularly shaped data such as triangular arrays
and discuss our design and implementation, including a
partition primitive for introducing irregularity into regular
arrays (Section 4);

e We show how we generate efficient array indices using
symbolic simplification extended to deal with the position
dependent arrays (Section 5);

e We present performance results for two case studies demon-
strating that our approach generates efficient parallel code
with performance improvements of up to 2x compared
to the tmrv kernel in cuBLAS as well as performance im-
provements of up to 3X over already optimized stencil
code by automatically avoiding unnecessary boundary
checks (Section 6).

We first start with a motivation (Section 2) and background
information about traditional array types (Section 3).
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2 Motivation

The ever growing demand of increased performance is fu-
eling the development of domain specific code generators
to automatically generate high performance code from high
level notations. Academic projects such as Accelerate [13],
Futhark [11], or L1rT [17, 18] use functional languages as
compiler intermediate representation for high performance
code generators. This approach has the advantage that code
generation is guided by a strong formal foundation, including
a type system and formal semantics.

L1FT, for example, tracks the size of multi-dimensional ar-
ray dimensions in the type system and uses this information
for the generation of loop bounds and array indices. This
allows for a high level notation that omits details such as
indexing arrays while typing guarantees that the informa-
tion required for generating correct array indices in the low
level program are always accessible. Similarly, Accelerate
and Futhark track the shape of multidimensional arrays.

The representation of regularly shaped multidimensional
arrays in a type system is well known in the functional pro-
gramming community and it is well understood how such
arrays are represented when flattened in memory. However,
type systems used for functional intermediate representa-
tions are so far not expressive enough to represent other
useful less regular multi-dimensional data structures such as
triangular matrices. Triangular matrices for instance, are use-
ful for certain partial differential equations and least square
problems, and are commonly used for systems of equations,
as discussed by de Castro Martins et al. [6].

In this paper, we investigate how multi-dimensional ar-
rays representing less regularly shaped data are represented
at the type level and how to generate high performance code
for them. We look at two use cases of computations in detail:
triangular matrix vector multiplication and the use of irregu-
larly shaped array as a compiler internal data structure to
optimize avoidance of out-of-bound checks for stencils. These
two very different use cases have been chosen to highlight
the potential of our generic approach.

2.1 Use-case 1: Triangular Matrix Vector
Multiplication

Triangular matrices naturally appear in different areas of
mathematics, for example when solving linear equations.
Triangular matrix vector multiplication is a fundamental
building block included in the basic linear algebra subrou-
tines (BLAS) API in form of the trmv kernel. Figure 1 shows
a visualization of the operation. Since the matrix has a tri-
angular shape, for each row i the dot product is computed
only with the first i elements of the vector.

In current systems such as Accelerate, Futhark, or LIFT,
it is unclear how a triangular matrix should be represented,
as their type systems are not expressive enough to precisely
represent a triangular matrix. Instead, the programmer is
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Figure 1. Triangular matrix vector multiplication

val sumNbh = fun(nbh => reduce(add, 0.0f, nbh))
val stencil = fun( A: Array(Float, N) =>
map (sumNbh ; slide(3, 1, pad(1, 1, clamp, A))))

Listing 1. 3-Point Jacobi Stencil in LirT. From [10].

for(int i = @0; i < N; i++) { int sum = 0;
for(int j = -1; j <= 1; j++) { int pos = i+j;
pos = pos < 0@ 70 pos;
pos = pos > N-1 ? N-1 pos;
sum += A[pos]; 3}
B[i]l = sum; }

Listing 2. Simple 3-Point Jacobi Stencil in C. From [10].

forced to change how to express the computation, how to
represent the data or how to do both, e.g., by flattening the
matrix into a one dimensional array and use manual index
computations, or by wastefully representing the data as a
regular rectangular matrix filled with zeros.

Section 4 presents a type system that is capable of pre-
cisely capturing the shape of the triangular matrix, section 5
explains how we generate GPU code for the triangular ma-
trix vector multiplication from the straightforward high level
notation. Finally, section 6 shows that our generated code
outperforms a cuBLAS implementation by up to 2X.

2.2 Use-case 2: Optimizing Stencil Boundary Checks

Stencil computations are an important computational pat-
tern occurring in many application domains ranging from
image processing to convolution neural networks. Stencils
update a point in a grid with a computation that depends
on neighboring grid points. In LIFT, stencils are represented
in a high level notation using a combination of primitives
as shown in listing 1 and described in detail by Hagedorn
et al. [10]. Here the pad primitive describes the boundary
handling by applying a clamping boundary condition, the
slide primitive creates a sliding window of neighboring grid
points, and, finally, the map primitive applies the sumNbh
function to all created neighborhoods.

Listing 2 shows the C pseudo code generated by L1rT. The
boundary handling is done in lines 3 and 4 where an out-of-
bound check is performed in every loop iteration. Human
experts are able to produce a more optimal version, where
the first and last few iterations of the outer loop are peeled
away. The loop itself then becomes entirely free of bound
checks, leading to increased performance.
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Code generators such as LIFT are good at treating data in
arrays uniformly, but currently struggle with optimizations
where data and computations are treated non-uniformly.

What is required is a type system that is able to represents
arrays whose elements are themselves nested arrays of vary-
ing size. Using such ability, we could partition the input array
into three nested arrays each representing a differently sized
portion of the input data. If we had a value of such a type,
we could use LIFT’s primitives such as map to generate a
version similar to the human optimized one. Section 6 shows
that this approach leads to improvements of up to 3x over
already optimized GPU code generated by LirT [10].

2.3 Summary

Current code generators do not support the generation of
high performance code for computations with irregularly
shaped multidimensional arrays. This section has motivated
an extension of the type system in the existing L1FT compiler.
We have discussed two particular and quite different use-
cases. As we will see in section 4, the extension of the type
system increase the expressiveness by representing less reg-
ularly shaped multidimensional arrays while still imposing
structure that is exploited to generate efficient code.

The next section discusses the design of this extended
type system which is inspired by a limited form of dependent
types. We will first start by explaining the design of existing
type system for regularly shaped multidimensional arrays.

3 Traditional Multidimensional Arrays

This section describes how traditional multidimensional
arrays types are represented in existing code generators
with functional intermediate representations like Acceler-
ate, Futhark, or L1rT that all track the shape or even size of
multidimensional arrays in the type.

Tracking the shape (i.e., dimensionality) and size of arrays
in the type system has proven useful for efficient code gen-
eration from functional intermediate representations. Accel-
erate tracks the shape of arrays in the type: Array sh a. Here
sh represents the shape of the array and a the type of the
array elements [13]. Futhark and LirT track the length of
multidimensional arrays in the type system. In Futhark an
array type is written: [n]p where n is the number of elements
and p the element type [11]. Similarly, but using a different
notation, LIFT expresses an array type as: [A], where A is
the element type and n the number of elements [17].

To represent multidimensional arrays, both Futhark and
LIFT use nesting. A two dimensional nXm matrix type is writ-
ten as: [ [A],, |, where A is the element type. LIFT supports
rich arithmetic expressions for the length of arrays beyond
constants such as n. Operations such as addition, division, or
modulo are used to represent the length of arrays [18]. This
paper extends the L1FT type system which we discuss next.
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A+ N :nat A+ M : nat A+ N :nat A+ M : nat
A+ n:nat A+ N+ M :nat A+ N-M:nat

(d) Natural numbers

A+ N : nat

A+ ¢ : datatype

A+ 67 : datatype A+ &7 : datatype

Ak int : datatype

A+ [8]N : datatype

A F 81 X 8 : datatype

(e) Data Types

A+ § : datatype

AF 0 : type

k € {nat, datatype}

A F 0y : type Ax:xF0:type

AF S :type

AF 6 — 0y :type

A F (x:x) — 6 : type

(f) Types

Figure 2. Well-formed Types of LirT

3.1 Type System

The type system used by L1rT is shown in Figure 2 using
the formulation used by Atkey et al. [1] and adapted for the
presentation here. We distinguish between three different
kinds (2a): natural numbers (nat) for the length of arrays;
data types (datatype) for types that are stored in memory;
data types together with function types and a limited form
of dependent function types make up the final kind (type).
As types may contain variables we use a kinding judgement
A+ 7 : k stating that type 7 has kind « in the kinding context
A. As our types contain expressions of natural numbers type
equality can not be assumed by syntactic equality. Figure 2¢
states that nats are equal when their interpretations as num-
bers are equal for all interpretations of their free variables.

Figure 2d defines well formed natural numbers which
are either literals (indicated by n) or expressions of natural
numbers. We show here only addition and multiplication
as possible binary operators, but in our implementation we
support much richer expressions of natural numbers using
additional operators such as division and modulo.

Figure 2e defines three different data types supported in
L1rT: scalar types such as int; array data types; and pair
types. For each exists a direct representation in C, whereby
pair types are mapped to structs. The design of the type
system deliberately prevents function types inside arrays or
pairs as OpenCL does not support function pointers.

Finally, figure 2f defines all well-formed LIFT types. We
consider all well-formed datatypes to be well-formed types
and add the usual function type and a function type abstract-
ing over data types and natural numbers at the type level.
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3.2 Type Checking

The typing judgment A[T" + P : 0 states that a program P is
well typed with type 0 in the contexts A and I'. For this the
type 6 as well as all types in I must be well-kinded by A and
P must be well-typed by I'. Figure 3 shows the typing rules
of LirT. The structural rules in figure 3a show the forming
of well-typed variables, implicit conversion between equal
types, and how the primitives of LIFT integrate. The rules in
figure 3b are the standard A-calculus rules for abstraction and
application for usual lambdas as well as the nat and datatype
dependent lambdas (written as A) where for application the
argument is substituted in the type of the lambda body.

3.3 Computations over Multidimensional Arrays

The most important LIFT primitives are shown in figure 4.
We usually infer the first arguments representing nat and
datatype and omit them when we write LIFT programs.
The primitives nest naturally: map applies a function to
each array element - independent if the element is a scalar
value or an array itself. Operations on higher dimensional
data are expressible using familiar functional primitives. For
example, matrix-matrix-multiplication can be expressed as:

map (Ar. map (Ac. reduce (+) 0 (map (x) (zip r ¢))) B) A

While nesting of the presented array type enables the
representation of regularly — or rectangularly — shaped mul-
tidimensional arrays, it is not sufficient to represent less
regularly shaped arrays. In the two dimensional array type
[[int]m ], the inner size m must be the same for all elements
of the outer array, as arrays are homogeneous containers.
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(a) Structural Rules
A|F,x:61kP:02 A|r1I-P:91—)92 A|F2kQ:61
Lam PP
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A|TFAx.P:(xx) > 0

A|T+Pr:0[t/x]

(b) Abstraction and Application Rules

Figure 3. Typing Rules of LIFT

map (n : nat) — (81 &7 : datatype) —
(61 = 82) = [01]n — [02]n
reduce : (n:nat) — (J; §; : datatype) —
((31 — 52 g 52) g (Sg i [51],1 g 52
zip (n : nat) — (81 &7 : datatype) —
[61]n — [62]n — [61 X S2]n
split (nm: nat) — (6 : datatype) — [8]n.-m — [[O]nlm
join (nm: nat) — (6 : datatype) — [[8]n]m — [Oln-m

Figure 4. Existing LIFT primitives

Our goal is to relax this strict notion of homogeneity to
allow differently shaped multidimensional arrays to be rep-
resented. But we still insist on some form of homogeneity
for multidimensional arrays: the underlying scalar data type
(int in the example) must be the same for all elements in the
multidimensional array. This ensures that arrays can be flat-
ten efficiently in memory, e.g., with a C-like row-major stor-
age layout. The information in the type: m, n, and sizeof(int),
is sufficient to compute the index of each element.

4 Position Dependent Arrays

This section describes the proposed extension to the LirT
type system for irregularly shaped multidimensional arrays.
We first describe the extended array type, followed by an
example for triangular matrix and higher dimensions arrays.
This is followed by a section on how to compute over data
with such types. We end this section with a description of
new primitives added to L1rT useful for expressing low level
optimizations such as avoiding out-of-bound accesses.

4.1 Position Dependent Array Type

To describe the shape of a triangular matrix precisely in its
type, for instance, we need to lift some restrictions of the
traditional multidimensional array types. The homogeneity
of arrays which ensures an efficient data representation is
overly restrictive. It is obvious that a triangular matrix can
be stored efficiently in memory following a row-major order
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AF N :nat
A+ [i — 8] : datatype

A,i:natt § : datatype

Figure 5. Well formed position dependent array type

[],

1, , .
{3 4]5] i [int]iv |,
[

6,7,8,9]

Figure 6. A triangular matrix value on the left and a type
precisely describing it on the right.

into a flat representation. Describing this shape precisely
statically allows for efficient computation of element indices.

Therefore, we can carefully extend the notion of an ar-
ray type to allow the size of nested arrays to depend on its
position. Figure 5 shows an array type where the element
type 9 is allowed to depend on the position i in the array.
Since nat is only allowed to appear in the lengths of arrays,
it is ensured that the underlying scalar type of the array
remains the same. In other words, the position dependent
arrays are still homogeneous, besides for the array lengths
that might appear in the element type. This ensures that
multi-dimensional arrays are stored efficiently as a flat repre-
sentation of the underlying element type. This prevents, for
instance, the expression of a type of a matrix which stores
floats in the some rows and doubles in some other rows, as
it wouldn’t be clear how to compute efficiently the addresses
of the individual elements in memory.

4.2 Example

To describe the type of a triangular matrix, we write: [ i
[int]is1 ]n. This type indicates that the length of each row
is equal to its position i in the array plus one (to accommo-
date the 0-based indexing): the first row has length 1, the
second row has length 2, and so on with the last row (at
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i)
[1.2])° . . .
[13,4,5]], | [im [ lintlsap g 1s
[16,7,8,9]]
where
s _ i-1
so() = {i :)J;lle:w(i)se} and  s1(i,j) = Z so(k) +j+1

k=0

Figure 7. A three dimensional array, irregularly grouping
rows of a triangular matrix. Type shown on the right.

position n — 1) having length n. This is shown in figure 6 for
a two dimensional array with four nested arrays of different
size. Overall the data forms a lower triangular matrix that is
reflected in its type.

Triangular Matrix For the triangular matrix example with
the type [i — [int]i ]n, d is the nested type [int];;; for
which the length depends on i and can be described by this
function: s(i) = i+ 1. This is a strict generalization of the clas-
sical array type seen in the previous section. If the element
type  does not depend on i then all elements of the arrays
must have the exact same length, as for arrays with a classi-
cal array type. For example, a two dimensional matrix can
be expressed in our extended array type as: [ i [int], ]n
If the array index i is not used in the type we might omit
it: [_ — [int],, ]n. This type is equivalent to the classical
multidimensional array type: [ [int]n ]n.

Higher Dimension Arrays For higher dimensional types,
the sizes of nested arrays might depend on all positions of the
surrounding arrays. See figure 7 for an example. Here the first
two rows of a triangular matrix have been grouped together
forming a nested array together with the third and fourth row.
Such a representation could be useful to achieve some form
of load balancing by grouping multiple shorter rows together
to balance the number of elements in every group. The three
dimensional type is interesting with two functions s, and s,
describing the size of the nested array dimensions. For sy a
case statement is used to define the function specifying that
the first element of the outer array will have two elements
while the other elements will all be of size one. The deeper
nested array has a more complex computation of its size.
s; depends on both positions i and j of the surrounding
arrays. We can still see the same arithmetic expression used
to represent the triangular matrix: j + 1. In addition, the
expression Y,;_ so(k) computes a prefix sum over the outer
dimensions expressed in sy. We will understand how to derive
this expression from the triangular matrix type using a new
primitive we will introduce in section 4.4 called partition.
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map (n: nat) — (fs, fs, : nat — datatype) —
((k : nat) — (f5, k) = (fs, k) =
[i = (fs, Dln = [ = (f5, Dn
(n: nat) — (fs, : nat — datatype) —
(82 : datatype) —
((k : nat) — (f5, k) = 82 — 62) —
6 = [im (f5, Dln — b2
(n: nat) = (fs, fs, : nat — datatype) —
[i = (fs, DIN = = (s, DIn —
[k = ((f5, k) % (fs, k)]n
(n : nat) = (fn : nat — nat) — (0 : datatype) —
[i— [5]f,,(i)]n - [5]2?:_01fn(i)

reduce :

zip

join

Figure 8. Overloaded LIFT primitives operating on position
dependent array types

4.3 Computations over Irregularly Shaped Arrays

So far, we have seen how to represent irregularly shaped
multidimensional arrays with a novel type. We will now
investigate how to express computations over such data
structures in the functional high-level notation of LirT. We
will use as much of the existing LIFT primitives as possible.

The LirT primitives shown before in figure 4 are over-
loaded to work on the new position dependent arrays as
shown in figure 8 for this the type system is extended with
type level functions that map natural numbers to data types
(nat — datatype) or to natural numbers (nat — nat).

The types of the primitives using the position dependent
array types are interesting. For map the elements in the
input array are now described by the type level function
fs, mapping natural numbers to datatype. The first value
of the array has type (f5, 0) the second (f5, 1) and so on.
The function that map applies to each element of the input
array is now parameterized by an additional natural number
k that represents the index at which the function is applied.
The k-th element of the input array has the type (f5, k). A
similar type level function f;s, describes the element types in
the output array. reduce, zip and join generalize to position
dependent arrays in a similar way to map.

We do not provide a version of split for position dependent
arrays, as we will introduce a new primitive in the next
section called partition, which is more general than split.

Using the overloaded L1FT patterns together with the ex-
tended array type we can straightforwardly write the imple-
mentation of triangular matrix multiplication, as shown in
listing 3. We start by applying map to the triangular matrix
to perform a computation for every row. For each row we
compute the dot product with the vector by combining them
with zip, multiplying the resulting pairs and summing them
up. LIFT transforms high-level programs into efficient low-
level code by applying a set of rewrite rules in an automated
optimization process. This process rewrites the expression
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fun(matrix:[i — [float]s1)Iln, vector:[float]n) => {
map(A row — reduce(add, 0, map(mult,
zip(row, slice(@, getLength(row), vector))))
, matrix) }

Listing 3. L1rT code for triangular matrix multiplication

[0.1,2,3,4,5,6] : [int]e
ﬂ partition 3 (i — i+ 1) ﬂ
[e],

[1.2],
[3,4,5]

i [intlis ],

Figure 9. An example of partition used to transform a one
dimensional array into a two dimensional triangle.

by, e.g., fusing patterns to avoid the generation of unneces-
sary temporaries and by mapping the computation to the
different levels of parallelism offered by modern hardware.

The only difference compared to the matrix vector mul-
tiplication of a rectangular matrix is the use of slice and
getLength. Slice is a pattern for accessing a subarray defined
by start and end indices. It is implemented in terms of a more
general pattern called partition, whose details are covered in
the next section The getLength primitive returns the length
of the given array. For this it accesses the length represented
at the type level.

Together, these primitives select the upper part of the
vector up to an equal size to the current row. This part of
the vector is then combined with the row to compute their
dot product to produce an element in the output vector.

4.4 Partition
Type Partition has the following type:
partition : (n : nat) — (f : (nat — nat)) — (3 : datatype) —
[5]2:’:*01]0(1) —lim [5]f(1)]n

Here n represents the number of subarrays produced by
partition and f is a type level function mapping each index
(ranging from [0, n — 1]) to the length of the corresponding
subarray. The produced array is a two dimensional array of
size m and with subarrays as elements where element i has
a size of f(i). A simple example visualizing the partitioning
of an array into a triangle matrix is shown in figure 9. The
dual operation of partition is the generalized join defined in
figure 8. The following identity holds:

joinn f & (partition n f § input) = input

The length of the input of partition can therefore also be
seen as the length of the output array of the type of join. A
similar duality exists for split and join for rectangular arrays.
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Introducing Partition via Rewriting Rules One of the
core ideas underpinning L1FT is the use of an automated ex-
ploration system that uses rewriting rules to automatically
generate high performance code. A rewrite rule is a semantic
preserving transformation of expressions, and is LIFT’s way
to express optimization choices that are automatically ex-
plored in the optimization process using stochastic methods,
as explained by [15].

To make automatic use of the partition primitive as a low
level optimization we design rewrite rules that introduce the
primitive and, thus, expose it to LIFT’s exploration process.
As mentioned before, partition can be seen as a generalization
of split. There exists a few rewrite rules that include split,
like a divide-and-conquer style rule that splits an input array
into several parts that are then processed individually before
the results are joined back together:

map(f, input) — join(map(map(f), split(n, input)))

These rules can simply be generalized by exchanging parti-
tion for split, e.g., to express a load balancing aspect when
the work of applying f to every element of the input array
is not uniformly distributed. In addition to these general-
ized rules, it is possible to express a more specific low level
optimization: the use of partition for a more fine-grained
handling of stencil boundary conditions.

As seen in section 2.2, stencil applications need to handle
the boundary of its multidimensional input array specially,
for example by padding the array with additional values or
(as shown in listing 1) by clamping the index computation.
This boundary handling introduces potentially expensive
branches, human experts often write their programs in such
a way to handle these section as special corner cases.

Due to the uniformity of the LirT primitives and its regu-
lar array types, it is not possible to express this optimization
without support for position dependent arrays. The introduc-
tion of partition, however, allows for the optimized handling
of boundary conditions to be expressed and automatically
introduced via a rewrite rule:

map(f, slide(size, step, pad(l, r, input))) —
Jjoin(map(map(f), partition(3, caseSplit(l,n — 1 —r,r),
slide(size, step, pad(l, r, input)))))

The intuition behind this rule is as follows: we insert a par-
tition right before executing f which represents the stencil
computation performed over the stencil neighborhood. The
partition splits the grid of neighborhoods that has been pro-
duced by slide in three distinct sections: a prologue, a central
body, and an epilogue. The sizes of the prologue and epilogue
correspond to the number of elements padded to the input.
The central body takes up the remaining input size.

Due to the information available in the type the compiler
is capable of removing the out-of-bound checks from the
central body section of the code. We will discuss details how
this is implemented in section 5.
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Concerning the rule correctness, we can see that the rule
is indeed semantic preserving: partition has the effect to split-
ting the input in chunks and add one layer of nesting. The
addition of a subsequent map wrapping around the original
body does not modify the number or order of the elements
in the output, but simply influences how the computation is
organized. Finally, the terminating join will undo the effects
of partition on the output.

4.5 Summary

In this section we have introduced an array type that allows
for the size of nested arrays to depend on their position in
the outer array. This enhances the expressiveness allowing
to represent data structures such has triangular matrices or
trees. We have seen that computations over such structures
are as naturally expressed using the same set of primitives
already familiar to functional programmers.

Furthermore, we have introduced a new primitive to par-
tition a regular array into a nested irregular one and we
have discussed how an rewrite rule automatically exposes
this transformation as an optimization choice for removing
unnecessary boundary checks. In the next section we will
discuss important implementation details.

5 Implementation and Code Generation

After describing the design of the extended multidimensional
array type in the previous section we now discuss some of the
implementation details. We first describe the implementation
challenges faced, before discussing them individually. Finally,
we will briefly discuss the code generation before evaluating
the performance achieved in the next section.

5.1 Implementation Challenges

Extending the existing LirT OpenCL backend to support the
extended array type presented a number of challenges:

o Allowing for the array size to depend on its position in the
surrounding arrays significantly complicates the computa-
tion of the number of element in a multidimensional array.
This is a fundamental operation necessary for computing
array indices and to perform memory allocation.

e The implementation of efficient index computations in the
generated OpenCL kernel is no longer straightforward.
When done naively, many of the generated arithmetic
expressions would require the introduction of loops and
conditional branches when computing indices.

e The implementation of partition should not produce re-
sults directly but instead lazily influence the code gener-
ated for following patterns. We describe a solution using
LIFT’s view system.

e Finally, we will discuss some memory management and
memory allocation challenges.
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5.2 Calculating the Number of Array Elements

In the previous section, we have seen how LIFT provides
support for multidimensional arrays, and that these arrays
are essential to the compositional nature of LIFT programs.
Multi-dimensionality in LIFT, however, exists purely as an
abstraction: in order to generate high performance code, the
OpenCL code generator flattens the multidimensional arrays
into contiguous memory buffers.

This requires the compiler to calculate the number of
elements contained in a potentially multidimensional array.
In the context of regular arrays with a classical type, one can
easily compute the linear index using the formula

dimq X dimg X ... X dimp,

For an irregular sized arrays with an extended array type,
the number-of-elements formula generalized as follows:

dimp_1(i1,..,in—2)—1

dimn(il, o in—l)

diml—l

i1=0 in_1=0

An important feature of the LIFT compiler is the exten-
sive use of symbolic algebra for reasoning about arithmetic
expressions of natural numbers, such as array sizes and it-
eration ranges. The system was originally designed to only
work with arrays of regular length and is introduced and
described in [18]. With the introduction of the extended
array types, it becomes, therefore, necessary to extend the
symbolic algebra system to include a new »; construct. This
constructs corresponds to the concept of an algebraic sum-
mation as commonly used in mathematics. We discuss next
how we exploit the properties of algebraic summations to
optimize many cases of index computations.

5.3 Optimizing Index Computations

Generating concise index computations is incredible impor-
tant for achieving high performance. Prior work [18] reports
massive performance losses for applications such as ma-
trix matrix multiplication when index computations are not
simplified by the compiler. In this section we describe the
generation of optimized index computations that contain the
newly introduced ), operator.

A naive implementation of }; would generate a sequen-
tial loop. Due to performance considerations however, this
approach is not viable. Instead, in every case we have encoun-
tered and envision in practical use, the index computation
can be simplified to a close form without any }; terms.

Example Consider the problem of indexing of an element
of a triangular matrix flattened in memory. As see earlier,
the matrix has type [ i [8]i ]n, which means the length
of each row is i + 1. To compute the position in memory of
element (rid, cid), we can compute a close form as follows
using well-known properties of >
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rid—1

memLocation(rid, cid) = ( Z i+1)+cid

i=0

rid-1
= rid + ( Z i)+ cid = rid +
i=0

id + 1 id

- % N

(rid) x (rid — 1) + cid

cid

By implementing these algebraic simplification rules, the
compiler is capable of generating efficient index computa-
tions for a large number of expressions. The following sec-
tion list the rules implemented in the compiler.

Simplification Rules for ), The rules presented here might
look slightly different from their usual presentation in math-
ematics: since in this work their main use is to determine
offsets in linear arrays, the rules are indexed from 0, as op-
posed to the more commonly used indexing from 1.

N
Z ¢c = N=xc+1 (1)
i=0
N Nx(N-1)
;z = — @)
N
Z 9l = gn+l_ 4 3)
i=0
b a
Dy = Y fH =D f0) @
i=a i=0 i=0
N N
Qe f) = cxy f) %)
i=0 i=0
N N N
DfWHgl) = Y fl)+ Y g0) ©)
i=0 i=0 i=0

N
+ ) R )

i fiifi=c | [h(o)ife= N
p f2(i) otherwise] ~ |0 otherwise L

The algebraic simplification rules can be roughly grouped
in three categories, according to their main purpose:

e Rules (1) - (3) are used to compute the number of elements
of one dimension of an irregular array, each matching
a different primitive shape that the dimensions can take.
(1) is used for fixed size dimension, (2) corresponds to
linearly variable dimension, such as in triangular matrices
(3) corresponds to exponentially variable dimension, such
as binary trees

e Rules (4) - (6) are auxiliary simplification rules, used to
split composite sums into simpler parts.

e Rule (7) deals with the elimination of if-statements, usu-
ally generated by the length function of partition. This
rule is an analogue of loop peeling, a classical compiler
optimization in which loop iterations are extracted out of
the loop into the loop’s prologue and epilogue.
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If-elimination Rules We observe that programs contain-
ing non-trivial uses of partition could generate inefficient
OpenCL programs. The main cause of this is the presence of
a large number of conditional expressions - many generated
by the loop-peeling simplification mentioned above.

To address this issue, we investigated if-elimination rules
in the arithmetic expressions. By leveraging the strength of
the L1rT symbolic algebra system, which tracks the ranges
for each arithmetic expression. It is possible to implement a
simplifier that is often capable of identifying the conditional
expressions that are guaranteed to be never taken. This is
achieved by checking the difference between the minimum
and maximum possible values of the expressions within the
conditional. For example, a conditional of the form

b o]

otherwise
simplifies to x if min(a) > max(b), and to y if max(a) <
min(b). Similar rules exist for other boolean operators.

5.4 Implementation of Partition

Some LIFT primitives are lazy: instead of performing a com-
putation and writing into memory, they influence the behav-
ior of the following patterns, by creating a compiler interme-
diate data structure — called a view — over their inputs and
outputs. An example of a lazy pattern is split that reshapes an
input array by introducing another dimension. The partition
also primitive falls into this category as it lazily influences
the reading of memory of following patterns.

Partition’s view performs the mapping of the indices rang-
ing over the two dimensions of the output array to the one
dimensional index into the input array. In particular, the in-
dices i, for the outer dimension of the output array, and j, for
the inner dimension, will be mapped to a one dimensional
index: (i, j) = 24 f(i)+j. The offset is computed as the sum
of the length of the first i — 1 elements in the outer array and
Jj provides the index into the inner dimension.

5.5 Code Generation

After addressing the challenges described here, there is no
need to modify the LIFT code generator which remains un-
changed compared to the techniques described in [1].

5.6 Summary

In this section we have discussed a number of implementa-
tion challenges and how we overcome them. Particularly, the
introduction of the extended array type has lead to changes
in computing length of and indices into arrays. By intro-
ducing and optimizing }; as arithmetic expressions, we are
able to generate low level code from familiar high level LirT
expressions. The new partition primitive is implemented as
a LIFT view and maybe surprisingly, no other modification
to the L1FT code generator was necessary for implementing
our work. The next section experimentally evaluate the im-
plementation using the two case studies introduced earlier.
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fun(matrix:[i — [float]i)ln, vector:[float]ny) — {
mapGlobal (Arow —
reduceSeq(A(acc, t) — acc+(t.0xt.1))(
zip(row,slice(N,0,getLength(row)) (vector)) )
Y(matrix) } }

Listing 4. Lift code for the Basic implementation of
triangular matrix-vector multiplication

6 Experimental Evaluation

Experimental Setup We conducted an experimental eval-
uation using single precision floats on a GeForce GTX TITAN
X with CUDA 8.0 and driver version 375.66. We report the me-
dian of at least 100 executions measured using the OpenCL
profiling API Data transfer times are ignored since the focus
of the evaluation lies on the quality of the generated kernel
code. For the triangle matrix vector benchmarks, we perform
an automatic exploration of implementation parameters in-
cluding the OpenCL local size. We report the runtimes for
the best parameter configuration we found.

6.1 Triangle Matrix Vector Multiplication

We start with the triangular matrix vector multiplication for
which we saw already the high level LIFT code in listing 3.

LirT implementations We present two different versions
of the triangular matrix vector multiplication in LirT. The
first basic version is derived from the high-level implemen-
tation. The other is an improved version (referred to as best),
written to better exploit the parallel facilities of the GPU.

The code for basic is shown in listing 4. The program then
follows the structure of a simple high-level matrix-vector
multiplication. Different to the high level L1FT program in
listing 3 this version includes the OpenCL specific parallel
versions of map indicating the parallelism mapping. Global
threads are used to process each row of the matrix in parallel.
The only divergence from a regular matrix vector multiplica-
tion lies in the slice(N, 0, getLength(row)) expression, which
clips the vector to the length of the current row.

The code for best is show in listing 5. In this version,
we assign each row to a workgroup and then, instead of
clipping the vector, we extend the row up to the vector length
using the padConstant primitive. The padConstant primitive
creates a view to lazily extend the array with a constant
value. This allows us to further split the row and column
vectors and process each chunk in a separate thread.

One must take note that the code for best presented here
comprises only the first part of the algorithm. The code
shown in listing 5 computes a partial reduction for each row.
A second reduction kernel is then necessary. As this is a com-
mon feature of many high performance GPU applications,
the code is omitted. The runtime cost of the second kernel,
while negligible, is included in the results.

Generated OpenCL Code Listing 6 and listing 7 show the
automatically generated OpenCL codes. The outer for loop
of the basic version distributes the rows across the global

U W N =

= O 000NN U R W=

_om

0NN AW N R
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fun(matrix:[i = [float]is)ln, vector:[float]n) — {
mapWorkgroup (Arow —
mapLocal (reduceSeq(A(acc,
split (SPLIT_SIZE)(
zip(padConstant (0,N-getLength(row) ,0.0) (row)),
vector)) }

t) — acc+(t.0*xt.1))) o

Listing 5. Lift code for the Best implementation of
triangular matrix-vector multiplication

kernel void BASIC(const global floatx restrict matrix,
const global floatx restrict vector,
global floatx* out) {
float accum = 0.0f;
for (int row_idx = get_global_id(@); (row_idx < 5);
row_idx = (row_idx+get_global_size(0))){
for (int i = 0; 1 < T+row_idx; i = 1+i) {
accum = multAndSumUp (accum,
matrix[(row_idx + i + (((-1 * row_idx) +
(row_idx * row_idx)) / 2))1, vector[il); }
out[row_idx] = id(accum); 3} }

Listing 6. OpenCL code for Lift basic implementation of
triangular matrix-vector multiplication.

kernel void BEST(const global floatx restrict matrix,
const global float* restrict vector,
global floatx out, int N) {
float accum = 0.0f
for (int row_idx = get_group_id(@); (row_idx < N);
row_idx = row_idx + get_num_groups(0)) {
for (int split_idx = get_local_id(0);
split_idx < ((N)/(SPLIT_SIZE));
split_idx = split_idx+get_local_size(0)){
for (int i = @; (i < SPLIT_SIZE); i = 1+i){
accum = multAndSumUp( accum, (
(((i + (SPLIT_SIZE % split_idx)) < @)
((i + (SPLIT_SIZE * split_idx)) >=
(1 + row_idx)) ) ? 0.of
matrix[(i + row_idx +
(((-1*row_idx) + (row_idx*row_idx))/2) +
(SPLIT_SIZE * split_idx))1),
vector[(i + (SPLIT_SIZE x split_idx))1); 1}
out[split_idx+(N*row_idx)/SPLIT_SIZE] = id(accum);3}}}

Listing 7. OpenCL code for Lift best implementation of
triangular matrix-vector multiplication.

threads. The input index in lines 15 - 17 is automatically
derived from the extended array type. It is concise following
the optimizations described in section 5.

The best version’s alternative parallelization strategy is
more complicated: the SPLIT_SIZE parameter in the LIFT
code controls the amount of work in each workgroup.

Performance Results Figure 10 presents the performance
results measured for the triangular matrix vector multiplica-
tion expressed in LIFT and compared against the equivalent
BLAS kernel trmv implemented in cuBLAS. cuBLAS is the
fastest known high performance linear algebra library for
Nvidia hardware. As we can clearly see, the LIFT generated
code outperforms the trmv cuBLAS implementation clearly
on all input sizes. The best LIFT version is also significantly
faster than the basic version. The largest input size represents
a large triangular matrix of over 500 MB and when approach-
ing this size, the performance of cuBLAS improves and the
advantage of the LIFT generated code becomes smaller. Still,
the LIFT generated code outperforms cuBLAS by up to 2.3%.
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Figure 10. Performance of LIFT triangle matrix vector mul-
tiplication implementations compared with cuBLAS trmv.

fun(input:[[float]n]m, boundary:float) — {
mapGlobal (mapGlobal (reduceSeq(add, @) o join)) o
slide2D (STENCIL, 1) o

pad2D (STENCIL/2, STENCIL/2, boundary) (input) }

Listing 8. Jacobi stencil expressed in L1rT

fun(input:[[float]n]sm, boundary:float) — {
join o mapSeq(mapGlobal ((reduceSeq(add,®) o join))) o
partition(3,caseSplit(STENCIL/2,M-STENCIL ,STENCIL/2))o
slide2D (STENCIL, 1) o

pad2D (STENCIL/2, STENCIL/2, boundary) (input) }

Listing 9. Jacobi stencil expressed in L1rT with specialized
boundary handling

6.2 Boundary Conditions of Stencil code

In the second case study, we show how the introduction of
irregular arrays is used as a means to express a low level
optimization by considering the case of boundary checking
in stencil codes. Stencil codes need special handling at the
boundary, for example clamping array accesses with a check
and re-index computation when out-of-bound. This handling
requires the introduction of branches, human experts often
prefer to write extra code for handling the boundary regions.

Classical Approach Listing 8 shows a classic L1rT imple-
mentation of a 2D Jacobi stencil. The program contains of
three main steps: first, the input grid is padded, which is
LirT’s way of introducing specialized boundary handling.
Next, slide2D is used to create an array of neighborhoods.
Finally, the code within mapGlobal implements the actual
stencil computation performed on each neighborhood. The
main issue with this straightforward implementation lies in
the result of pad2D, which in LIFT is a view over the padded
input array. Therefore, every access into this array needs to
be guarded by boundary checks, resulting in index expres-
sions with conditionals. But, these checks are only necessary
for neighborhoods with elements falling outside the bound-
ary. The use of regular arrays in the LIFT expression prevents
us to be able to express this specialized behavior.

Position Dependent Array Approach We can solve this
problem by applying the rewrite rule presented in section 4.4

N oUW =

® TN U W N =
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for (int i = get_global_id(@); i < 1+N;
i = (i + get_global_size(@))) { acc = 0.0f;
for (int j = @; j < STENCIL_SIZE; j = 1+j) {
acc = add(acc, input[
(((-(STENCIL_SIZE/2)+i+j) >= @)
? (((-(STENCIL_SIZE/2)+i+j) < N)

? (-(STENCIL_SIZE/2)+i+j) : -1+N) : @)1); }

Listing 10. OpenCL code generated for a one-dimensional
stencil without special handling of boundary conditions.

// Prologue
int i = get_global_id(0);
if (i < STENCIL_SIZE/2) { float accum =
for (int j = @; j < STENCIL_SIZE; j =
accum = add(accum, input[
(((-(STENCIL_SIZE/2) + i+j) >= @)
? (-(STENCIL_SIZE/2) +i+j) : @)1); }

0.0f;
T+ 3) A

// Body
for (int i = get_global_id(®); i < (N - STENCIL_SIZE);
i = (i + get_global_size(@))) { float accum =0.0f;
for (int j = @; j < STENCIL_SIZE; j = 1 + j) {
accum = add(accum, input[(i + j)1); 2}

// Epilogue

int i = get_global_id(0);
if (i < STENCIL_SIZE/2) { float accum = 0.0f;
for (int j = ©; j < STENCIL_SIZE; j = 1 + j) {

accum = add(accum, input[
(((-(STENCIL_SIZE / 2) + i + j + N) < N)
? (-(STENCIL_SIZE / 2) + i + j + N)
-1+ N5 3}

Listing 11. OpenCL code generated for a one-dimensional
stencil with special handling of boundary conditions.

that introduces the partition primitive. The code for the
rewritten LIFT program is shown in listing 9. In this version,
a partition call has been introduced, splitting the input to the
stencil in three - unequally sized - areas: left boundary, cen-
ter, and right boundary. Since partition has a known constant
number of partitions, the code generator will not produce
a for-loop when mapping over it, but instead fully unroll it.
This will yield three different sections, corresponding to the
prologue, body and epilogue of the stencil computation.

Moreover, since the LIFT compiler accurately tracks the
ranges of iteration variables, it also infers that the prologue
and epilogue sections are implemented with an if instead of
a for loop, since there is at most one iteration per thread.

The effects of this transformation on the generated OpenCL
code are visible by comparing the code snippets shown in
listing 10 and listing 11. For clarity, we show the code for a
one-dimensional stencil: the principle is the same for the 2d
stencil used in the evaluation with additional loops in the
OpenCL code and more complex index computations.

The traditional L1FT stencil code has a single nested loop
that is performing the entire computation. Every access into
the input performs the costly out-of-bound checks. In the
rewritten stencil the computation is split in three separate
code sections, where only the prologue and epilogue contain-
ing the boundary checks. This is possible, as the arithmetic
expression simplifier automatically infers closer bounds for
the loop variables guaranteeing that checks are redundant
for the body of the stencil. It is therefore safe to omit them.
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Figure 11. Relative performance benefits of specialized
boundary handling over traditional boundary handling

Performance Results Figure 11 presents the performance
impact of applying the rewrite rule on a 2D Jacobi stencil
when we vary the size of the stencil. The bars represent the
speedup of the rewritten version compared with the non-
rewritten baseline for a variety of stencil sizes. The data
shown is relative to an grid-input size of 4096 x 4096 floating
point entries. As we can see, the effect on performance are
positive, with a peak performance gain of approximately
3.2x for the 9 x 9 stencil size, with lesser gains as the sizes
increase or decrease. In no case was a slowdown measured.
Concerning the uneven distribution of performance, we
suspect this may be due to the behavior of the OpenCL com-
piler: heuristics-driven optimizations such as loop-unrolling
and constant-propagation have a significant impact on the
performance of stencil programs. As the rewritten kernel
is slightly different for all these sizes, there might be some
unexpected interactions between these two optimizations.

7 Related Work

High Level GPU Programming Languages such as Ac-
celerate [13], Futhark [11], Halide [14], and L1rT [17, 18] aim
to simplify GPU programming by using parallel patterns,
while at the same time allowing for the generation of effi-
cient code. Each provides some approach to track the size of
arrays in the type system, in order to improve performance
and correctness. While these facilities are adequate to deal
with regularly shaped arrays, they are lacking when dealing
with irregular data structures, such as triangular matrices.
Streaming Irregular Arrays Streaming irregular ar-
rays [5] is an addition to Accelerate [13] providing support
for irregular data structures and allowing for reasoning about
nested irregular arrays. Unlike the work presented here, it
relies on run-time support for tracking the sizes of arrays,
as opposed to attempting to resolve index computations at
compile time. This work focuses on sparse data structures
that are accessed as data streams, as opposed to our work,
focusing on dense data representations backed by arrays.
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Dependent Types Dependently typed languages such
as the earlier Epigram [12] or the more modern Idris [4] pos-
sess type systems capable of encoding and enforcing complex
properties over values in the type. This might include proper-
ties of the data structure’s shape, which enable dependently
typed programs to naturally express irregular data structures.
This great expressive power comes however at a cost, and
efficient compilation of such languages is an active area of
research. We use a limited form of dependent types for a
domain-specific purpose: to describe parallel computations
and to generate efficient code.

Irregular Structures in Linear Algebra Applications
The linear algebra community has seen the development of a
number of approaches to produce efficient implementations
for complex linear algebra problems, such as the FLAME
methodology [9], a systematic way for deriving parallel al-
gorithms for linear algebra operations, and Linnea [2], a rule
based rewrite engine for generating efficient implementa-
tions of complex linear algebra expressions from mathemat-
ical expressions. The work presented in this paper allows
LIFT to serve as a high-performance code generator for high
level programs derived using such tools.

8 Conclusions

This paper presented an extension to classical array types.
While existing functional code generators already track the
size of arrays in the type, this is overly restrictive and pre-
vents useful data structures such as triangular matrices or
trees to be represented precisely as types. In this paper we
have shown how to design an extended array type with a
limited form of dependent typing that allows for nested array
sizes to depend on their position in the surrounding array.

We have shown our practical implementation as an exten-
sion of the LIFT compiler and presented the implementation
challenges mostly related to index simplification. This ap-
proach enables the efficient code generation of triangular
matrix vector multiplication, with performance improve-
ments over cuBLAS by up to 2X. A use case for avoiding
out-of-bound checks, showed performance improvement of
up to 3% over already optimized stencil codes

In the future, we would like to further extend our array
type, exploring the practical implications of representing
tree data structures in a packed memory representation, as
common in computer graphics applications.
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