
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

High-Level Hardware Feature Extraction for GPU Performance

Prediction of Stencils

Anonymous Author(s)

Abstract

High-level functional programming abstractions have started to
show promising results for HPC (High-Performance Computing).
Approaches such as Lift, Futhark or Delite have shown it is pos-
sible to have both, high-level abstractions and performance, even
for HPC workloads such as stencils. In addition, these high-level
functional abstractions can also be used to represent programs, and
their optimized variants, within the compiler itself. However, such
high-level approaches rely heavily on the compiler to optimize
programs which is notoriously hard when targeting GPUs.

Compilers either use hand-crafted heuristics to direct the op-
timizations or iterative compilation to search the optimization
space. The first approach has fast compile times, however, it is
not performance-portable across different devices and requires a
lot of human effort to build the heuristics. Iterative compilation,
on the other hand, has the ability to search the optimization space
automatically and adapts to different devices. However, this pro-
cess is often very time consuming as thousands of variants have to
be evaluated. Performance models based on statistical techniques
have been proposed to speedup the optimization space exploration.
However, they rely on low-level hardware features, in the form of
performance counters or low-level static code features.

Using the Lift framework, this paper demonstrates how low-
level, GPU-specific features are extractable directly from a high-
level functional representation. The Lift IR (Intermediate Repre-
sentation) is in fact a very suitable choice since all optimization
choices are exposed at the IR level. This paper shows how to extract
low-level features such as number of unique cache lines accessed
per warp, which is crucial for building accurate GPU performance
models. Using this approach, we are able to speedup the exploration
of the space by a factor 2000𝑥 on an AMD GPU and 450𝑥 on Nvidia
on average across many stencil applications.

GPGPU’20, February 23, 2020, San Diego, CA, USA
2020.

1 Introduction

Recent years havewitnessed the emergence of high-level approaches
for high-performance computing such as Accelerate [21], Futhark [9],
Delite [4], Lift [34] and AnyDSL [18]. They enable programmers
to write hardware-agnostic code while putting the burden on the
compiler to extract performance. Tuning a compiler is very labori-
ous and time-consuming, especially when considering accelerators
such as GPUs (Graphics Processing Units) and this process has to
be repeated for every new hardware generation.

Lift proposes to use rewriting [33] to solve this problem. Rewrit-
ing for compiler optimizations is an approach first proposed in 2001
in the Haskell compiler [29]. Lift’s rewrite rules attempt to define
the set of all possible algorithmic and, crucially, hardware-specific
optimizations. Rewrite rules liberate compiler writers from having
to implement hard-coded optimizations and make it easy to extend
the compiler. Optimizations are simply implemented as rules and a
generic rewriting engine explores the space automatically.

However, this approach results in a large optimization space. The
optimization process takes a few hours for stencils on GPUs [8],
even when using an efficient auto-tuner [1]. In response, this paper
develops an automatic performance model predicting the best op-
timized program variant using static features from the high-level
Lift IR. This removes the necessity for compiling and running
programs which accounts for the majority of the exploration time.

The use of performance modeling for GPUs is not novel [10,
11, 25, 26, 37]. However, to the best of our knowledge, this is the
first paper to show how information about low-level GPU-specific
features is extractable from a high-level functional IR. This paper
demonstrates that a high-level IR is amenable to the extraction
of low-level information useful for predicting performance using
high-level semantic information. It also shows how cache locality
information is extractable at this level. This relies on the use of the
rich information stored in the Lift type system together with the
ability to reason about array indices in a symbolic manner.

Using the extracted features, a performance predictor is built
using machine-learning. This leads to a highly accurate model for
the stencil domain, an important class of high-performance code.
The model achieves a correlation of 0.8 and 0.9 on GPUs from
Nvidia and AMD, respectively. Using the model to search the space
requires less than 5 runs in the majority of the cases to achieve
performance within 90% of the best available. In comparison, a
random search requires 100s of runs in the majority of the cases.

To summarize, the paper makes three contributions:
• It shows how low-level GPU hardware features are extracted
from a high-level functional IR;

• It presents a simple machine-learning model that predicts
program performance;

• It shows that the model is able to drastically reduce explo-
ration time of the optimization space.

The rest of this paper is organized as follows: Section 2 moti-
vates this work while Section 3 presents background information
about OpenCL and Lift. Section 4 explains how low-level hardware

1

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

GPGPU’20, February 23, 2020, San Diego, CA, USA Anon.

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Fe
at

ur
e

Ex
tr

ac
tio

n

OpenCL
Kernel

Compilation

OpenCL
Binary

Execution

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Transformed
ExpressionCo

de

Ge
ne

ra
tio

n

Performance
 Predictor

Predicts best

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Binary

Compilation

Execution

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Kernel

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Code
Generation

a) b)

Figure 1. Lift compilation and exploration. a) The current ap-
proach compiles and executes all transformed expressions. b) The
new strategy ranks the transformed expressions with a model and
only compile and execute the best ones.

features are extracted from the high-level Lift IR and Section 5
presents the performance model. Section 6 analyses the features
and the model performance while Section 7 shows that the model
is able to speedup drastically the optimization space exploration.
Finally, Section 8 discusses related work and Section 9 concludes.

2 Motivation

Current Lift Exploration Lift [33] explores the GPU optimiza-
tion space using rewrite rules. Figure 1a presents an overview. First,
a high-level expression representing the program is used as an
input to the compiler. This generic high-level expression does not
encode any optimizations. Then, the rewriting takes place and the
Lift exploration module applies rewrite rules to search the space
randomly. This results in a set of transformed expressions where
optimizations have been applied and parallelism has been mapped.

The transformed expressions are then fed into the Lift code gen-
erator which produces OpenCL kernels. These kernels are compiled
with the vendor-provided OpenCL compiler into binaries. Finally,
all binaries are executed, the performance is recorded and the best
found kernel is reported.

This process is time consuming as it produces a large number
of kernels (1,000 for this paper). In addition, every Lift generated
kernel is executable with a different number of threads leading up
to 10,000 kernel executions.

Time breakdown Figure 2 shows the percentages of the time
spent in the different stages of the current Lift compilation and
exploration. Unsurprisingly, the last part of Lift’s workflow, the
kernel execution, requires by far the most time (up to 90%). For this
paper, executing all kernels for a single application, including the

Kernel generation
Kernel compilation
Kernel execution

2.2%
7.3%

90.5%

Figure 2. Time breakdown for the Lift exploration process. Kernel
generation includes time to rewrite and compile Lift expressions to
OpenCL kernels. Kernel compilation is the vendor-provided OpenCL
compiler time. Kernel execution is the time required to execute all
generated kernels.

exploration of thread configurations took up to 41 minutes while
all kernels were generated in less than a minute, which is about 2%
of the overall time.

Using a Performance Predictor for Exploration Themajor bot-
tleneck for exploration is clearly the OpenCL compilation and exe-
cution time of the generated kernels, which represent 98% of total
time. This paper addresses this bottleneck by using a trained per-
formance predictor directly on the transformed Lift expression.
Figure 1b shows how the exploration strategy is modified with a
performance model.

Once the transformed expressions have been produced, the idea
is to extract features that are informative about performance. These
features are fed into a predictive model which almost instanta-
neously ranks the transformed expressions. Then, the transformed
expression with the fastest predicted performance is selected, the
corresponding kernel generated, compiled and finally executed.

While this approach seems very simple, the challenges are two-
fold. First, we need to identify features that are informative about
performance, such as memory access patterns. Then, they need
to be extracted from the high-level functional Lift IR. As we will
see, the Lift IR encodes all the required information to calculate
low-level GPU-specific features. The next section gives background
information about the Lift IR while Section 4 will discuss feature
extraction.

3 Background

This section introduces OpenCL, the existing Lift IR and the rewrite
systems used to produce efficient OpenCL kernels.

3.1 OpenCL

An OpenCL program (kernel) is executed by multiple threads (work-
items) organized in work-groups, providing a two-level thread hi-
erarchy. Both work-items and work-groups are organized in three
dimensional grids identified by unique IDs. On GPUs, multiple
work-groups are executable on a core and work-items are sched-
uled in groups of 32 for Nvidia (warp) or 64 for AMD (wavefront).
It is generally desirable to start a large thread number to reach
maximum occupancy.

OpenCL provides a three-level memory hierarchy: Global mem-
ory is accessible by all work-items and throughput is maximized
when threads in the same warp/wavefront access the same cache
line (coalesced accesses). Work-items of the same group commu-
nicate via a fast shared local memory and each work-item has its
own private memory.

2

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

High-Level Hardware Feature Extraction for GPU Performance Prediction of Stencils GPGPU’20, February 23, 2020, San Diego, CA, USA

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

3.2 Lift IR

Lift [33, 34] is a functional language based on lambda calculus,
offering a small set of reusable primitives. It is a compiler-internal
data-parallel intermediate language and is compiled to high-performance
OpenCL code. Lift’s distinguishes algorithmic primitives which
express what to compute, from OpenCL-specific primitives which
express how to compute by explicitly mapping computations to the
OpenCL programming model. Lift’s type system supports scalar
types (e.g. int, float), tuple-types (denoted as 𝑈 ×𝑇) and array-
types (denoted as [𝑇]𝑛) where the array size 𝑛 is part of the type.

Algorithmic Primitives Lift provides well-known functional
primitives defined on arrays as listed below:

map : (𝑓 : 𝑇 → 𝑈 , 𝑖𝑛 : [𝑇]𝑛) → [𝑈]𝑛
reduce : (𝑖𝑛𝑖𝑡 : 𝑈 , 𝑓 : (𝑈 ,𝑇) → 𝑈 , 𝑖𝑛 : [𝑇]𝑛) → [𝑈]1

zip : (𝑖𝑛1 : [𝑇]𝑛, 𝑖𝑛2 : [𝑈]𝑛) → [𝑇 ×𝑈]𝑛
iterate : (𝑖𝑛 : [𝑇]𝑛, 𝑓 : [𝑇]𝑛 → [𝑇]𝑛, 𝑚 : int) → [𝑇]𝑛
split : (𝑚 : int, 𝑖𝑛 : [𝑇]𝑛) → [[𝑇]𝑚]𝑛/𝑚
join : (𝑖𝑛 : [[𝑇]𝑚]𝑛) → [𝑇]𝑚×𝑛

slide :(𝑠𝑖𝑧𝑒 : int, 𝑠𝑡𝑒𝑝 : int, 𝑖𝑛 : [𝑇]𝑛) → [[𝑇]size]𝑛−size+step
step

pad :(𝑙 : int, 𝑟 : int, ℎ : (𝑖 : int, len : int) → int,

𝑖𝑛 : [𝑇]𝑛) → [𝑇]𝑙+𝑛+𝑟
at :(𝑖 : 𝐶𝑠𝑡, 𝑖𝑛 : [𝑇]𝑛) → 𝑇

get :(𝑖 : 𝐶𝑠𝑡, 𝑖𝑛 : 𝑇1 ×𝑇2 × . . .) → 𝑇𝑖

array :(𝑛 : int, 𝑓 : (𝑖 : int, 𝑛 : int) → 𝑇) → [𝑇]𝑛
userFun : (𝑠1 : 𝑆𝑐𝑎𝑙𝑎𝑟𝑇 , 𝑠2 : 𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ′, . . .) → 𝑆𝑐𝑎𝑙𝑎𝑟𝑈

Lift supports the definition of arbitrary scalar-based sequential
OpenCL-C function called userFun. These are directly embedded in
the generated OpenCL code.

OpenCL-specific primitives Lift’s OpenCL specific primitives
expose OpenCL’s thread and memory hierarchy. These primitives
are used to explicitly dictate how to perform the computation ex-
pressed with the algorithmic primitives.

Parallelism is exposed via specialized variations ofmap:mapGlobal𝑑 ,
mapWorkgroup𝑑 , mapLocal𝑑 and mapSeq. These primitives directly
correspond to OpenCL’s thread hierarchy. The computation speci-
fied within a OpenCL-specific map is performed by it’s particular
level and dimension 𝑑 ∈ {0, 1, 2} of the thread hierarchy, or exe-
cuted sequentially by a single thread (mapSeq). OpenCL’s memory
hierarchy is exposed via toGlobal(𝑓), toLocal(𝑓) and toPrivate(𝑓),
which specify where the output of the function 𝑓 is stored in mem-
ory.

3.3 Rewriting

Lift encodes optimizations as semantics-preserving rewrite rules.
These rules are used to transform a high-level expression written
using the algorithmic primitives into a transformed expression in
which parallelism and memory is explicitly exploited. Similar to
Lift’s primitives, rewrite rules are also categorized into algorithmic
or OpenCL-specific rules. Algorithmic rules such as the divide-and-
conquer rule:

𝑚𝑎𝑝 (𝑓) → 𝑗𝑜𝑖𝑛 ◦𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝑓)) ◦ 𝑠𝑝𝑙𝑖𝑡 (𝑛)

1 stencil(arg: [float]𝑁) =
2 map(reduce (+,0), slide(3,1, pad(1,1, 0, arg)))

Listing 1. 1D 3pt-stencil example in Lift.

1 transformedStencil(arg: [float]𝑁) =
2 mapWrg(tile =>
3 mapLcl(toGlobal(reduce (+,0)), slide(3,1,
4 mapLcl(toLocal(id, tile))))
5)(slide (18,16, pad(1,1, 0, arg)))

Listing 2. 1D transformed 3pt-stencil example in Lift.

Type Feature

Parallelism global size (dimensions 0, 1 and 2)
local size (dimensions 0, 1 and 2)

Memory

amount of local memory allocated
global stores per thread
global loads per thread
local stores per thread
local loads per thread
average cache lines per access per warp

Control Flow &
Synchronisation

barriers per thread
if statements per thread
for loop bodies executed per thread

Table 1. List of extracted features

create a space of possible algorithmic implementations for the same
expression. OpenCL-specific rules such as:

𝑚𝑎𝑝 (𝑓) →𝑚𝑎𝑝𝐺𝑙𝑜𝑏𝑎𝑙0 (𝑓)
map expressions to the OpenCL’s programming model.

3.4 Example

Listing 1 shows a 1D 3-point stencil expressed in Lift [8]. pad is
applied adding one element (0) to the left and right of the input
array arg to implement a simple boundary handling. slide creates
overlapping neighborhoods of three elements which are summed
up using map and reduce.

Applying rewrite rules leads to Listing 2, where overlapped tiling
has been applied. Every tile is processed by a work-group (mapWrg)
loading all elements to local memory and computing the output
using its work-items before storing it in global memory. From this
expression high-performance OpenCL code is generated as shown
in [8].

4 Feature Extraction

This paper proposes a performance model that predicts the perfor-
mance of transformed Lift expressions on GPUs in order to identify
the best variant. The model relies on static features extracted from
the high-level Lift IR. Although the features are extracted at a high-
level, they capture information about low-level hardware features.
They broadly fall into three categories as seen in Table 1.

4.1 Parallelism

For a fixed input size, the number of threads launched influences
how much parallelism versus sequential work is performed. We

3

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

GPGPU’20, February 23, 2020, San Diego, CA, USA Anon.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

include both global and local thread counts across the three thread
dimensions as features. Local thread count affects how large each
work-group will be, which may affect data reuse or the number of
concurrent groups.

4.2 Memory

This section covers the features related to the amount of memory
allocated, number of accesses and access patterns.

4.2.1 Local memory usage

One of the important factors that determines performance on a GPU
is occupancy. Occupancy is typically maximized when multiple
work-group execute concurrently. More concurrent work-groups
typically translates to more threads executing concurrently, which
ultimately helps hiding memory latency.

The number of work-groups that execute simultaneously on
a core depends on the amount of resources used by each work-
group. One important resource is the amount of fast local memory
(shared memory) used by the work-group. Therefore, it is crucial
to determine this quantity.

Extracting the amount of local memory used in a Lift program is
straightforward. The program is traversed once, collecting memory
allocation sizes and summing up these numbers.

input :Lambda expression representing a program
output :Numbers of different types of memory accesses.

countAccesses(lambda)
1 totalLoad[local] = 0; totalLoad[global] = 0
2 totalStore[local] = 0; totalStore[global] = 0
3 countAccessesExpr(lambda.body, 1)
4 return {totalLoad,totalStore}

countAccessesExpr(expr, iterationCount)
5 switch expr do
6 case fc@FunCall
7 foreach arg in fc.args do
8 countAccessesExpr(arg, iterationCount)
9 switch expr.f do

10 case is l@Lambda
countAccessesExpr(l.body, iterationCount) ;

11 case is t@toPrivate or t@toLocal or toGlobal
12 countAccessesExpr(t.f.body, iterationCount)
13 case is m@MapSeq or m@MapGlb or m@MapLcl or ...
14 n = fc.input(0).length
15 countAccessesExpr(m.body, iterationCount * n)
16 case is it@Iterate
17 countAccessesExpr(it.body, iterationCount * it.count);
18 case is uf@UserFun
19 foreach arg in fc.args do
20 totalLoad[arg.addrsSpace] += iterationCount
21 totalStore[arg.addrsSpace] += iterationCount
22 otherwise do // Nothing to count ;
23 otherwise do // Nothing to count ;
24 return counts

Algorithm 1: Pseudo-code for counting the total number of
loads/stores for each type of memory.

4.2.2 Number of Memory Accesses

Performance is largely affected by the amount and type of memory
operations. Applications that exhibit large amount of data re-usage
will benefit from exploiting the fast local memory. The program
can simply reuse the data in local memory several times, reduc-
ing the number of global memory accesses, resulting in increased
performance.

1 example(arg0: [float]𝑁 , arg1: [float]𝑁) =
2 mapWrg(x =>
3 mapLcl(toGlobal(multByTwo), mapLcl(toLocal(add)), x)
4)(split(64, zip(arg0 , arg1)))

Listing 3. Example for memory access count extraction.

Algorithm The Lift code generator only produces loads and
stores to memory when a user function is called. Therefore, count-
ing the number of loads and stores boils down to counting how
often each user function is called. As can be seen in Algorithm 1,
a depth-first traversal is performed on the IR while keeping track
of the number of times the body of patterns generating loops is
executed. Once a user-function is reached, the feature extractor
simply updates the total number of loads and stores. In addition to
this, the extractor keeps track of the type of memory being accessed,
local or global, using the toLocal and toGlobal patterns. The infor-
mation about the address space is encoded directly into the IR and
is populated by another pass that runs prior to feature extraction.
The number of global/local loads and stores is then normalized by
the number of total threads.

Example Consider the program in Listing 3. The algorithm starts
with the top-level lambda and soon encounters the mapWrg prim-
itive. At this point in the algorithm, line 14, n will be 𝑁 /64 (the
length of the outer dimension of the input after the split). The
algorithm calls recursively countAccessesExpr with 𝑁 /64 as the iter-
ationCount. When visiting either of themapLcl in line 3 of Listing 3,
nwill this time be 64 (the length of the inner dimension of the input
after the split).

When the add function is visited, global loads is updated twice,
since the add function has two inputs (the tuple is automatically
unboxed). Since at this point, the iterationCount is 𝑁 /64 ∗ 64 = 𝑁 ,
the total number of global loads is 𝑁 ∗ 2 and the total number of
local stores is 𝑁 . When the multByTwo function is visited, local
reads and global store are both updated once, resulting in 𝑁 local
loads and 𝑁 global stores.

4.2.3 Memory Access Patterns

The way a program accesses memory has a profound impact on
performance. GPUs coalesce several memory requests into a single
one when threads in the same warp/wavefront access a single
cache line (typically 128 bytes). It is, therefore, important to extract
information about memory access patterns for building an accurate
performance predictor.

General Algorithm To determine the total number of cache line
reads, the feature extractor recursively traverses the IR, keeping
track of the iteration count. When a memory access is encountered,
it determines the number of unique cache lines accessed by the
warp as follows. First, it generates the actual index expression using
the existing mechanism of the Lift compiler [34]. If the expression
contains no thread id, it means all the threads are accessing the
same cache line.

When the expression contains a thread id, a new index expression
is generated for each thread in the warp by adding a constant to its
id (threads in a warp have consecutive ids). Let’s denote the original
array index expressed as a function of the thread id as 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑).
Given 𝑛, the number of threads in a warp, the set of array indices

4

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

High-Level Hardware Feature Extraction for GPU Performance Prediction of Stencils GPGPU’20, February 23, 2020, San Diego, CA, USA

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

1 example(in: [float]𝑁) = mapGlb(mapSeq(𝑓), split(n, in))

Listing 4. Example for extracting memory access patterns.

accessed by the warp is:

{𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 0), 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 1), · · · , 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 𝑛 − 1)}
This list of indices expresses the different addresses accessed by a
warp. Given the cache line size 𝑠 (expressed as a multiple of data
size), we compute the list of cache lines accessed:

{𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 0)/𝑠, 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 1)/𝑠, · · · , 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 𝑛 − 1)/𝑠}
Finally, we can subtract the elements in the list with each other to
identify which ones are equal (when the subtraction results in 0)
and count the number of unique accesses.

Implementation details The approach explained above is con-
ceptually correct, however, it relies on having the ability to simplify
symbolically arithmetic expressions. While the Lift arithmetic sim-
plifier supports a significant set of simplifications, it is not powerful
enough to deal with some simplifications. In such cases the feature
extractor might fail to recognize identical accesses. The follow-
ing paragraphs explain a few workarounds used inside the feature
extractor.

The first issue we encountered, is the difficulty in calculating the
set of unique cache lines by subtraction. Conceptually, one could
take the first access 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑡𝑖𝑑 + 0)/𝑠 , subtract every other accesses
by it and hope that the algebraic simplifier would be able to return
0 in case where two accesses are identical. Simplifying expressions
as simple as

(𝑡𝑖𝑑 + 0)/𝑠 − (𝑡𝑖𝑑 + 1)/𝑠
which is 0 when 𝑠 > 1, is far from trivial given that / represents
the integer division.

To overcome this challenge, we modify our approach slightly
and add an extra step. Before dividing by 𝑠 , we first calculate all
the relative array accesses as an offset of the first access by simple
subtraction. The intuition behind this two-fold. First, it is much
easier to simplify a subtraction if it does not contain terms with
integer division. Secondly, we only care about the distances between
the accesses rather than their absolute location, therefore, we will
still be able to identify the number of unique cache line accessed.

So if the original accesses are

{𝑡𝑖𝑑 + 0, 𝑡𝑖𝑑 + 1, · · · }
they become

{(𝑡𝑖𝑑 + 0) − (𝑡𝑖𝑑 + 0), (𝑡𝑖𝑑 + 1) − (𝑡𝑖𝑑 + 0), · · · }
which simplifies trivially to {0, 1, · · · }. Then, we perform the divi-
sion as before, which leads to {0/𝑠, 1/𝑠, · · · } which trivially sim-
plifies to {0, 0, · · · }. Now it is much easier to identify the unique
cache lines.

Example Consider the example program from Listing 4. The array
index being read for the argument of 𝑓 is i + n * gl_idwhere 𝑖 is
the iteration variable of the mapSeq and gl_id the global thread id.
Depending on the split factor 𝑛, a different number of cache lines
will be accessed by a warp. With a split factor of 𝑛 = 1, a single
cache line would be accessed since the accesses within a warp are
consecutive. However, if the split factor is larger than the warp size,
then each warp will be touching a different cache line.

1 stencil(input: [float]𝑁) =
2 MapGlb(ReduceSeq(+, 0.0f),
3 Slide(3, 1,
4 Pad(1, 1, Clamp , input)))

Listing 5. Example for a simple stencil program.

With a cache line of 32 words, 32 threads per warp and 1 word
for float, the cache line indices within a warp are:

{(𝑖 + 𝑛 ∗ 𝑔𝑙_𝑖𝑑), (𝑖 + 𝑛 ∗ (𝑔𝑙_𝑖𝑑 + 1)), · · · , (𝑖 + 𝑛 ∗ (𝑔𝑙_𝑖𝑑 + 31))}

Using the trick presented earlier, we can express all indices as
an offset from the first one:

{(𝑖 + 𝑛 ∗ 𝑔𝑙_𝑖𝑑)−(𝑖 + 𝑛 ∗ 𝑔𝑙_𝑖𝑑),
𝑖 + 𝑛 ∗ (𝑔𝑙_𝑖𝑑 + 1)−(𝑖 + 𝑛 ∗ 𝑔𝑙_𝑖𝑑),

· · · ,
𝑖 + 𝑛 ∗ (𝑔𝑙_𝑖𝑑 + 31))−(𝑖 + 𝑛 ∗ 𝑔𝑙_𝑖𝑑)}

which simplifies trivially to: {0, 𝑛, · · · , 𝑛 ∗ 31}. Now dividing by the
cache line size, we obtain {0, 𝑛/32, · · · , 𝑛 ∗ 31/32}.

If the split factor 𝑛 is 1, this results in 32 zeros, meaning all the
thread in the warp access a single cache line. When the split factor
𝑛 = 4, this will results in the following list: {0, 0, 0, 0, 1, 1, 1, 1, · · · , 7, 7, 7, 7}.
Since it has 8 unique values, the warp touches 8 cache lines for this
memory access.

4.3 Control Flow and Synchronisation

Another important factor that often limits performance for GPUs
is control flow and synchronization. if-then-else and for loop state-
ments produce branching instructions which is notoriously bad
for GPU performance. Similarly, barriers are detrimental to perfor-
mance since execution is alted until all threads have reached the
barrier. For this reason, the feature extractor determines the total
number of if-then-else, for loops and barriers produced by the code
generator.

Algorithm This is similar to the algorithm used to count the num-
ber of memory operations. It traverses the IR recursively, keeping
track of the number of times each function is executed. Whenever a
pattern that might produce a loop (e.g. iterate, mapLocal, reduceSeq)
is encountered, it checks whether a loop will be emitted and update
a global loop counters, taking into account the current iteration
count.

The algorithm also detects special cases where loops might not
be emitted. There are two cases to consider. First, when a mapSeq
iterates over an array of size 1, it is clear that a loop is not required.
The second case is more subtle and involves mapLocal, mapWrg or
mapGlobal. If the size of the input array is smaller than the number
of local threads, workgroups or global threads, respectively, the code
generator will emit a if-then-else statement instead of a loop since
the loop can at most be executed once per thread or workgroup.

To determine the number of barriers, the algorithm looks at
mapLcl as OpenCL only has barriers inside workgroups. The Lift
code generator detects unnecessary barriers [34] and tags the call
to mapLcl when it is not required. Therefore, we run this barrier
elimination pass before feature extraction and use this information
to ignore the mapLcl which have been marked as not requiring a
barrier.

5

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

GPGPU’20, February 23, 2020, San Diego, CA, USA Anon.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

1 kernel void stencil (float* in, float* out , int N){
2 float acc;
3 for (int gid=global_id (); gid <N; gid+= global_size ()) {
4 acc = 0.0f;
5 for (int i = 0; i < 3; i += 1) {
6 int pos = gid - 1 + i;
7 acc += in[((pos >= 0) ? (
8 (pos < N) ? pos : (N - 1)) : 0)]; }
9 out[gid] = acc; }}

Listing 6. OpenCL-ish code generated for a simple stencil.

4.4 Use of High-Level Semantic Information

Another practical issue has to do with the pad pattern which is used
to implement boundary conditions in stencil programs. Listing 5
shows a simple stencil program applying a clamping boundary
condition which simply repeats the outermost value in case of out-
of-bounds accesses. Listing 6 shows the generated pseudo-OpenCL
code for this program. The pad pattern introduces a lot of ternary
operators ?: which check that every memory access is in bound.
This operator makes it harder for the simplifier to subtract memory
accesses with each other to identify unique cache lines.

To overcome this, we exploit the high-level semantic information
available: the padded data is rarely accessed and most accesses are
in bound. The feature extractor focuses on the common case by
simply ignoring the ternary operator and calculate the index for the
common case. Identifying the common case by statically analyzing
the OpenCL code is much harder even for this simple example. We
would have to predict the common case for two ternary operators
whos predicates depends on two opaque function calls (global_id
and global_size) to the OpenCL library.

4.5 Summary

This section has shown how low-level GPU-specific features are
extracted from the Lift IR. Memory-related, control flow and syn-
chronization features, are extracted using information about the
length of arrays from the type. We have seen how the fine-grained
memory feature related to cache lines accesses is computed using
the power of the Lift symbolic arithmetic expressions. The next
section explains how we build a simple performance model using
these features.

5 Performance Model

Having seen how hardware-specific information is extracted from
the high-level IR, we now focus on the performance model. It is
based on k-Nearest Neighbors (kNN), whichmakes prediction based
on the distance between programs in the feature space. Intuitively,
Lift programs that exhibit similar features are likely to have similar
performance.

5.1 Output Variable

The prediction output is throughput normalized by the maximum
achievable per input/program. This is to ensure that performance is
comparable across programs since different programs might exhibit
different number of operations.

5.2 Principal Component Analysis

Given that a kNN model works best with a small number of fea-
tures, we use PCA (Principal Component Analysis) to reduce the
dimensionality of the feature space. Prior to applying PCA, the
features are centered and reduced with a mean of 0 and a standard

deviation of 1. This step is necessary since our features have very
different ranges of values. PCA is then applied and we retain the
principal components that explain 95% of the variance. In effect,
this compresses the feature space by removing redundant features.

5.3 K-Nearest Neighbors Model

A k-nearest neighbors model makes a prediction of a new data
point by finding the k closest points to it, using Euclidean distance
and averaging their responses to make a prediction. In our case,
the distance metric is determined by how close the feature vectors
are from one another.

The kNNmodel does not require any special training. The execu-
tion time of rewritten Lift expressions, together with their features,
are simply collected and added into a database. When predicting
a newly unseen Lift program, we simply look up the k closest
neighbors and average their prediction to form a new prediction.
In our experiment, we used 𝑘 = 5.

5.4 Making Predictions

To make a prediction about new programs, we first collect data
points from a group of training programs. For each program, we
conduct an exploration of their optimization space and store the
features and corresponding performance. Given a new program,
we proceed as follows:

1. For each rewritten program:
a. The features are extracted, normalized and projected based

on the PCA calculated from the training data;
b. The model predicts the performance using the average of

the k-nearest neighbors.
2. The different rewritten programs are sorted based on the

prediction.
3. The fastest predicted rewritten program is generated, com-

piled and executed.

6 Experimental Setup

Platform The setup consists of twoGPUs, an NVIDIA Titan Black
and an AMD Radeon R9 295X2. The Nvidia platform uses driver
version 367.35 and OpenCL 1.2 (CUDA 8.0.0). The AMD platform
uses OpenCL 2.0 AMD-APP (1598.5).

Benchmarks and Space We use the 2D stencil benchmarks from
[8] listed in Table 2. All experiments are performed using single
floating point with matrix sizes from 5122 to 81922.

Model evaluation The performance model is evaluated using
leave-one-out cross-validation, the standardmachine learningmethod-
ology. When evaluating performance on a given benchmark, the
traning data consists of all the data collected from all benchmarks,
except the one being tested.

7 Feature and Model Analysis

Before looking at how the performance model is used to speedup
the optimization space exploration, we first perform an analysis of
the features and evaluate the model accuracy.

7.1 Features Analysis

We use the redundancy metric to analyze which features are the
most informative about performance:

𝑅 =
𝐼 (𝑋,𝑌)

𝐻 (𝑋) + 𝐻 (𝑌)
6

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

High-Level Hardware Feature Extraction for GPU Performance Prediction of Stencils GPGPU’20, February 23, 2020, San Diego, CA, USA

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

Benchmark Points Points Used # grids

Stencil2D 9 9 1
SRAD1 9 5 1
SRAD2 9 3 2
Hotspot2D 9 5 2
Gradient 9 5 1
Jacobi2D 5 pt 9 5 1
Jacobi2D 9 pt 9 9 1
Gaussian 25 25 1

Table 2. Stencil benchmarks used in the evaluation.

The redundancy metric normalizes the mutual information by the
sum of the entropy of the two variables. This ensures that different
features can be compared with one another. In our case, we are
interested in comparing each feature with the output we wish to
predict: performance. A higher value between a certain feature
and the output indicates that the feature is useful for performance
prediction.

Figure 4 shows the normalized mutual information between
features and performance. As expected, one of the most important
features is the average number of cache lines accessed per warp.
This feature, which represents locality, is extremely important for
stencil benchmarks.

The next most important feature for both machines is the global-
Size in dimension 1. This feature is directly related to the number of
threads that execute and, therefore, the amount of parallel work per-
formed. It is also used to determine if the kernels are launched using
a 2D or 1D iteration space (in the 1D case, the globalSize1 will be 1).
Then, comes the number of global stores, followed closely by the
number of global loads. This basically corresponds to the number
of memory accesses performed into the slow global memory.

For both platforms, barriers and control flow (for loops) do seem
to have only amedium impact on performance, whereas the number
of if-statements does not seem very relevant at all. Focusing on the
least important features, the number of local loads does not seem to
affect performance much. We conjecture that, since local memory is
anyway very fast, having fewer or more local loads might not make
much of a difference in terms of performance, especially compared
to the number of global memory operation.

7.2 Benchmark diversity

Figure 3 shows the features of the best point in the space for our
benchmarks. As can be seen, some benchmarks share similarities,
which is essential for being able to make prediction. However, we
also observe quite a lot of diversity.

7.3 Performance Model Correlation

We analyze correlation between the predicted and actual values to
measure the model ability at distinguishing between good and bad
points. For all programs, the correlation coefficient is in the range
[0.7 − 0.9], with average of 0.9 on Nvidia and 0.8 on AMD, which
shows the predictor works

7.4 Summary

This section has shown that the most important features for perfor-
mance prediction on GPUs are related to memory access pattern,
amount of parallelism and number of global memory accesses. The
section has also shown that the model’s predictions correlate highly

with actual performance. The next section shows how the model is
used to speedup the optimization space exploration of our bench-
marks.

8 Optimization Space Exploration

8.1 Model-based Exploration

This section shows the performance achieved when exploring the
space with the predictor. The exploration is conducted by gener-
ating 1,000 transformed Lift expression using rewrites and com-
bining them with 10 different thread-counts on average. This leads
to 10,000 design point per program/input pair. For each point, we
extract the features and use the model to rank them. We then run
the design points from highest predicted performance to lowest.

Figure 5 shows the normalized best performance achieved as
a function of the number of points evaluated. It also shows the
performance achieved using a purely random evaluation order.
Using the predictor, it is possible to very quickly achieve 100% of the
performance available in the space for all programs. In comparison,
the random strategy struggles to reach even 50% of the performance
available in some cases after having explored 3% of the whole space.

8.2 Space Exploration Speedups

Figure 6 shows the exploration speedup when using our model
compared to random to achieve 90% of the available performance.
The speedup is shown in terms of number of samples and total
time it takes to run them. A speedup of 10𝑥 means the performance
model needs 10𝑥 less runs, or 10𝑥 less time, than random to achieve
90% of the performance.

As can be seen, using the performancemodel brings large speedup
across all programs. When looking at total number of runs required,
on Nvidia, the performance model approach requires 35𝑥 less runs
than random. On AMD, there is an even bigger savings, since the
model requires 77𝑥 less runs than random. When it comes to total
time, the model based approach is a staggering 450𝑥 and 2000𝑥
faster than random for Nvidia and AMD respectively.

8.3 Detailed Results

This last section shows more details per program/input. Figure 7
shows the actual number of runs required to reach 90% of the
performance across programs and input. As can be seen, only one
run is necessary in the majority of the cases for Nvidia and two for
AMD. In contrast, random needs over 60 runs for Nvidia and over
180 for AMD in most cases.

The average number of runs using the model is 3 for Nvidia and
5 for AMD. In comparison, random requires on average 97 runs
for Nvidia and 240 for AMD. These results clearly shows that the
performance model is working extremely well in the majority of
the cases.

Interestingly, there are a couple of outliers programs/input size
combination that requires over 30 runs for the model-based ap-
proach. In both cases, stencil2d on Nvidia and srad1 on AMD, this
is when the largest or smallest input sizes are used. We believe that
in such cases, the behavior of these programs probably changes
drastically with the input size. For instance, the data might actually
fit entirely in the cache for the smallest input size of stencil2d and,
therefore, change drastically the behavior of the application for
this input size. Since our features have no notion of working-set
size, the model might be unable to pick up this change of behavior.

7

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

GPGPU’20, February 23, 2020, San Diego, CA, USA Anon.

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

Nvidia

AMD

localLoads

ifStatements

localStores

globalSize0

forStatements

localSize0

localSize1
localMemory

barriers

globalLoads

globalStores

globalSize1

avgGlobalCacheLines

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Figure 3. Radar plot of the features for the top points in the space (input sizes 4K).

avgWarpCacheLines
globalSize1

globalStores
globalLoads

barriers
localMemory

localSize1
localSize0
forBodies

globalSize0
localStores

ifStatements
localLoads

0.00 0.02 0.04 0.06

Redundancy

F
ea

tu
re

(a) NVIDIA

avgWarpCacheLines
globalSize1

globalStores
globalSize0

localSize0
globalLoads

barriers
localMemory

localStores
localSize1
forBodies

ifStatements
localLoads

0.00 0.02 0.04

Redundancy

F
ea

tu
re

(b) AMD

Figure 4. Normalized mutual information (redundancy) between
each feature and performance.

However, even in such cases, the model-based exploration is still
ahead of random. For stencil2d, the model needs 31 runs while
random needs 691, a 21𝑥 speedup!

9 Related Work

Auto-Tuning OpenTuner [1] is a framework for domain-specific
multi-objective auto-tuners. CLTune [24] is a generic auto-tuner for
OpenCL kernels. ATF [30] is a language-independent auto-tuning
framework which supports inter-parameter constraints. These auto-
tuning approaches attempt to find good implementations using
online search which is orthogonal to our approach. In fact, auto-
tuners can be easily coupled with a performance predictor.
Analytical Performance Modelling CuMAPz [15] is a compile
time analysis tool that helps programmers increase the memory per-
formance of CUDAprograms. It estimates the effects of performance-
critical memory behaviours, such as data reuse, coalesced accesses,
channel skew, bank conflict and branch divergence. GROPHECY [22]
uses the MWP-CWP model [11] (Memory Warp Parallelism – Com-
putation Warp Parallelism) to estimate the GPU performance of
skeleton-based applications. GPUPerf [32] is an enhanced version
of the analytical MWP-CWPmodel with addedmetrics and a way of
understanding performance bottlenecks. The boat hull model [25]

is a modified version of the roofline model that is based on an algo-
rithm classification and produces a roofline model for each class of
device.

GPU cache models [26] have been built by extending reuse
distance theory with parallel execution, memory latency, limited
associativity, miss-status holding-registers and warp divergence.
COMPASS [17] introduces a language for creating analytical per-
formance models that analyze the amount of floating point and
memory operations based on static code features. Coloured petri
nets [19] have been proposed for GPGPU performance modelling.
Another approach [3] builds an analytical performance model to
determine the lower bound on execution time. Low-level GPU ISA
solving and assembly microbenchmarking [37] has been used to
collect data about architectural features and performance.

Sensitivity Analysis via Abstract Kernel Emulation [10] aims to
predict execution time and determine resource bottlenecks for a
given Nvidia GPU kernel binary.

Analytical models describe low-level details of the hardware to
model performance using a model written by a hardware expert.
They typically use low-level kernel representations to make their
predictions. In contrast, our approach based on machine-learning is
fully automatic and works by extracting features at a much higher
level.

Statistical PerformanceModelling Earlywork [7] extracts static
code features and uses machine learning to predict the performance
of optimization sequences.Principal component analysis, cluster
analysis and regression modelling have been used [14] to gener-
ate predictive models for GPUs and CPUs. Predictive modelling
has also been applied in polyhedral compilation [28] to predict
speedups for different combinations of polyhedral transformations
from hardware performance counters. Graph-based program char-
acterization [27] has also been used for polyhedral compilation
to predict the speedups of optimization sequences. Clustering on
similarity of a graph-based intermediate representation has been
used [6] to cluster similar programs. Another approach [35] uses
machine learning models trained on assembly level features to
choose a good combination of transformations for vectorization.

All these approaches use hardware counters, low-level code
features, assembly-level features or compiler data structures to
predict speedups or optimization sequences. In contrast, our work
shows how we can extract features at a much higher-level and still
predict performance accurately.

MaSiF [5] uses PCA and kNN to auto-tune skeleton parame-
ters for programs written using TBB and FastFlow. Stargazer [12]
uses step-wise linear regression together with cubic splines to es-
timate the performance of programs on different GPU designs in
GPGPU-Sim [2]. Starchart [13] uses random sampling and building

8

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

High-Level Hardware Feature Extraction for GPU Performance Prediction of Stencils GPGPU’20, February 23, 2020, San Diego, CA, USA

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

A
M

D
N

V
ID

IA

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Space explored (%)

P
er

fo
rm

an
ce

 a
ch

ie
ve

d

Method

KNN

Random

Figure 5. Achieved performance when exploring the space for a 4K input size using a model trained on other programs.

10

100

1,000

10,000

100,000

gaussiangrad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average
benchmark

sp
ee

du
p

#samples time

(a) NVIDIA

10

100

1,000

10,000

100,000

gaussiangrad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average
benchmark

sp
ee

du
p

#samples time

(b) AMD

Figure 6. Reduction in the number of samples and correspond-
ing time required to explore to reach at least 90% of the available
performance (average = geometric mean).

regression trees to divide the whole optimization space into smaller
subspaces.

These approaches try to directly predict the effect tunable pa-
rameters have on the performance. However, they rely on the fact
that the number of parameters is fixed and known in advance. In
contrast, our approach predicts the performance independently of
the number of parameters in the program.
Artificial Intelligence for Compilers Genetic programming has
been used [16] to generate features for predicting loop unrolling
factors. Others [23] have proposed ways of generating program

features out of simple ones. Features are encoded as numeric rela-
tions and new ones are generated by joining existing relations and
aggregating them.

Support Vector Machines have also been used in compilers [31].
Machine learning has also been used to automatically learn com-
piler heuristics. [36] A neural-network cascade [20] is used to deter-
mine the amount of thread coarsening to apply to OpenCL programs
for different GPUs.

Machine learning models in compilers traditionally use features
extracted from a deeper stage in the compilation pipeline. Our
work instead extracts them at a considerably higher-level from a
functional IR.

10 Conclusions

This paper has demonstrated that it is possible to extract low-level
hardware-specific features from the Lift high-level functional IR.
We have seen how type information, such as array length, is useful
for computing certain features. The ability to reason symbolically
about array indices also enables the extraction of very fined-grained
features such as the number of accessed cache lines per warp. To
the best of our knowledge, this is the first time a paper has shown
how low-level features can be extracted at such high level, without
requiring any profiling or performance counters.

The paper has also demonstrated how a simple performance
model is built to make accurate performance predictions about
different program variants. Using an Nvidia and AMD GPUs, and
stencil applications, we have seen that the model is able to predict
points in the space that are within 90% of the best within one or
two runs in the majority of the cases. When compared to a random
search strategy, the model requires on average 77𝑥 less runs than
random on AMD and 35𝑥 less on Nvidia which translates to time
savings of 2000𝑥 and 450𝑥 respectively.

References

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. Open-
Tuner: an extensible framework for program autotuning. In PACT. ACM. https:
//doi.org/10.1145/2628071.2628092

[2] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator. In
ISPASS. IEEE. https://doi.org/10.1109/ISPASS.2009.4919648

[3] Ulysse Beaugnon, Antoine Pouille, Marc Pouzet, Jacques Pienaar, and Albert
Cohen. 2017. Optimization Space Pruning Without Regrets. In CC. ACM. https:
//doi.org/10.1145/3033019.3033023

9

https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/3033019.3033023
https://doi.org/10.1145/3033019.3033023

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

GPGPU’20, February 23, 2020, San Diego, CA, USA Anon.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

31

2

2

2

2

4

1

1

1

1

13

1

1

1

12

5

1

1

1

1

1

23

3

1

2

1

1

1

1

1

1

1

1

1

1

6

1

2

1

1

512

1024

2048

4096

8192

ga
us

sia
n

gr
ad

2d

ho
tsp

ot

j2d
5p

t

j2d
9p

t

sr
ad

1
sr

ad
2

ste
nc

il2
d

(a) KNN on Nvidia GPU

691

290

131

103

101

110

92

86

121

47

111

81

62

47

44

191

70

17

19

13

51

97

104

132

171

17

10

8

8

8

41

102

57

106

46

311

59

44

34

50

512

1024

2048

4096

8192

ga
us

sia
n

gr
ad

2d

ho
tsp

ot

j2d
5p

t

j2d
9p

t

sr
ad

1
sr

ad
2

ste
nc

il2
d

(b) Random on Nvidia GPU

1

10

1

12

2

1

1

8

8

1

2

2

18

18

2

1

1

2

26

1

1

1

1

4

3

7

7

7

7

32

1

1

1

2

1

1

1

1

1

4

512

1024

2048

4096

8192

ga
us

sia
n

gr
ad

2d

ho
tsp

ot

j2d
5p

t

j2d
9p

t

sr
ad

1
sr

ad
2

ste
nc

il2
d

(c) KNN on AMD GPU

425

221

183

276

215

210

107

131

111

184

268

111

213

136

149

153

108

94

267

400

170

187

192

418

833

116

132

165

182

197

203

297

413

492

1081

167

81

69

93

169

512

1024

2048

4096

8192

ga
us

sia
n

gr
ad

2d

ho
tsp

ot

j2d
5p

t

j2d
9p

t

sr
ad

1
sr

ad
2

ste
nc

il2
d

(d) Random on AMD GPU

Figure 7. Number of samples needed to reach 90% of the available performance on for each program/input pair.

[4] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2011. A Heterogeneous Parallel Framework
for Domain-Specific Languages. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques (PACT ’11).

[5] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. 2013.
MaSiF: Machine learning guided auto-tuning of parallel skeletons. In HiPC. IEEE.
https://doi.org/10.1109/HiPC.2013.6799098

[6] John Demme and Simha Sethumadhavan. 2012. Approximate graph clustering
for program characterization. ACM TACO 8, 4 (2012), 21. https://doi.org/10.1145/
2086696.2086700

[7] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F. P.
O’Boyle, and Olivier Temam. 2007. Fast compiler optimisation evaluation using
code-feature based performance prediction. In CF. ACM. https://doi.org/10.1145/
1242531.1242553

[8] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High Performance Stencil Code Generation with Lift.
In CGO. ACM, New York, NY, USA, 100–112. https://doi.org/10.1145/3168824

[9] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-
min E. Oancea. 2017. Futhark: Purely Functional GPU-programming with Nested
Parallelism and In-place Array Updates. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2017).

[10] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh
Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P.
Sadayappan. 2018. GPU Code Optimization Using Abstract Kernel Emulation
and Sensitivity Analysis. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM, New York,
NY, USA, 736–751. https://doi.org/10.1145/3192366.3192397

[11] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Architec-
ture with Memory-level and Thread-level Parallelism Awareness. In ISCA. ACM.
https://doi.org/10.1145/1555754.1555775

[12] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Stargazer: Automated
regression-based GPU design space exploration. In ISPASS, Rajeev Balasubramo-
nian and Vijayalakshmi Srinivasan (Eds.). IEEE. https://doi.org/10.1109/ISPASS.
2012.6189201

[13] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2013. Starchart: Hardware
and software optimization using recursive partitioning regression trees. In PACT.
IEEE. https://doi.org/10.1109/PACT.2013.6618822

[14] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2010. Modeling
GPU-CPU Workloads and Systems. In GPGPU. ACM. https://doi.org/10.1145/
1735688.1735696

[15] Yooseong Kim and Aviral Shrivastava. 2011. CuMAPz: A Tool to Analyze Memory
Access Patterns in CUDA. In DAC. ACM, 6. https://doi.org/10.1145/2024724.
2024754

[16] Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. 2009. Automatic
Feature Generation for Machine Learning Based Optimizing Compilation. In
CGO. IEEE. https://doi.org/10.1109/CGO.2009.21

[17] Seyong Lee, Jeremy S. Meredith, and Jeffrey S. Vetter. 2015. COMPASS: A Frame-
work for Automated Performance Modeling and Prediction. In Proceedings of the
29th ACM on International Conference on Supercomputing (ICS ’15). ACM, New
York, NY, USA, 405–414. https://doi.org/10.1145/2751205.2751220

[18] Roland Leissa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard
Membarth, Philipp Slusallek, André Müller, and Bertil Schmidt. 2018. AnyDSL:
A Partial Evaluation Framework for Programming High-performance Libraries.
Proc. ACM Program. Lang. 2, OOPSLA, Article 119 (Oct. 2018), 30 pages.

[19] Souley Madougou, Ana Lucia Varbanescu, and Cees de Laat. 2016. Using Colored
Petri Nets for GPGPU Performance Modeling. In CF. ACM. https://doi.org/10.
1145/2903150.2903167

[20] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2014. Automatic
optimization of thread-coarsening for graphics processors. In PACT. ACM. https:
//doi.org/10.1145/2628071.2628087

[21] Trevor L. McDonell, Manuel M T Chakravarty, Gabriele Keller, and Ben Lippmeier.
2013. Optimising Purely Functional GPU Programs. In ICFP ’13: The 18th ACM
SIGPLAN International Conference on Functional Programming. ACM.

[22] Jiayuan Meng, Vitali A. Morozov, Kalyan Kumaran, Venkatram Vishwanath, and
Thomas D. Uram. 2011. GROPHECY: GPU performance projection from CPU

code skeletons. In SC. ACM. https://doi.org/10.1145/2063384.2063402
[23] Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Freund. 2010.

Practical Aggregation of Semantical Program Properties for Machine Learning
Based Optimization. In CASES. ACM. https://doi.org/10.1145/1878921.1878951

[24] Cedric Nugteren and Valeriu Codreanu. 2015. CLTune: A Generic Auto-Tuner
for OpenCL Kernels. In MCSoC. IEEE. https://doi.org/10.1109/MCSoC.2015.10

[25] Cedric Nugteren and Henk Corporaal. 2012. The boat hull model: enabling
performance prediction for parallel computing prior to code development. In CF.
ACM. https://doi.org/10.1145/2212908.2212937

[26] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Henri E. Bal.
2014. A detailed GPU cache model based on reuse distance theory. In HPCA.
IEEE. https://doi.org/10.1109/HPCA.2014.6835955

[27] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using graph-based
program characterization for predictive modeling. In CGO. ACM. https://doi.
org/10.1145/2259016.2259042

[28] Eunjung Park, Louis-Noël Pouchet, John Cavazos, Albert Cohen, and P. Sadayap-
pan. 2011. Predictive modeling in a polyhedral optimization space. In CGO. IEEE.
https://doi.org/10.1109/CGO.2011.5764680

[29] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by the
rules: rewriting as a practical optimisation technique in GHC. ACM SIGPLAN.

[30] Ari Rasch, Michael Haidl, and Sergei Gorlatch. 2017. ATF: A Generic Auto-
Tuning Framework. In 19th IEEE International Conference on High Performance
Computing and Communications; 15th IEEE International Conference on Smart
City; 3rd IEEE International Conference on Data Science and Systems, HPCC/S-
martCity/DSS 2017, Bangkok, Thailand, December 18-20, 2017. 64–71. https:
//doi.org/10.1109/HPCC-SmartCity-DSS.2017.9

[31] Ricardo Nabinger Sanchez, José Nelson Amaral, Duane Szafron, Marius Pirvu,
andMark G. Stoodley. 2011. Using machines to learn method-specific compilation
strategies. In CGO. IEEE. https://doi.org/10.1109/CGO.2011.5764693

[32] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard W. Vuduc. 2012.
A performance analysis framework for identifying potential benefits in GPGPU
applications. In PPoPP. ACM. https://doi.org/10.1145/2145816.2145819

[33] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating Performance Portable Code Using Rewrite Rules: From High-level
Functional Expressions to High-performance OpenCL Code. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM.

[34] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a func-
tional data-parallel IR for high-performance GPU code generation. In CGO.
http://dl.acm.org/citation.cfm?id=3049841

[35] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using machine
learning to improve automatic vectorization. ACM TACO 8, 4 (2012), 50. https:
//doi.org/10.1145/2086696.2086729

[36] Michele Tartara and Stefano Crespi-Reghizzi. 2013. Continuous learning of
compiler heuristics. ACM TACO 9, 4 (2013), 46. https://doi.org/10.1145/2400682.
2400705

[37] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, andMingyu
Chen. 2017. Understanding the GPU Microarchitecture to Achieve Bare-Metal
Performance Tuning. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17). ACM, New York, NY,
USA, 31–43. https://doi.org/10.1145/3018743.3018755

10

https://doi.org/10.1109/HiPC.2013.6799098
https://doi.org/10.1145/2086696.2086700
https://doi.org/10.1145/2086696.2086700
https://doi.org/10.1145/1242531.1242553
https://doi.org/10.1145/1242531.1242553
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3192366.3192397
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1109/PACT.2013.6618822
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1109/CGO.2009.21
https://doi.org/10.1145/2751205.2751220
https://doi.org/10.1145/2903150.2903167
https://doi.org/10.1145/2903150.2903167
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2063384.2063402
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1109/MCSoC.2015.10
https://doi.org/10.1145/2212908.2212937
https://doi.org/10.1109/HPCA.2014.6835955
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1109/CGO.2011.5764680
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1109/CGO.2011.5764693
https://doi.org/10.1145/2145816.2145819
http://dl.acm.org/citation.cfm?id=3049841
https://doi.org/10.1145/2086696.2086729
https://doi.org/10.1145/2086696.2086729
https://doi.org/10.1145/2400682.2400705
https://doi.org/10.1145/2400682.2400705
https://doi.org/10.1145/3018743.3018755

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 OpenCL
	3.2 Lift IR
	3.3 Rewriting
	3.4 Example

	4 Feature Extraction
	4.1 Parallelism
	4.2 Memory
	4.3 Control Flow and Synchronisation
	4.4 Use of High-Level Semantic Information
	4.5 Summary

	5 Performance Model
	5.1 Output Variable
	5.2 Principal Component Analysis
	5.3 K-Nearest Neighbors Model
	5.4 Making Predictions

	6 Experimental Setup
	7 Feature and Model Analysis
	7.1 Features Analysis
	7.2 Benchmark diversity
	7.3 Performance Model Correlation
	7.4 Summary

	8 Optimization Space Exploration
	8.1 Model-based Exploration
	8.2 Space Exploration Speedups
	8.3 Detailed Results

	9 Related Work
	10 Conclusions
	References

