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Abstract

The continued specialization in hardware and software due
to the end of Moore’s law forces us to question fundamental
design choices in compilers, and in particular for domain spe-
cific languages. The days where a single universal compiler
intermediate representation (IR) was sufficient to perform
all important optimizations are over. We need novel IRs and
ways for them to interact with one another while leveraging
established compiler infrastructures.

In this paper, we present a practical implementation of a
functional pattern-based IR in the SSA-based MLIR frame-
work. Our IR captures the program semantics as composi-
tions of common computational patterns enabling rewrite-
based optimizations. We discuss the integration with other
IRs by demonstrating the compilation of a neural network
represented as a TensorFlow graph down to optimized LLVM
code via our functional pattern-based IR. Our implementa-
tion demonstrates for the first time a practical integration of
a functional pattern-based IR with other IRs and it enables
the construction of sophisticated code generators for domain
specific languages.

CCS Concepts: « Software and its engineering — Com-
pilers; Parallel programming languages.
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1 Introduction

Software and hardware is becoming increasingly specialized.
Only a few years ago the focus was on optimizing single
threaded performance represented by SPEC benchmarks for
general purpose CPUs. Now interest has shifted away from
general purpose compute into application specific domains
- none more prominent than deep learning. Deep learning
hardware today is represented by CPUs, GPUs, FPGAs and
a zoo of specialized hardware devices such as Google’s TPU.

Traditional compiler designs evolved around the idea of a
‘one size fits all” single intermediate representation (IR) that
unifies the representation of multiple high-level program-
ming languages and allows optimizations to use a single
representation for generating optimized code for different
hardware targets. The highly successful LLvm compiler in-
frastructure [16] is built around this idea.

But LLvMm IR provides a single level of abstraction that is
often too low-level and difficult for optimizations to exploit
the rich high-level semantics of domain specific languages.
For this reason many higher level IRs have been developed
for specific domains such as machine learning (e.g, the graph-
based IRs of TensorFlow [4], PyTorch [20], and TVM [9]) or
image processing (e.g., Halide [22]), but also more generic
higher level IRs such as INSPIRE [15] and Thorin [19].

L1FT [26] is an unconventional higher level IR that repre-
sents computations as compositions of functional patterns.
This design is easily extended to new application domains
for example by adding new patterns to support stencil com-
putations [14]. Optimizations are expressed as semantics
preserving rewrite rules that are either applied automatically
as part of a stochastic search process [25] or their applica-
tion can be controlled by a developer precisely [13]. Using
this approach L1rT has demonstrated high-performance on
linear algebra and stencil codes used in machine learning
and physical simulations for hardware architectures ranging
from multi-core CPUs to mobile- and desktop-class GPUs.

Employing a novel IR, such as LIFT, in practical end-to-end
toolchains is a challenging task. The recently proposed MLIR
project [17] seems a promising solution as it aims to provide
a common framework to enable the integration of multiple
IRs. Individual IRs are implemented as dialects following a
basic SSA-based design. Each dialect can define a custom
type system and operations as well as optimization passes.
For interaction among dialects MLIR provides common in-
frastructure to facilitate the translation from one dialect to
another.
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But how do we encode a functional pattern-based IR such
as LIFT in the SSA-based MLIR framework? Thanks to Ap-
pel [5] we know for a long time about a direct correspon-
dence between functional programming and SSA, but how
does this look like in practice? How does a functional IR
integrate with other IRs in MLIR? While our functional IR
is convenient for expressing domain specific computations
at a high-level, will we pay a performance penalty when
compiling to imperative loop-based code?

In this paper, we are answering these questions. We present
a practical implementation of the functional pattern-based
IR Ri1sE [13] as an MLIR dialect. We discuss its implementa-
tion (Section 3) and its integration with other MLIR dialects
(Section 4) to build a practical end-to-end code generation
solution for machine learning that progressively lowers the
representations from a domain-specific TensorFlow graph to
our generic high-level functional pattern-based representa-
tion before lowering it to a lower level polyhedral loop-based
representation and eventually to LLvm IR. Our evaluation
(Section 5) shows that our implementation of the functional
pattern-based IR introduces negligible compile time over-
head and generates code with no runtime overhead.

2 Motivation and Background
2.1 What’s Wrong with Existing Compiler IRs?

Specialized domain-specific compilers have become an in-
tegral component of achieving high-performance in many
crucial application domains such as machine learning. But
according to Paul Barham and Michael Isard, two of the orig-
inal authors of TensorFlow, machine learning systems are
stuck in a rut [7]. They argue that while TensorFlow and
similar frameworks enabled great advances in machine learn-
ing, their current design and implementations focus on a
fixed set of monolithic and inflexible kernels (such as matrix-
multiplication) that are expressed as fixed nodes in the IR.
They continue to say that the “reliance on high performance
but inflexible kernels reinforces the dominant style of program-
ming model” and argue that “these programming abstractions
lack expressiveness, maintainability, and modularity; all of
which hinders research progress” in machine learning.

To overcome these problems, we need new intermediate
representations that break up the monolithic and inflexible
kernels and represent computations using more flexible and
finer grained building blocks. Pattern-based IRs are built
around this idea and are an interesting sweet spot between
specialized high-level IRs with monolithic domain-specific
abstractions and low-level loop-code or three-address style
IRs similar to LLvM. In pattern-based IRs, computations are
represented at a high level as compositions of generic compu-
tational patterns common across many domains. This allows
to easily perform algorithmic optimizations at the right ab-
straction level as demonstrated by L1rT [24, 26] that encodes
optimizations as rewrites of pattern-based programs.
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2.2 RISE: A Functional Pattern-Based IR

RisE [13] is a functional pattern-based IR in the style of L1FT.
Ri1sE provides a set of data-parallel high-level patterns that
are composed to describe computations over higher dimen-
sional arrays (i.e. tensors) such as matrix multiplication. For
that, the map pattern is used twice (in lines 2 and 3) to apply
the dot product computation to each combination of a row
of matrix A and a column of matrix B:

fun( (A: N.K.f32, B: K.M.f32),
A |> map(fun(arow,
B |> transpose |> map(fun(bcol,
zip(arow,bcol) |> map(mult) |> reduce(add,0)))))))

AW N -

RisE uses the lambda calculus to compose patterns. Lamb-
das (i.e., anonymous functions) are written fun(x, e) and
applying x to the function f is written as x |> f (alterna-
tively as f(x)). The type of parameters of top-level lambda
expressions are annotated. In the example matrix Aisa N X K-
matrix of float values with type N.k.f32 (line 1).

High-level programs are gradually transformed into low-
level programs by applying semantics preserving rewrite
rules that encode optimization and implementation deci-
sions. For example, fusing map and reduce to ensure they are
computed in a single loop is expressed with this rule:

[map(f) |>reduce(®,0) — reduceSeq(fun((a,x),aeaf(x)),o)[

Prior work on RisE [13] has shown that compiler opti-
mizations such as tiling and vectorization are expressible as
compositions of rewrites. The closely related L1rT project
has demonstrated high performance by exploring optimiza-
tion choices encoded as rewrite rules for tensor-algebra [25],
stencil computations and kernel convolutions [14].

2.3 End-to-End Compilers by Integration of IRs

RisE (and LIFT) are implemented in the Scala programming
language, making the development of end-to-end compiler
solutions e.g. for machine learning challenging. Even for
IRs implemented in easier to integrate languages such as
C++, e.g., INSPIRE [15] or Thorin [19], integration is hard in
practice due to the code required to convert between IRs.

We are interested in developing end-to-end compiler so-
lutions for machine learning to allow the development of
novel optimizations and analyses by leveraging the best of
what is available from other domain experts.

This paper presents a C++ based implementation of RIse
in MLIR and shows how to build an integrated compiler so-
lutions using this novel implementation. Figure 1 shows a
prototype machine learning compiler that we have built with
the technologies described in this paper. Starting from an un-
modified TensorFlow machine learning model (top left), e.g.,
for handwriting detection using the popular MNIST dataset,
the model is directly encoded in the existing MLIR XLA di-
alect (top middle). Computational intensive operations such
as matrix multiplication encoded as xla_hlo.dot operations
are lowered into the MLIR implementation of RIsE (top right).
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Figure 1. End-to-end code generation using the pattern-based RisE intermediate representation implemented as an MLIR
dialect. A TensorFlow machine learning model (top left) is represented in MLIR with the XLA HLO dialect. Supported operators
are lowered into compositions of computational patterns in RiSE (top right) before being lowered to a loop based representation
(bottom right) that is compiled to Lrvm IR (bottom left). Or alternatively, RisE patterns are lowered directly into library code.

RiSE expressions are then transformed into lower level IRs
such as the polyhedral affine dialect and the standard dialect
(bottom right) from which eventually LLMV IR is generated
(bottom left). Crucially, we can easily leverage existing opti-
mizations - at the domain-specific level as well as perform
polyhedral optimizations and ultimately performing classi-
cal compiler optimizations before code generation — while
building a foundation to drop in rewrite-based optimizations
at the pattern-based level.

The remainder of the paper discusses the technical details
of how we achieved this integration by starting with a dis-
cussion on how to implement the functional Rise IR in the
SSA-based MLIR framework in the following section.

3 RIisE as an MLIR Dialect

MLIR [17] is a framework for implementing custom IRs, per-
forming optimizations on them and converting them to other
MLIR IRs. It uses static single assignment (SSA) [10, 23] as
the base representation in which each use of an IR value is
dominated by its definition. This property guarantees values
in the IR are always defined before they are used. SSA-based
IRs - including tvMm IR - usually use a special ¢ node to
model joins in the control flow graph (CFG) for IR values.
Instead, MLIR uses a functional SSA-form inspired by the ob-
servations of Appel [5], where terminator nodes pass values
into block arguments defined by the successor block.

An IR node in MLIR may contain regions allowing for
nested representations. IR nodes in MLIR are called opera-
tions (rather than instructions in LLvM IR). Operations are
characterized by a type and are allowed to produce multiple
results. An MLIR dialect may define a set of custom operations
and types, along with passes to transform the IR.
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T:=T—>T|D Function and Data Types
D:=ND|DXD|S Array, Tuple, and Scalar Types
Su=132|f32] ... standard Scalar Types
N:=0|...|N+N|N=*=N| ... ArrayLength

Figure 2. Grammar of RISE types
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Figure 3. RiskE dialect types

3.1 RISE Types

RisE is a functional IR where computations are represented
by compositions of pattern applications. Patterns are repre-
sented as built-in functions and have a corresponding func-
tion type. The grammar of RISk types is shown in Figure 2.
Function types are separate from data types only allowing
data types to be stored to memory. RISE data types include ar-
ray, tuple, and scalar types. For arrays, their length is tracked
in the type. Different to many tensor representations, higher-
dimensional tensors are represented by nesting array types
such as the matrix type N.M.f32 from the prior example.
The grammar directly corresponds to the class hierarchy
shown in Figure 3. The Risk dialect follows the MLIR notation
to prefix types by !rise. For example, a function type with
one argument and return type is written: !rise.fun<scalar<
i32> -> scalar<iz2>>. Note, i32 is an existing MLIR standard
type and it is reused by wrapping it in a !rise.scalar type.
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Figure 4. Implementation of 1ambda and apply classes

3.2 RISE Lambda Calculus as MLIR Operations

RisE is a functional IR based on the lambda calculus with
two core operations: function abstraction and application.
We represent these with the 1ambda and apply operations.
Figure 4 shows their implementations as subclasses of the
mlir::0p superclass. The 1ambda operation together with its
associated FunType models a lambda expression by wrapping
an MLIR region containing a single block whose arguments
become the arguments of the lambda expression. The apptly
operation models a function application (or function call).
The function can be any value with a FunType, such as 1ambdas
or patterns. The argument must have a matching RIsE type.
The listing below shows how tambda and apply are used to
represent a call to the identity function: y [> fun(x => x)

1 |%id = rise.lambda (%x) Irise.fun<scalar<i32> ->
2 scalar<iz2>> {
3 rise.return %x Irise.scalar<iz2>

4 |}

5 |%res = rise.apply %id, %y Irise.scalar<iz2>

3.3 RISE Patterns as MLIR Operations

Computations in RISE are represented by computational pat-
terns such as map, reduce and zip. Each pattern is represented
by an operation and implemented as a subclass of the mlir::
op class. Implementation sketches are shown in Figure 5.
Each pattern in RisE has a function type. For example, map:
map : (n: Nat) — (dti: DataType) — (dt2: DataType) ~
(dt1 — dt2) — n.dti1 — n.dt2
The +— arrow represents a special function type for repre-
senting polymorphism, i.e. for introducing type variables.
The MLIR RiskE dialect does not support polymorphic func-
tion types and instead provides the type arguments when
a pattern is created and stores them in the pattern classes.
This design results in patterns having monomorphic func-
tion types that are straightforward to handle. Applying map
to a function %f and an array of 1024 ints is represented as:

1 |%m = rise.map #nat<i1e24> #scalar<i32> #scalar<iz2>
2 Irise.fun< fun< scalar<iz2> =-> scalar<iz2> > =->
3 fun< array<i1e24, scalar<iz2>> ->
4 array<1e24, scalar<iz2>> > >

5 | %res = rise.apply %m, %f, %array

6 Irise.array<1e24, scalar<iz2»>>

3.4 Matrix Multiplication in the RISE MLIR Dialect

Figure 6 shows an example matrix multiplication in the RisE
dialect. This corresponds to the functional RisE expression
seen earlier after the map-reduce fusion rule has been applied.
Some type annotations have been removed for readability.
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map zip reduce
n : Nat n : Nat n : Nat
dt1 : DataType dt1 : DataType dt : DataType
dt2 : DataType dt2 : DataType

Figure 5. Implementation sketches of pattern classes

func amm_fused(%outArg, %inA, %inB) {

%A = in %inA

%B = in %inB

%t = rise.transpose #rise.nat<2048>

#rise.nat<2048> #rise.scalar<f32>

%B_t = rise.apply %t, %B
Bmifun = lambda (%arow) -> array<2048, scalar<f32>> {
m2fun = lambda (%bcol) -> scalar<f32> {
%zipFun = zip #nat<2048> #scalar<f32> #scalar<f32>
zippedArrays = rise.apply %zipFun, %arow, %bcol
sereduceLambda = lambda(%tuple, %acc)->scalar<f32> {
%fstFun = rise.fst #scalar<f32> #scalar<f32>
%sndFun = rise.snd #scalar<f32> #scalar<f32>
%first = rise.apply %fstFun, %tuple
%second = rise.apply %sndFun, %tuple
%result = rise.embed(%first, %second, %acc) {
%product = mulf %first, %second :f32

%result = addf %product, %acc : f32

return %result : f32

}

return %result :

scalar<f32>

}

%init = rise.literal #lit<o.o>

%reduceFun = reduceSeq #nat<2048> #tuple

gresult = rise.apply %reduceFun, %reducelLambda,
%init, %zippedArrays

scalar<f32>

return %result :

i

bem2 = mapSeq #nat<2048> #array<2048, scalar<f32>>
#scalar<f32>

result = rise.apply %m2, %m2fun, %B_t

return %result : array<2048, array<2048, scalar<f32>>>

}

zip(arow,bcol) [> reduce(fun((ab,acc), (abjxaby)+acc),0)))))

fm1 = mapSeq #nat<2048> #array<2048, scalar<f32>>
f#tarray<2048, scalar<f32>>
Bresult = rise.apply %mi1, %mifun, %A

A |> map(fun(arow, B |> transpose |> map(fun(bcol,

out %outArg <- %result
return

Figure 6. 2048x2048 matrix multiplication in the RisE dialect

The dot product computation is defined in the innermost
(green) boxes with the zip and reduceseq patterns. This com-
putation is nested inside two tambdas (%m1fun and %m2fun) that
are used as arguments when calling the map patterns and
applying them to matrix %A and the transposed matrix %B_t.

The multiplication and addition performed on the scalar
values is represented using the standard MLIR operations mulf
and addf. These are nested inside of an rise.embed operation
that makes the named MLIR values with RISE ScalarTypes
(here: %first, %second, and %acc) available inside the nested
block with their types unwrapped (here with type f32). The
rise.in and rise.out operations allow the integration with
external values that have non RisE types.

3.5 Building RISE IR in C++

When using our RiskE dialect as a tool it is tedious to con-
struct the RiskE IR from scratch supplying type information
for all operations explicitly. To simplify building RISt ex-
pressions we have developed an easy to use C++ API using
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makeRiseProgram(C, A, B)([&](Value A, Value B) {
return mapSeq([&](Value arow) {
return mapSeq([&](Value bcol) {
return reduceSeq([&](Value tuple, Value accum){
return embed({fst(tuple), snd(tuple), accum},
[s](value a, Value b, Value accum) {
return accum + (a * b); });
},literal(scalarF32(), "0.0"),zip(arow, bcol));
}, transpose(B));
oA D)

[SIRV-JN-"JEN (- NIIS, ITSER U O

[

Listing 1. C++ API to build a composition of RISE patterns
modelling matrix multiplication as shown in Figure 6

MLIR builders. Listing 1 shows how this API is used for build-
ing the Risk IR code shown in Figure 6. The makeRiseProgram
function accepts the output value (c) and the input values (A,
B) for the computation as arguments and handles generation
of the rise.in and rise.out operations. Each highlighted C++
function builds the corresponding operations without the
need to specify types explicitly as they are inferred. We use
C++ lambda expressions to build the rise.lambda operations.
The rise.apply operations are inserted automatically.

4 Integration with other MLIR Dialects

The MLIR infrastructure allows us to easily integrate Rise
with other dialects. In this section, we are going to discuss
the integration that allow the building of a full machine learn-
ing compiler by compiling a TensorFlow machine learning
model via our functional pattern-based dialect into low-level
loop-based code. First, We will discuss how to lower do-
main specific dialects into Rise. Then, we will discuss how
a program in the RisE dialect is lowered into a loop-based
representation. As an alternative we discuss the lowering
from RisE directly to optimized library implementations.

4.1 Lowering Domain Specific Dialects to RISE

RIsE is an attractive target for many high-level domain spe-
cific dialects. The high-level RIsE patterns are easy to com-
pose to flexibly express a wide variety of computations. Con-
veniently, providing lower level details such as memory allo-
cation of temporaries or committing to an inherent sequen-
tial or parallel implementation early is not necessary.

Let us consider machine learning as a popular domain:
The MLIR XLA_HLO dialect encodes TensorFlow graphs rep-
resenting the computation of a neural network. Operations
in this graph represent computations processing tensors,
such as the xla_hlo.dot operation that represents a tensor
dot product. Depending on the tensors’ dimensionality this
represents a vector dot product, a matrix multiplication, or
their higher dimensional equivalent.

To lower XLA operations to Risg, the MLIR infrastruc-
ture allows for defining declarative rewrites that automat-
ically match specific operations and sequences of opera-
tions as a starting point to modifying the IR. For lowering
the xla_hlo.dot operation we provide an MLIR rewrite that
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checks for the types of the tensors to determine the equiva-
lent R1sE expression that is emitted to replace the operation.
For the two dimensional matrix multiplication we use the
C++ builder API to generate the Rise IR (Listing 1). Currently,
our implementation supports lowering xla_hlo.dot and con-
volutions which are two of the most computational intensive
operations in machine learning. Our C++ builder API and
the MLIR declarative rewriting makes it straightforward to
target RISk from other domain specific MLIR dialects.

4.2 Lowering RISE to Loop-Based Dialects

The functional patterns in RISE provide a convenient abstrac-
tion to express computations at a high level. Before execution
these functional patterns have to be lowered into impera-
tive code and eventual LLVM instructions that can easily be
compiled to executable code. For this process we gradually
lower the MLIR Risk dialect into a loop-based MLIR dialect
from which LLVM IR is generated. We adopt a formal compi-
lation method for translating a functional pattern-based IR
to imperative code originally presented in [6]. This lowering
process is complete and capable of lowering all possible Rise
expressions into loop code. It is split in two phases:

1. Functional — Intermediate IR:
The functional Risk IR is lowered into an intermediate
imperative representation without the functional lambda
calculus representations and the functional patterns. This
intermediate representation still uses RISE specific types
and has not yet resolved indices for accessing memory.

2. Intermediate IR — Target Representation: The in-
dexing into multi-dimensional arrays is resolved.

Splitting the lowering into these two phases greatly im-
proves the composability of the implementation. While the
process is fully generic, we explain it by example to be more
approachable without requiring a background in functional
programming. Figure 7 shows the lowering of matrix mul-
tiplication in the RisE dialect (7a) to a combination of the
loop-based Affine dialect and the standard mLIR dialect (7c)
via the intermediate imperative representation (7b). The col-
ors show which parts of the left-hand side are translated into
which parts in the middle and on the right-hand side.

4.2.1 Phase 1: Functional — Intermediate IR. In this
first lowering phase we eliminate all operations modelling
the functional lambda calculus and patterns from the pro-
gram. Patterns such as mapSeq and reduceseq are transformed
into loops, while patterns such as zip and fst are rearranged
to model the multidimensional indexing of memory. For each
pattern there exist translation rules that explain how the
pattern is lowered. These rules are detailed in [6]. Lambda
expressions and function application nodes that make the
control flow in RISE explicit are removed as the control flow
is now expressed as an imperative program performing a
sequence of loop-based computations.
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1| func amm(%outC, %inA, %inB) { 1| func @mm_codegen(%outC, %inA, %inB){ 1| func @mm_lowered(%outC, %inA, %inB) {
2[—(@)%A = rise.in %inA 2| %A = codegen.cast(%inA) 2| %init = constant 0.0 : f32
3 9)%B = rise.in %inB 3| %B = codegen.cast(%inB) 3| affine.for %i = o to 2048 {
4 g)%trans =rise.transpose #nat<2048> #nat<2048> #scalar<f32> 4| %C = codegen.cast(%outC) 4 affine.for %j = o to 2048 {
5 7)%B_t = rise.apply %trans, %B 5| %B_t = codegen.transpose(%B) 5 affine.store %init, %outArg[%i,%j]
6 |h—@ %m1fun = lambda(%arow) -> array<2e48, scalar<f32>> { 6| affine.for %i = 0 to 2048 { 6 affine.for %k = o to 2048 {
7|[p@@%m2fun = lambda(%bcol) -> scalar<f32> { 7 %A1 = codegen.idx(%A, %i) 7 %a = affine.load %inA[%i, %k]
||| 1, %zipFun = rise.zip #nat<2e048> #scalar<f32> #scalar<f32> 8 %Cai = codegen.idx(%C, %i) 8 %b = affine.load %inB[%k, %j]
9 #@%zippedmrays = rise.apply %zipFun, %arow, %bcol 9 affine.for %j = o to 2048 { 9 %c = affine.load %outC[%i, %j]
10 [’ i) %reductionLambda = lambda(%tuple, %acc) -> scalar<f32>{| 10 %B_ta)j = codegen.idx(%B_t, %j) 10 %0 = mulf %a, %b : f32
11 ”' , (%fstFun = rise.fst #scalar<f32> #scalar<f32> 11 %c = codegen.idx(%Cai, %j) 11 %1 = addf %o, %c : f32
12||{[n @%first = rise.apply %fstFun, %tuple 12 %arowsbcol = codegen.zip(%Aai,%B_taj) |12 affine.store %1, %outC[%i, %j]
13|[||n|' @)%sndFun = rise.snd #scalar<f32> #scalar<f32> 13 %init = rise.embed() { 13 }
14 :l \\ 2) %second = rise.apply %sndFun, %tuple 14 %cst_o = constant 0.0 : 32 14 }
15 \'I %result = rise.embed(%first, %second, %acc) { 15 return(%cst_o) : (f32) -> () 150 }
16||{[1, %product = mulf %first, %second :f32 16 16| return
171([[" %result = addf %product, %acc : f32 17 codegen.assign(%init, %c) 17| }
18 :l return %result : f32 18 affine.for %k = o to 2048 { 18
19 |\\ 19 %a&b = codegen.idx(%arowsbcol, %k) |19
20|(|l1y return %result : scalar<f32> 20 %a = codegen.fst(%a&b) 20
21 |[[ 1y } 21 %b = codegen.snd(%a&b) 21
22|||Hs@ %init = rise.literal #lit<e.o> 22 %result = rise.embed(%a, %b, %c) { |22
23 ‘I ‘\ %reduceFun = rise.reduceSeq #nat<2048> 23 %0 = mulf %a, %b : f32 23
24| 1\ #tuple<scalar<f32>, scalar<f32>> #scalar<f32> |24 %1 = addf %o, %c : f32 24
25]|| ! ﬁi)%result = rise.apply %reduceFun, %reductionLambda, 25 return(%1) : (f32) -> () 25
26]|| ! %init, %zippedArrays 26 } 26
27 'l return %result : scalar<f32> 27 codegen.assign(%result, %c) 27
28 v} 28 } 28
29||L—(G)%m2 = rise.mapSeq #nat<2048> #array<2048, scalar<f32>> |29 } 29
) ! #scalar<f32> 30| } 30
31 %result = rise.apply %m2, %m2fun, %B_t 31| return 31
32 return %result : array<2048, scalar<f32>> 32| } 32
33 } 33 33
34 7)%m1 = rise.mapSeq #nat<2048> #array<2048, scalar<f32>> |34 34
35 #array<2048, scalar<f32>> 35 35
36 D%result = rise.apply %m1i, %mifun, %A 36 36
37 rise.out %outC <- %result 37 37
38 return 38 38
39| } 39 39
(a) Functional Rise IR (b) Imperative Rise IR + Affine IR (c) Affine IR

Figure 7. Lowering of matrix multiplication from RisE (left) via the intermediate imperative representation (middle) to the
affine loop-based dialect (right). Colors indicate which part from the left is lowered into which part in the middle and right.

For multi-dimensional memory accesses of RIsE values at
this intermediate stage, we introduce a number of interme-

diate operations that are not exposed to the user:

® rise.codegen.idx ® rise.codegen.assign

® rise.codegen.fst ® rise.codegen.snd

® rise.codegen.zip ® rise.codegen.transpose
® rise.codegen.slide ® rise.codegen.pad

Lowering by example: Matrix Multiplication.

lambda which is applied, as well as it’s arguments.

We ex-
plain the lowering process by example following the matrix
multiplication. Figure 7 shows on the left the matrix mul-
tiplication represented in the RisE dialect. To lower this to
the intermediate imperative representation in the middle,
we start at the end of the RisE program with the rise.out
operation that specifies the value representing the computed
result. From here the lowering process chases all referred
SSA values (as indicated by arrows in Figure 7 (a)) and visits
the defining operation in the highlighted order form (7) to 3.
As RISE programs are compositions of pattern and function
applications, the referenced operations are mostly rise.apply
nodes whose lowering depends on the specific pattern or
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For lowering the entire matrix multiplication example

we first lower the (7) rise.apply node in line 36 that was
referred to by rise.out operation and represents the call to
the outermost rise.mapseq (2) in the functional expression.

Lowering mapSeq. Listing 2 shows the pseudo code for low-
ering an application of the mapSeq pattern. These steps are

p

erformed (The numbering matches the line numbers in

Listing 2):

GoR W N =

1 First, the input array is lowered. Here this is (3) %A repre-
sented as a rise.in operation that is translated into the
codegen. cast operation in line 2 Figure 7 (b).

// op = rise.apply(mapSeq n s t, fun, input)

void lowerAndStore(ApplyOp op, Value out) {

Value in = lower(op.input);

generate_affine_for(o, op.n, inc, [&](index i){
Value inAtI = idx_gen(in, 1i);
Value outAtI = idx_gen(out, i);
lowerAndStore(rise.apply(op.fun,inAtI),outAtI);});}

Listing 2. Pseudo code for translating the mapseq pattern



Integrating a Functional Pattern-Based IR into MLIR

2 A for loop is generated by building an affine. for oper-
ation (line 6 Figure 7 (b)) with the generate_affine_for
helper function using the array length captured in the
RisE type as the iteration bound of the loop.

3&4 The loop index is used to generate codegen.idx operations
(lines 7 and 8 Figure 7 (b)) representing indexing into the
already translated input and output values.

5 Finally, a temporary rise.apply is created representing
the application of the indexed input value (%Aai) to the
lambda ((@) %m1fun). Then the lowering of this temporary
apply (described next) is invoked using the indexed out-
put value (%cai) as the output location to write to.

Lowering lambda. To lower the application of a 1ambda oper-
ation we first substitute the block argument of the lambda
expression with the values that are applied to it. In the ex-
ample, we substitute %arow, the parameter of the 1ambda (line
6 Figure 7 (a)) with %Aai the argument created in the prior
step. After the substitution, we start the lowering from the
return operation traversing the nested block backwards.

In this example, we encounter the (5) rise.apply operation
in line 31 Figure 7 (a) that represents another application of
the mapSeq pattern (5). To lower this operation we just recur-
sively invoke the lowerAndstore function as discussed before
that visits nodes (7) - (9. The only noticeable difference is
that we pass %cai as the output value to write to, ultimately
resulting in a multi-dimensional indexing expression that
is resolved in the second phase of our lowering. Inside of
the second 1ambda we encounter (i) the application of the
reduceSeq pattern () in line 25 Figure 7 (a) for which we
describe the lowering next.

Lowering reduceseq. Listing 3 shows the pseudo code for
lowering application of the reduceseq pattern in which the
following steps are processed line-by-line:

1 First the input array is lowered. In the example, this is
(@ the result of the application of zip (3 with arguments
%arow and %bcol (line 9 Figure 7 (a)). By applying the lamb-
das to the indexed matrices these have been substituted
by %Aai and %B_taj. We emit a codegen.zip with these
arguments in line 12 Figure 7 (b).

2 Next, the initialization of the reduction is lowered. In
the example, this is (%) a rise.literal operation with the
float value o.o specified as an attribute. Literals are simply

// op = rise.apply(reduceSeq n s t, fun, init, input)

void lowerAndStore(ApplyOp op, Value out) {

Value in = lower(op.input);

Value init = lower(op.init);

assign_gen(init, out);

generate_affine_for(o, op.n, inc, [&](index 1) {
Value inAtI = idx_gen(in, 1i);
lowerAndStore(rise.apply(op.fun,inAtI,out),out);

;¥

Listing 3. Pseudo code for translating the reduceSeq pattern

NG R W N =
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lowered to the corresponding constant operation of the

standard MLIR dialect (line 14 Figure 7 (b)). The type

of the constant operation is the MLIR standard f32 type.

To make this accessible as a RISE type we generate an

enclosing rise.embed operation (line 13 Figure 7 (b)).

To initialize the reduction accumulator we generate a

rise.codegen.assign operation representing the assign-

ment of the initialization value to the output value that
we use as storage for the accumulator value. In the ex-
ample, the output value at this stage in the lowering is

%c (line 11, Figure 7 (b)) that represents an individual

element of the output matrix C.

4 Then the reduction loop is generated (line 18 Figure 7
(b)) using the input array length as the upper bound.

5 The loop index is then used to generate codegen.idx op-
eration (line 19 Figure 7 (b)) indexing into the already
translated input that in the example represents the zipped
row and column (%arowsbcol).

6 Finally, a temporary rise.apply is created representing
the application of the indexed input value and the accu-
mulator to the reduction lambda (9. Then the lowering
of this temporary apply is invoked using the accumulator
as the output location to write to.

w

Lowering embed. Nested inside the %reductionLambda is an
embed operation (i) that is lowered next. The lowering is
performed in two steps:

1 embed’s arguments (line 15 Figure 7 (a)) are lowered:
— The accumulator %acc is already lowered at this point.
— «first and %second are applications (@3 and ¢9) of the
rise.fst (19 and rise.snd @) operations. Their lower-
ing produces the intermediate rise.codegen.fst and
rise.codegen.snd operations (lines 20 & 21 Figure 7 (b)).
2 embed remains unchanged and a codegen.assign is gen-
erated (line 27 Figure 7 (b)) representing writing the
computed result to the indicated output.

Now all rise.apply operations with patterns such as mapSeq
and reduceSeq, as well as all 1ambda and embed operations have
been lowered. Only rise.codegen operations remain as can
be seen in Figure 7 (b). These are resolved to indices next.

4.2.2 Phase 2: Intermediate IR — Target IR. In this
second phase the multi-dimensional indexing is resolved,
generating standard MLIR load and store operations.

Figure 9 visualizes the process of generating the load of a
value of matrix B (line 8 Figure 7 (c)). Starting from the %b
argument of the rise.embed operation in line 22 Figure 7 (b)
we chase the def-use chains of the SSA-values and construct
an access path shown on the right of Figure 9.

For every operation encountered on the def-use chain
traversal we modify the access path as indicated in Figure 8.
Figure 8a shows the path changes when resolving a load and
Figure 8b for a store. There are a few RISE patterns (such



CC ’21, March 2-3, 2021, Virtual, Republic of Korea

Martin Liicke, Michel Steuwer, and Aaron Smith

resolveIndex(cast(%val, type), path) { generateLoad(%val, path); }
resolveIndex(embed(%args, region), path) { resolveIndex(%args, path); inline(region); }
resolveIndex(idx(%array,%iv), path) { resolvelIndex(%array, %iv :: path); }
resolveIndex(zip(%lhs, %rhs), %iv::(fst|snd)::path) { resolveIndex((%lhs|%rhs), %iv :: path); }
resolveIndex(fst(%tuple), path) { resolvelIndex(%tuple, fst :: path); }
resolveIndex(snd(%tuple), path) { resolveIndex(%tuple, snd :: path); }
resolveIndex(split(%array, n), i :: j :: path) { resolveIndex(%array, i*n+j :: path); }
resolveIndex(join(%array, n), i :: path) { resolvelIndex(%array, i/n :: i%n :: path); }
resolveIndex(transpose(%array), i :: j :: path) { resolvelIndex(%array, j :: i :: path); }
resolveIndex(slide(%array, stride), i :: j :: path) { vresolveIndex(%array, ixstride+j :: path); }
resolveIndex(pad(%array, n, 1, r), i :: path) { resolveIndex(%array,
(i<l ?20:(i<l+n) ? index:n—-1) :: path); }
(a) Resolve load indexing of rise.codegen operations
resolveStoreIndex(assign(%val, %storeTo)) { resolveIndex(%val, {});
resolveStoreIndex(%storeTo, {}); }
resolveStoreIndex(cast(%val, type), path) { generateStore(%val, path); }
resolveStoreIndex(idx(%array, %iv), path) { resolveStoreIndex(%array, %iv :: path); }
resolveStoreIndex(split(%array, n), i :: path) { resolveStoreIndex(%array, i/n :: i%n ::path); }
resolveStoreIndex(join(%array, m), i :: j :: path) { resolveStoreIndex(%array, i=m+j :: path); }
resolveStoreIndex(transpose(%array), i :: j ::path) { resolveStoreIndex(%array, j :: i :: path); }

(b) Resolve store indexing of rise.codegen operations

Figure 8. Resolving indices and generating load and store operations by consuming the access path.

as zip) that only influence the reading and, therefore, only
appear when generating loads.

In Figure 9 when encountering the snd operation we add
snd to the path. For idx we add the index to the path. For
zip we look at the path to decide if we follow the def-use
of the first or second argument: we observe snd on the path
and visit the second argument. After adding another index
onto the path, transpose simply flips the order of the first two
indices on the path. When we hit cast we are leaving the RisE
dialect and have reached the end of our index computation.
We generate the load operation shown in line 8 Figure 7 (c)
using the remaining information on the access path.

We perform a similar process for generating store oper-
ations using the recursive functions described in Figure 8b.
store operations are generated when encountering an assign
operation such as in line 27 Figure 7 (b) that generates the
store operation in line 12 Figure 7 (c).

Access Path
%result = embed(%a, %b, %c) {}
%b = snd(%a&b) snd :: {}
%agb = idx(%arowsbcol, %k) %k :: snd :: {}
%arowsbcol = zip(%A@i, %B_t@j) %k :: {}
%B_taj = idx(%B_t, %3j) %) i %k :: {}
%B_t = transpose(%B) %k i % :: {}
%B = cast(%inB) %k i %3 :: {}

—%b = load inB[%k, %j]

Figure 9. Resolving indices for reading from matrix B
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The generated 1oad and store operations have replaced all
remaining RISE operations leaving us with the final impera-
tive target representation as shown in Figure 7 (c).

4.3 Lowering RISE to Library Code

One of the strengths of the pattern-based Risk IR is the ability
to easily detect larger computations represented as composi-
tions of patterns - such as matrix multiplication - without
the need to perform analysis e.g. of index arithmetic. For
many common computations there exists high performance
library code that we want to directly leverage.

As an alternative to the lowering process discussed before,
we might also start from our Rise MLIR dialect by detecting
a composition of patterns that corresponds to a computa-
tion provided by a high-performance library. Similar to the
process of lowering the xla_hlo.dot operation into RISE, we
search for a matching composition of patterns and replace
them with a MLIR std.call operation invoking the library
interface directly. As a demonstration we implemented a
lowering of the matrix multiplication directly to the BLAS
MKL library targeting Intel CPUs.

4.4 Summary

In this section, we have discussed the integration of RIS
with other MLIR dialects. We have discussed how to build
a practical machine learning compiler by lowering a Ten-
sorFlow graph represented in the XLA dialect to Rise and
then lowering further either to loop-based representations,
such as the affine dialect, or directly to library calls. Next,
we are experimentally evaluating what runtime and compile
time overheads we are introducing by compiling via RISE.
Furthermore, we are exploring the potential of performing
optimizations at the pattern-based level.
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5 Evaluation
5.1 Experimental Setup

We performed an experimental evaluation on an Intel Haswell
quad core i7-4790K@4.0 GHz with 64KiB L1 and 256 KiB L2
cache per core as well as 8MiB shared L3 cache. The pro-
cessor supports AVX-2 (256-bit) vector operations and has
a turbo boost of 4.4 GHz. For all experiments the frequency
governor was set to “performance”. Experiments were run
100 times and we report the median run times.

5.2 Overhead of Rise

Runtime Overhead. Figure 10 shows the runtime of ma-
trix multiplication in milliseconds compiled via the Ris
MLIR dialect compared to equivalently optimized versions
without using Rise. We show two different sizes: a 1024x1024
matrix and a slightly more unusual size of 1x784 X 784x128,
which is a taken from the handwritten neural network ap-
plication. The SCF version is a text book version with three
nested loops represented in the Structured Control Flow
(SCF) MLIR dialect that is lowered to LLVM IR before -03
optimizations are applied. This baseline shows a negligible
runtime difference compared to the RISE naive version from
Figure 6 lowered to the SCF dialect and then to LLVM IR as
before.

Similarly we observe no runtime overhead for the RISE
opt version compared to the Affine version. This RiSE version
is lowered to the affine dialect as describe in Section 4. Then
both versions are optimized with polyhedral loop tiling and
vectorization passes as described in [8] before lowering to
LLVM and applying -03 optimizations.

Compile Time Overhead. Figure 11 shows compilation
times of MLIR passes when compiling matrix multiplication
from RisE via affine to the LLVM dialect. We report the
compilation time breakdown for the median total time from
10 runs. The passes are shown in order of their execution,
with all verification passes summed up at the bottom. A
moderate 10% of the MLIR compilation time is spent in the
lowering pass from RIsE to affine described in Section 4.

These results show that no runtime overhead and only a
moderate compile time overhead is introduced by the func-
tional pattern-based representation and that the lowering
process described in section 4 produces efficient code. Fur-
thermore, these results demonstrate the strength of integra-
tion within MLIR: starting from a functional representation
we easily take advantage of the polyhedral optimizations
resulting in a significant performance boost. Next we explore
performance gains when optimizing at the functional level.

5.3 Optimizing Separate Convolutions via Rewrites

One advantage of RISE’s pattern-based representation is that
optimizations are easily expressed as rewrite rules [13]. This
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1x784 % 784x128 size 1024x1024 size

| | | | | | | |
—0.225 0.226 —|
3,000

0.3
[ 2,580 2,590

| 2,000 |-

1,000

Runtime in ms

5243 529.6 |

SCF RISE Affine RISE SCF RISE Affine RISE

naive opt naive opt
Figure 10. Single precision matrix multiplication runtime
comparison. RIsE introduces no overhead compared to equiv-

alently optimized versions without using RIsE.

. Compilation time report ...
--- wall Time (s) --- --- Name ---

0.0002 ( 10.4%) ConvertRiseToAffine
0.0002 ( 10.0%) AffinelLoopTiling
0.0003 ( 13.8%) AffineScalarReplacement
0.0000 ( 2.4%) AffineVectorize
0.0001 ( 7.0%) ConvertLinalgToLoops
0.0001 ( 3.2%) ConvertAffineToStandard
0.0000 ( 2.3%) ConvertSCFToStandard
0.0004 ( 21.0%) ConvertStandardToLLVM
0.0006 ( 29,9%) VerificationPasses
0.0019 (100.0%) Total

Figure 11. Breakdown of pass compilation time. Lowering
of RisE only consumes about 10% of the overall time.

is specifically true for algorithmic optimizations that are
hard to perform at a lower loop-based level.

To demonstrate this we consider a 2D convolution which
is an operator often used in machine learning workloads
such as CNNs. A 2D convolution computes a weighted sum
of a 2D neighbourhood of values of an input matrix produc-
ing an output matrix of the same size. This computational
pattern is elegantly expressible in a pattern-based IR using
the three patterns pad, slide, and map as discussed in [14].
Listing 4 shows the Rise C++ builder producing the RisE
MLIR code for representing a 2D convolution: the slide2D
pattern in line 10 creates the 2D neighbourhood that are
processed by the map2b pattern in line 3. Each value in the
neighbourhood is multiplied with a weight and then summed
up. This computation is expressed similar to the dot product
with the zip2p and reduceseq patterns in line 9 and 4.

Convolution Separability. A well known optimization
for 2D convolutions is to perform two 1D convolutions in-
stead. This is based on the observation that sometimes the
2D weight matrix is decomposable, as for the Sobel filter:

1 2 1 1
0 0 of=]|ofx[1 2 1]
-1 -2 -1f |1
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makeRiseProgram(out, image, weights)(
[6](Value image, Value weights) {
return mapSeq2D([&](Value slidingWindow) {
return reduceSeq([&](Vvalue tuple, Value acc) {
return embed({fst(tuple), snd(tuple), acc},
[§]1(value fst, Value snd, Value acc) {
return acc + fst * snd; });
}, literal(scalarF32Type(), "0.0"),
join(zip2D(slidingWindow, weights)));
}, slide2D(3, 1, pad2D(1, 1, image))); b);

Listing 4. C++ builders to generate a composition of RIS
patterns modelling a 2D convolution

[SIRV-JN-"JEN (- NIIS, ITSER U O

[

As this optimization is not universally applicable it is not
implemented in compilers, but it is recognised as beneficial
in the image processing community and applied manually.

But when building specialized compiler solutions operat-
ing on domain specific and high-level representations we
are interested in enabling the application this optimization.

By exploiting the semantics of the high-level patterns of
Rise we can define a sequence of program transformations
as semantic preserving rewrite rules, as shown in [13], that
separate the convolution computation. The crucial rewrite
step describes how the weighted sum, expressed as a dot
product of the 2D weights (w2d) and the neighborhood, is
transformed into two weighted sums of the horizontal (wH)
and vertical (wv) weights:

rule separateConv(w2d, wV, wH) =
dot(join(w2d), join(nbh))
— nbh |> transpose |> map(dot(wV)) |> dot(wH)

Listing 5 shows the resulting RiSE expression for the sep-
arated convolution using the C++ builder API showing the
separate computations of the vertical convolution (lines 3-
11) and the horizontal convolution (lines 13-21).

makeRiseProgram(out, image, weightsH, weightsV)(
[6](value image, Value weightsH, Value weightsV) {
Value vertical = mapSeq([&](Value arr) {
return mapSeq([&](value nbh) {
return reduceSeq([&](Value t, Value acc) {
return embed(scalarF32(),{fst(t), snd(t),acc},
[§]1(value a, Value b, Value acc) {
return acc + a * b; });
9 },literal(scalarF32(), "0.0"),zip(nbh, weightsV));
10 }, transpose(arr));
11 }, slide(3, 1, pad2D(1, 1, image)));

[ B NS I N O I

13 return mapSeq([&](Value arr) {
14 return mapSeq([&](value nbh) {

15 return reduceSeq([&](Value t, Value acc) {

16 return embed(scalarF32(),{fst(t), snd(t),acc},

17 [s](value a, Value b, Value acc) {

18 return acc + a * b; });

19 }, literal(scalarF32(), "e.0"),zip(nbh,weightsH));
20 }, slide(3, 1, arr));

21 }, vertical);

i

Listing 5. C++ builders to generate a composition of RiSE
patterns modelling a spatially separated 2D convolution
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Figure 12. Runtime speedup of 2D spatially separated con-
volution over a naive 2D convolution

Figure 12 shows the performance gain of the separated
over the non separated convolution for different input sizes.
We can observe a 30% performance gain of this optimization
showing one possible simple performance gain by encoding
and applying a domain-specific optimization as a sequence
of rewrite rules transforming the Rise IR. We are keen to
explore more opportunities such as this and contribute to
improve the support for implementing such compositions of
rewrites in the MLIR framework.

6 Conclusion

This work presented RIse — a functional pattern-based inter-
mediate representation and its implementation in the MLIR
framework. We demonstrated that integration with other
intermediate representations is feasible and facilitated by the
ability to easily define custom types, operators and passes
using MLIR. Our principled IR design based on lambda calcu-
lus, rewrite rules and MLIR provides an attractive solution
for building machine learning compilers. For the first time,
we provide a pattern-based IR as a ready-to-use tool. Our
implementation is open source and an artifact accompanying
this paper is publicly available.

MLIR [17] is still a young project but has nevertheless
gained significant traction in the community. An ecosystem
of many dialects is developing, for example, for representing
TensorFlow graphs (XLA HLO [11]), structured control flow
(SCF [3]), polyhedral loop nests (Affine [2]) and even circuits
(CIRCT [1]). MLIR has many applications in the machine
learning domain such as its integration in the TensorFlow
compilation chain [21] or compiling neural networks repre-
sented in ONNX [18]. An early performance study suggests
promising performance using polyhedral optimizations [8]
and early work on a stencil specific dialect has been used to
accelerate weather and climate simulations [12].
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