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Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a
program’s so-called tuning parameters whose values are crucial for achieving high performance for a particular
parallel architecture and characteristics of input/output data. We present three new contributions of the Auto-
Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently optimizing
programs whose tuning parameters have interdependencies among them. We make the following contributions
to the three main phases of general-purpose auto-tuning: 1) ATF generates the search space of interdependent
tuning parameters with high performance, by efficiently exploiting parameter constraints; 2) ATF stores such
search spaces efficiently in memory, based on a novel chain-of-trees search space structure; 3) ATF explores
these search spaces faster, by employing a multi-dimensional search strategy on its chain-of-trees search
space representation. Our experiments demonstrate that, compared to the state-of-the-art, general-purpose
auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the search space of
interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process for important
applications from popular domains, including stencil computations, linear algebra routines, quantum chemistry
computations, and data mining algorithms.
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1 INTRODUCTION
High performance for parallel programs is difficult to achieve, because program code has to be
optimized for different target architectures and for changing input/output characteristics (size,
dimensionality, transposition layout, etc.) [63]. Typically, there are many parameters that influence
a program’s performance in different ways, such that finding the optimal parameter configuration
is often a hardly manageable task even for experts.
Auto-tuning is a technique for automatically finding good values of a program’s performance-

critical parameters (a.k.a. tuning parameters), for example the number of threads and/or sizes of
tiles, for a given architecture and input/output characteristics. Usually, the auto-tuning process
consists of three major phases: the generation, storing, and exploration of the program-specific
search space which consists of all possible parameter configurations.
There have been several successful special-purpose auto-tuning approaches, with an overview

in [5]. They achieve impressive results for particular application classes on particular target ar-
chitectures, by taking advantage of domain-specific knowledge to efficiently generate, store, and
explore the program-specific search space. Notable examples of special-purpose auto-tuners are
ATLAS [69] and PATUS [12], where auto-tuning is used for optimizing linear algebra routines on
CPU architectures or for high-performance stencil computations on CPUs and GPUs, respectively.
Unfortunately, the implementation of a special-purpose auto-tuner is a cumbersome task. The

developer has to manually manage the generation and storing of the parameter configurations,
and tailor a search technique (like genetic algorithms or simulated annealing [70]) to the parame-
ters’ search space for its automatic exploration. Special-purpose auto-tuning becomes especially
challenging when parameters have interdependencies among them, e.g., when the value of one
parameter must be divisible by the value of another parameter. Such divisibility properties are often
required for tuning parameters of recent parallel applications; for example, in order to correctly
exploit the thread and memory hierarchy of modern architectures, as we discuss later in this paper.
Designing a special-purpose auto-tuner for such interdependent parameters requires expert knowl-
edge and a significant implementation effort from the auto-tuning developer. We demonstrate that
generating and storing the search spaces of interdependent tuning parameters is time-consuming
and memory-intensive, and that the structure of such spaces significantly impacts the exploration
efficiency of state-of-the-art search techniques. The demand for higher productivity in auto-tuning
has been recently identified as a major research challenge in high-performance computing [5, 6].

Our work is inspired by the alternative approach, general-purpose auto-tuning, with the classical
approaches Orio [19] and ActiveHarmony [65], followed by the current state-of-the-art frameworks
OpenTuner [2] and CLTune [41], and the most recent libtuning [46] and KernelTuner [66]
approaches. General-purpose auto-tuning aims at simplifying the auto-tuning process: the software
developer specifies program’s tuning parameters by their names and ranges of possible values,
and the general-purpose framework then automatically creates the corresponding special-purpose
auto-tuner that generates, stores, and explores the program-specific search space.
The existing general-purpose auto-tuning approaches are efficient for many applications on a

range of architectures; however, we demonstrate in this paper that they still struggle with programs
whose tuning parameters have interdependencies among them: the existing approaches either
keep invalid configurations within their search spaces, which often hinders search techniques from
finding well-performing configurations (like Orio, OpenTuner, and libtuning), or the approaches
have difficulties with efficiently generating, storing, and exploring the search spaces of recent
parallel applications that consists of of only valid configurations (like ActiveHarmony, CLTune,
and KernelTuner).
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We present three new contributions of our Auto-Tuning Framework (ATF) to address the discussed
weaknesses in state-of-the-art general-purpose auto-tuning for programs with interdependent
tuning parameters. The ATF framework was originally introduced in previous work – as both an
offline [49] and online [50] approach1 – where its user interface and convenient usage are presented,
based on prototype mechanisms for search space generation, storing, and exploration. In contrast,
we introduce in this paper new contributions of ATF to each particular phase of the auto-tuning
process:
(1) ATF generates the search space of interdependent parameters with higher performance than

the current general-purpose auto-tuners by efficiently exploiting parameter constraints;
(2) ATF stores the generated search space of such parameter more efficiently in memory by

relying on a novel chain-of-trees search space structure for representing these spaces;
(3) ATF explores the generated and stored space of interdependent parameters faster by employing

a multi-dimensional search strategy on its chain-of-trees search space representation.
Our experiments confirm that ATF substantially improves the state of the art in general-purpose

auto-tuning (including ATF’s former, prototype implementation [49, 50]), based on four popular
application case studies: 1) stencil computation Gaussian Convolution, 2) linear algebra routine Gen-
eral Matrix-Matrix Multiplication, 3) quantum chemistry computation Coupled Cluster, and 4) data
mining algorithm Probabilistic Record Linkage.

The rest of the paper is structured as follows. Section 2 briefly recapitulates the state of the art in
general-purpose auto-tuning. Sections 3, 4, and 5 introduce our novel mechanisms for generating,
storing, and exploring the search spaces of interdependent tuning parameters, and Section 6
illustrates the user interface of the Auto-Tuning Framework (ATF) which implements our novel
mechanisms. Our experimental evaluation is described in Section 7. We discuss related work in
Section 8, and we conclude in Section 9.

2 STATE-OF-THE-ART GENERAL-PURPOSE AUTO-TUNING APPROACHES
Webriefly recapitulate the state of the art in general-purpose auto-tuning: OpenTuner and libtuning
in Section 2.1, and CLTune and KernelTuner in Section 2.2. Classical approaches ActiveHarmony
and Orio are discussed in Section 8.

2.1 Auto-Tuners Designed Toward Independent Tuning Parameters
OpenTuner and libtuning are auto-tuning frameworks designed and optimized toward applica-
tions, whose tuning parameters have no interdependencies among them. This restriction enables
both approaches to rely on only straightforward mechanisms for search space generation, storing,
and exploration: the user specifies tuning parameters by their name and range of possible values,
and, per design, each possible combination of parameters’ values is considered by the auto-tuner
as a valid configuration within the search space. Therefore, explicitly generating and storing the
entire search space is not required in these approaches, because configurations can be generated
straightforwardly, on the fly, by arbitrarily combining parameters’ values, and storing these spaces
requires only storing parameters’ ranges which have a small memory footprint. Furthermore,
search techniques can be easily used for exploring these systems’ search spaces: the spaces have
rectangular shapes where each dimension of the space represents the range of a particular tuning
parameter; this enables straightforwardly mapping the spaces to a coordinate space – a collection
of equally-sized sequences of real numbers, for which numerical search techniques are specifically
designed and optimized [70].
1Online auto-tuning happens at runtime so that it can be based on runtime values (e.g., the input size), while offline
auto-tuning works at compile time and uses static parameters only [5].
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While auto-tuning systems for independent parameters work well for many applications, they
struggle with programs whose tuning parameters have interdependencies among them. This is
because arbitrarily combining the values of interdependent parameters can lead to invalid parameter
configurations which cannot be distinguished in OpenTuner and libtuning due to their inherent
design (the user has to manually set a penalty value for invalid configurations, as a workaround [45]).
Consequently, the tuners’ spaces contain also invalid configurations which is often inefficient: we
demonstrate for important parallel applications that often > 99.999% of configurations within their
search spaces are invalid due to parameters’ interdependencies, which hinders state-of-the-art
search techniques from finding well-performing configurations.

2.2 Auto-Tuners Designed Toward Interdependent Tuning Parameters
CLTune and KernelTuner are popular auto-tuners that take interdependencies among tuning
parameters into account. For this, the frameworks generate, store, and explore on the constrained
search space which contains valid configurations only so that their search techniques do not have to
struggle with invalid configurations. For example, we show in Section 7 that using the constrained
search space, it is possible to find well-performing configurations for important applications
(e.g., stencil computations and linear algebra routines) in reasonable 4h of tuning time, in which
search techniques explore up to 20, 000 valid configurations in the constrained space. In contrast,
when relying on the unconstrained search space which contains also invalid configurations (as in
OpenTuner and libtuning), it is not possible to even find a valid starting point within the space –
independent of the chosen search technique – in 4h exploration time (in which, e.g., OpenTuner
tested up to 190, 000 configurations). This is because the unconstrained search space often contains
a vast amount of invalid configurations.

CLTune and KernelTuner are efficient for many applications; however, both approaches rely on
the same, straightforward processes to search space generation, storing, and exploration, which are
inefficient for the large spaces of recent parallel applications: the two approaches use a naive search
space representation which straightforwardly enumerates all valid configurations within a one-
dimensional array; we demonstrate that such a representation causes large memory footprint and
hinders the efficiency of state-of-the-art search techniques, because exploration can be performed
in only one dimension. Furthermore, the two approaches generate these spaces based on a so-called
search space constraint which has to be checked also for all invalid configurations; this is inefficient
when the number of invalid configurations is large.

3 GENERATING CONSTRAINED SEARCH SPACES
We address the first phase of auto-tuning by introducing a novel generation algorithm for con-
strained search spaces: we recapitulate ATF’s parameter constraints in Section 3.1, and we show
how we efficiently exploit ATF’s constraint design for fast search space generation in Section 3.2.

3.1 Parameter Constraints
A key concept in auto-tuning is a tuning parameter. Typically, a tuning parameter 𝑝𝑖 is represented
by a pair containing parameter’s name and a range which specifies the parameter’s possible values:

𝑝𝑖 := ( ⟨name⟩, ⟨range⟩ )

ATF extends this traditional definition of a tuning parameter by adding to it a parameter constraint:

𝑝𝑖 := ( ⟨name⟩, ⟨range⟩, ⟨constraint⟩ )
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A parameter constraint may be any arbitrary, unary, boolean C++17 function [23] that takes as
input an element of its parameter’s range; values for which the function returns false are filtered
out of the range.

Parameter constraints enable expressing arbitrary interdependencies among tuning parameters
and consequently to avoid invalid configurations within the search space. For this, the constraint
function of a parameter 𝑝𝑖 may use in its definition all previously defined tuning parameters 𝑝 𝑗 ,
𝑗 < 𝑖 , as common C++ variables that have the same type as their corresponding range values,
e.g., type int in case of a tuning parameter 𝑝 𝑗 whose range consists of integers. For example, in
OpenCL – the standard for uniformly programming different kinds of parallel architectures – the
number of threads in a group (local size) has to divide the overall number of threads (global size),
and the global size usually has to be smaller than or equal to the input size 𝑁 to avoid idling threads.
To express this, we use the following boolean unnamed C++ functions as constraints for the global
and local size tuning parameters, where % denotes the modulo operator:

// global size parameter constraint

[]( int global_size ){ return global_size <= N; }

// local size parameter constraint

[]( int local_size ){ return global_size % local_size == 0; }

The constraint function of the local size parameter uses the global size parameter global_size in its
body, thus expressing the interdependency among these two parameters. We discuss the definition
and usage of parameter constraints in ATF’s user interface in more detail in Section 6.

For comparison, a search space constraint in CLTune and KernelTuner that is equivalent to the
ATF’s two parameter constraints above is [41, 66]:

[]( auto c ){ return c.local_size * c.k <= N; }

A search space constraint has to be defined as a single function (with drawbacks discussed in the
next subsection). In this example, the constraint takes as input a configuration c comprising tuning
parameters local_size and k; the global_size is then computed as local_size * k.
Note that ATF’s parameter constraints are as expressive as the traditional search space con-

straints: a search space constraint that is equivalent to a set of parameter constraints can always
be generated by combining the parameter constraints via logical and. Moreover, [49, 50] show
that ATF’s user interface (based on parameter constraints) provides a better user experience as
compared to the interfaces of CLTune (which relies on search space constraints) and OpenTuner
(which supports no constraints at all).

In the following, we show howwe exploit ATF’s constraint design for fast search space generation.

3.2 Algorithm for Generating Constrained Search Spaces
We first briefly present the traditional generation algorithm for constrained search spaces as used in
CLTune and KernelTuner, which is based on search space constraints. Afterwards, we introduce our
novel algorithm for generating constrained search spaces, which is based on parameter constraints.

Traditional Approach. Listing 1 shows as pseudocode the original search space generation algo-
rithm of CLTune and KernelTuner (taken from [41] and [66]), which is based on a search space
constraint and the traditional definition of tuning parameters. Configurations are added to the
search space (line 8 in Listing 1) if the search space constraint 𝑠𝑐 (line 6) is satisfied. We use the C++
syntax for range-based for-loops, where 𝑟𝑖 denotes the range of the 𝑖-th tuning parameter (lines 2-4).
A major drawback of the traditional approach is that the search space constraint (line 6) has to be
checked at the deepest level of the loop nest, causing high search space generation time.
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1 // iteration over tuning parameter configurations
2 for ( 𝑣1 : 𝑟1 )
3

. . .

4 for ( 𝑣𝑘 : 𝑟𝑘 )

5 // checking search space constraint
6 if ( 𝑠𝑐 (𝑣1, . . . , 𝑣𝑘 ) )

7 // adding configuration to the search space
8 add_config( 𝑣1, . . . , 𝑣𝑘 );

Listing 1. Traditional algorithm (pseudocode) for generating constrained search spaces [41, 66].

Novel Approach. Listing 2 shows as pseudocode our optimized algorithm for generating con-
strained search spaces, which relies on parameter constraints, rather than on search space con-
straints as in the traditional approach. Compared to Listing 1, our algorithm in Listing 2 exploits
ATF’s constraint design to make two major optimizations: 1) generating independently and in
parallel the search space parts of groups of interdependent tuning parameters, and 2) checking
constraints early in the loop nest. We discuss both optimizations in the following.

Optimization 1: In general, not all tuning parameters depend on each other. For example, in
recent CPU and GPU implementations [51], e.g., for stencil computations and linear algebra
routines, up to 39 parameters are used (as we discuss in Section 7); these parameters can be parti-
tioned into differently-sized groups of interdependent tuning parameters; for example, 6 parameter
groups in case of stencil computations, which comprise up to 4 parameters in a group. We ex-
ploit ATF’s constraint design to automatically identify interdependent parameter groups: two

1 // processing groups of interdependent parameters in parallel

2 parallel for ( 𝐺 : {𝐺1, . . . ,𝐺𝑛 } )

3 // processing individual interdependent parameter groups in parallel

4 parallel for ( 𝑣𝐺1 : 𝑟𝐺1 )

5 if ( 𝑝𝑐𝐺1 <> (𝑣𝐺1 ) )
. . .

6 parallel for ( 𝑣𝐺
𝑡𝐺

: 𝑟𝐺
𝑡𝐺

)

7 if ( 𝑝𝑐𝐺
𝑡𝐺

< 𝑛𝐺1 , . . . , 𝑛
𝐺

𝑡𝐺−1 > (𝑣𝐺
𝑡𝐺

) )

8 // sequential computation of a group

9 for ( 𝑣𝐺
𝑡𝐺 +1 : 𝑟𝐺

𝑡𝐺 +1 )

10 if ( 𝑝𝑐𝐺
𝑡𝐺 +1 < 𝑛𝐺1 , . . . , 𝑛

𝐺

𝑡𝐺
> (𝑣𝐺

𝑡𝐺 +1) )
. . .

11 for ( 𝑣𝐺
𝑘𝐺

: 𝑟𝐺
𝑘𝐺

)

12 if ( 𝑝𝑐𝐺
𝑘𝐺

< 𝑛𝐺1 , . . . , 𝑛
𝐺

𝑘𝐺−1 > (𝑣𝐺
𝑘𝐺

) )

13 // adding configuration to the search space

14 search_space.group(G). add_par( 𝑣𝐺1 , . . . , 𝑣𝐺
𝑡𝐺

). add_seq( 𝑣𝐺
𝑡𝐺 +1, . . . , 𝑣

𝐺

𝑘𝐺
);

Listing 2. Novel algorithm (pseudocode) for generating constrained search spaces.
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parameters are interdependent and thus in the same group, iff one of them occurs in the syn-
tax tree of the other parameter’s constraint function. In the following, let 𝐺1, . . . ,𝐺𝑛 be the dis-
joint grouping of interdependent parameters, where each group 𝐺 comprises 𝑘𝐺 tuning param-
eters: 𝐺 = {𝑝𝐺1 , . . . , 𝑝𝐺𝑘𝐺 }, 𝑝

𝐺
𝑖 = (𝑛𝐺𝑖 , 𝑟𝐺𝑖 , 𝑝𝑐𝐺𝑖 < 𝑛𝐺1 , . . . , 𝑛

𝐺
𝑖−1 >), 1 ≤ 𝑖 ≤ 𝑘𝐺 ; here, < 𝑛𝐺1 , . . . , 𝑛

𝐺
𝑖−1 >

denotes that constraint 𝑝𝑐𝐺𝑖 may use all previously defined tuning parameter (as discussed above).
In Listing 2, for each group 𝐺 , we generate its corresponding part of the search space indepen-
dently of the other group’s parts (line 2). This breaks the deep loop nests in Listing 1, leading to
significantly faster space generation, as we confirm later in our experiments. Moreover, as the
groups’ search space parts can be generated independently of each other, we can generate them in
parallel (indicated by keyword parallel in line 2).

We use a further potential of parallelism in Listing 2 by generating a group𝐺 ’s first 𝑡𝐺 for-loops
also in parallel (line 4-6 in Listing 2); here, 𝑡𝐺 denotes an arbitrary, user-defined constant between 1
and 𝑘𝐺 . We set 𝑡𝐺 to a default value of 𝑡𝐺 = 1, i.e., we parallelize only the first loop of the nest (line 4)
because, in most cases, this is sufficient for high parallelization: first parameter’s range usually
comprises more values than cores available in target system’s CPU. However, in special cases, if
the first tuning parameter has a small range (e.g., a boolean parameter), we set 𝑡𝐺 to a higher value,
and consequently parallelize more loops in the nest, in order to fully utilize the available hardware.
To avoid a parallelization overhead which might be high even for 𝑡𝐺 = 1 if the first parameter’s
range is large, our parallel implementation uses a thread pool comprising as many threads as cores
are available in the target CPU.
Synchronization is not required in our parallel algorithm, because the subspaces of different

groups (accessed via function group in line 14 of Listing 2) and the subspaces of a group𝐺 ’s first 𝑡𝐺
parameters (added via add_par) are disjoint.
Note that in general, groups of interdependent parameters cannot be identified automatically

when using a traditional search space constraint as in CLTune and KernelTuner: by design, pa-
rameters’ interdependencies are defined in a single search space constraint only, thus requiring a
complicated semantic analysis of the constraint.

Optimization 2: In the traditional algorithm, constraints must be checked at the deepest level
of the loop nest, because the algorithm relies on a search space constraint which checks full
configurations (line 6 in Listing 1). In contrast, ATF’s constraint design enables checking constraints
early in the loop nest, thereby avoiding iterations over entire subspaces (Listing 2, lines 5-12), which
substantially accelerates search space generation.

4 STORING CONSTRAINED SEARCH SPACES
In this section, we address the second phase of auto-tuning: storing the space of configurations,
which is generated according to the first phase described in Section 3. If tuning parameters have
no interdependencies, as assumed by OpenTuner and libtuning, then their search space can
be represented straightforwardly using only the ranges of the tuning parameters (as discussed
in Section 2.1), because each combination of values in parameters’ ranges represents a valid
configuration. In contrast, representing a constrained search space in case of interdependencies
among the parameters is significantly more complex, because not all configurations of parameters
are valid.

CLTune and KernelTuner address this problem of interdependent parameters by generating and
storing in memory a priori the entire constrained search space. This allows search techniques to
freely navigate over the space, as required by the techniques for high search efficiency [70]. However,
both approaches store the space in a plain array of configurations, which wastes significant amount
of memory space, because many configurations share the same parameter values.
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To efficiently store constrained search spaces in memory, we introduce the novel chain-of-trees
search space structure. This structure chains multiple trees, where each tree represents the search
space part of a group of interdependent tuning parameters, as defined in the previous section.
We explain our chain-of-trees search space structure for a simple, illustrative example of five

tuning parameters:

𝑝1 := ( 𝑛1, {22, 35}, _ )
𝑝2 := ( 𝑛2, {2, 5, 7, 11}, divides(𝑛1) )
𝑝3 := ( 𝑛3, {26, 51}, _ )
𝑝4 := ( 𝑛4, {1, 3, 13, 17}, divides(𝑛3) )
𝑝5 := ( 𝑛5, {27, 39, 52, 54, 68}, equals(𝑛3 + 𝑛4) )

Here, for an easy distinction, the parameters’ ranges comprise different values, and 𝑝1 and 𝑝3 have no
constraints. We use divides(N) as an alias for the parameter constraint [](int i){return N % i == 0;},
and we use equals(N) for the constraint [](int i){return N == i;}. There are two groups of interde-
pendent parameters in the example; the first group comprises parameters {𝑝1, 𝑝2}, while parameters
{𝑝3, 𝑝4, 𝑝5} form the second group.

22

2 11

35

5 7

26

1

27

13

39

51

1

52

3

54

17

68

Tree 1𝑝1

𝑝2

Tree 2

𝑝3

𝑝4

𝑝5

Fig. 1. The example chain-of-trees represents the search space of parameters 𝑝1, . . . , 𝑝5.

Figure 1 illustrates our chain-of-trees structure for the example parameters 𝑝1, ..., 𝑝5. For each
of the two parameter groups, we use a tree (Tree 1 and Tree 2) to represent its part within the
search space, and we chain these two trees by connecting the leaves of the first tree with the root
of the second tree. To save memory, we store the connecting (dashed) edges as a single reference in
Tree 1. Each path in Tree 1 from the root to a leaf represents a valid configuration of parameters 𝑝1
and 𝑝2, for which their constraints are satisfied, and each combination of a path in Tree 1 and a
path in Tree 2 represents a valid, full configuration.

In our chain-of-trees structure, parameter values are often stored only once, whereas in a plain
array of configurations (as in CLTune and KernelTuner), these values would be repeated many times.
For example, we store values 22 and 35 only once at the top level of Tree 1 while these would be
stored 20 times in the traditional space representation (once per configuration in the search space),
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resulting in a high memory footprint. Furthermore, the configurations of parameters 𝑝3, 𝑝4, 𝑝5,
which are represented by Tree 2, would have to be stored for every leaf of Tree 1 (4 times in this
example). We avoid this significant waste of memory by storing Tree 2 only once and chaining the
two trees together.
Note that our chains-of-trees structure is efficient also for storing the spaces of parameters

without interdependencies: if tuning parameters are independent, then each single parameter
represents an own interdependent parameter group (comprising only one parameter), which
corresponds to exactly the same range-based search space representation as used in OpenTuner
and libtuning.

5 EXPLORING CONSTRAINED SEARCH SPACES
The third and final phase of auto-tuning is the exploration of the search space, generated and stored
as described in Section 3 and 4, using some search technique. State-of-the-art general-purpose
auto-tuning frameworks follow one of two basic approaches to the exploration phase.
CLTune and KernelTuner explore constrained search spaces, but they use a plain array of

configurations. Consequently, they provide search techniques an only one-dimensional view on
the search space, which often causes sub-optimal auto-tuning results, because locality information
within the space’s particular dimensions are lost [70]. For example, we demonstrate in Section 7
for the search by simulated annealing – CLTune’s most efficient search technique [41] – that the
selection time of the next candidate point is very high for large search spaces when relying on the
one-dimensional space, thus leading to poor auto-tuning results.
OpenTuner and libtuning retain the multidimensionality of their search spaces, as required

by search techniques for high search efficiency [70]. However, these two frameworks have to
explore unconstrained search spaces which can contain also invalid configurations. This usually
drastically worsens their efficiency for programs with interdependent tuning parameters, as we
confirm experimentally in Section 7.

Fig. 2. Example of exploring our chain-of-trees structure in multiple dimensions, based on an 𝐿-dimensional
coordinate space (in this example: 𝐿 = 4). Subtrees in level 1 – for nodes 2, 3, 4 – are omitted for brevity.
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We aim at combining the advantages of both state-of-the-art approaches: we explore constrained
search spaces (as in CLTune and KernelTuner), and we search in multiple dimensions (as in
OpenTuner and libtuning). For this, we exploit the structure of our chain-of-trees search space
representation introduced in the previous section.
As search techniques usually explore coordinate spaces (i.e., spaces containing equally-sized

sequences of real numbers that have no interdependencies among them), our basic idea for ex-
ploration is as follows: we map a coordinate space to our chain-of-trees representation; thereby,
we reduce the challenge of exploring a chain-of-trees to the challenge of exploring a coordinate
space – the most efficient structure for search techniques [70]. For a chain-of-trees with 𝐿 levels
(excluding the roots), we map to it a coordinate space with 𝐿 dimensions. For each dimension in the
coordinate space, we use real numbers in the interval (0, 1] – all points from 0 to 1, excluding 0. We
denote the coordinate space as (0, 1]𝐿 .
Figure 2 demonstrates an example of how we map a coordinate space to our chain-of-trees

structure. For illustration, we use a chain-of-trees with 4 levels, i.e., 𝐿 = 4 (roots excluded); corre-
spondingly, we use a 4-dimensional coordinate space for mapping it to the 4-leveled chain-of-trees.
The goal of our mapping is to assign to each arbitrary sequence (𝑙1, . . . , 𝑙4) ∈ (0, 1]4 in the coordinate
space a path in the chain-of-trees (and thus a configuration – see Section 4), which we do intuitively
as follows. In level 1, the chain-of-trees has 4 nodes, so in the first dimension of the coordinate
space, we split interval (0, 1] evenly in 4 equally-sized blocks, where each block corresponds to one
node in the chain-of-tree’s first level. In our example, we map each 𝑙1 in block (0, 0.25] to the root’s
first child 1○, and if 𝑙1 is in block (0.25, 0.5], we map it to root’s second child 2○, etc. In level 2,
after moving along the path (𝑠1) which comprises only node 𝑠1 = 1○, we have 3 nodes, so each
𝑙2 ∈ (0, 0.33] is mapped to 𝑠1’s first child node 5○, and each 𝑙2 ∈ (0.33, 0.66] is mapped to the second
child node 6○, and so on.

In general, for an arbitrary 𝐿-leveled chain-of-trees, we map an 𝐿-dimensional coordinate space
to this chain-of-trees as follows. Each sequence (𝑙1, . . . , 𝑙𝐿) ∈ (0, 1]𝐿 in the coordinate space is
mapped to a path (𝑠1, . . . , 𝑠𝐿) in the chain-of-trees. To obtain node 𝑠𝑖 , 1 ≤ 𝑖 ≤ 𝐿, we calculate
𝑘𝑖 := ⌈𝑙𝑖 ∗ NUM_CHILD(𝑠1,...,𝑠𝑖−1)⌉, where NUM_CHILD(𝑠1,...,𝑠𝑖−1) is the number of child nodes of 𝑠𝑖−1 after
moving along the path (𝑠1, . . . , 𝑠𝑖−1). We round up 𝑘𝑖 to the next higher integer value (indicated by
⌈. . . ⌉) and set 𝑠𝑖 as the 𝑘𝑖 -th child of node 𝑠𝑖−1.

6 USER INTERFACE OF AUTO-TUNING FRAMEWORK (ATF)
While this paper focuses on ATF’s contributions in generating, storing, and exploring constrained
search spaces, ATF has also a further major goal: simplifying the auto-tuning process to make
it appealing to common application developers, which is focus of previous work [49, 50]. For
example, [49] shows that ATF’s user interface simplifies the auto-tuning process for the user as
compared to frameworks OpenTuner and CLTune: the ATF user annotates program’s source code
with easy-to-use tuning directives which specify the tuning parameters (with their names, ranges,
and possible constraints), the search technique, and the abort condition; ATF then automatically
creates the corresponding special-purpose auto-tuner for generating, storing, and exploring the
program-specific search space. In contrast, the users of OpenTuner and CLTune have to implement
a low-level auto-tuning program in Python or C++, correspondingly.
Listing 3 shows how ATF is used for auto-tuning a popular example used in many auto-tuning

case studies [13, 27, 34, 41, 53, 64, 66] – the OpenCL GEMM kernel of the CLBlast library [40],
which computes general matrix-matrix multiplication on either CPU or GPU. The kernel, declared
in lines 24-25, has 16 tuning parameters, e.g., the SIMD vector width VMW (line 5), the number of
threads per thread group MDIMC (line 8), and the tile size MWG (line 12). The atf::tp directive specifies
the tuning parameters for ATF with a name, range, and (optionally) a parameter constraint. The
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1 #atf::var::M $1 // first command line argument
2 #atf::var::N $2 // second command line argument
3 #atf::var::K $3 // third command line argument
4
5 #atf::tp name "VWM" // vector width
6 range {1, 2, 4, 8}
7
8 #atf::tp name "MDIMC" // local size
9 range interval <size_t >( 1,M )
10 constraint less_than_or_eq( atf::ocl:: max_wi_size_0 )
11
12 #atf::tp name "MWG" // tile size
13 range interval <size_t >( 1,M )
14 constraint multiple_of( MDIMC*VWM ) && ...
15
16 // 13 further tuning parameter
17
18 #atf:: search_technique simulated_annealing
19 #atf:: abort_condition evaluations( 10000 )
20
21 // ... OpenCL -specific directives
22
23 // CLBlast 's OpenCL GEMM kernel
24 __kernel void XgemmDirectTN( ... )
25 { ... }

Listing 3. ATF directives for auto-tuning CLBlast’s GEMM routine (some parameters omitted for brevity).

constraints express, e.g., that the local size MDIMC has to be less than or equal to the maximally
hardware-supported thread size atf::ocl::max_wi_size_0 (line 10), and that the tile size MWG has to
be a multiple of the local size MDIMC multiplied with the vector width VWM (line 14), which is an
interdependency among these three parameters. Here, less_than_or_eq(x) and multiple_of(x) are so-
called constraint aliases which ATF provides for user’s convenience; they are automatically replaced
by ATF with the constraint functions [](auto i){return i <= x;} and [](auto i){return i % x == 0;},
respectively. The two functions take as input an element i of parameter’s range, and they return
either true or false, indicating whether the constraint is satisfied or unsatisfied for range element i.
The auto specifier represents a generic type in ATF, allowing the user to use constraint aliases for
differently-typed tuning parameters. ATF provides several constraint aliases, and it allows the user
to specify arbitrary, self-defined constraints as unnamed C++17 functions (lambda expressions).

Further in Listing 3, the search technique and abort condition, i.e., when to stop the auto-tuning
process, are specified in lines 18 and 19. ATF provides special directives for OpenCL programmers
(omitted for brevity in the listing) to automatically generate the host code in which the user can
set, e.g., the target device and kernel’s input parameters (line 21). ATF provides various search
techniques, e.g., simulated annealing and AUC bandit which combines multiple techniques for
exploration (such as differential evolution, Nelder-Mead, and Torczon hillclimbers) [49]. ATF also
offers further tuning directives, e.g., for auto-tuning programs written in arbitrary programming
languages and for arbitrary tuning objectives (e.g., high runtime performance and/or low energy
consumption). We do not discuss ATF’s supported search techniques and its further directives,
because this is the focus of previous work [49, 50].

7 EXPERIMENTAL EVALUATION

All experiments described in this section can be reproduced using our artifact implementation [4].

In the following, after describing our experimental setup in Section 7.1, we introduce four
application case studies in Section 7.2 which we use for experiments in this section. Afterwards, in
Section 7.3, we compare ATF which implements our novel mechanisms for search space generation
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(Section 3), storing (Section 4), and exploration (Section 5) – the three main contributions of this
paper – against the state-of-the-art competitors. In Section 7.4, we experimentally analyze ATF
regarding each particular phase of the auto-tuning process. Finally, we discuss in Section 7.5 ATF’s
auto-tuning efficiency for further application classes, and we present in Section 7.6 ATF’s efficiency
for a real-world deep learning application.

7.1 Experimental Setup
We use a system equipped with an Intel Xeon Gold 6140 18-core CPU, tacted at 2.3GHz with 192 GB
main memory and hyper-threading enabled, and an NVIDIA Tesla V100-SXM2-16GB GPU. Time
measurements are made using the C++ chrono library and the OpenCL profiling API, respectively.

7.2 Application Case Studies for Experiments
Our experiments rely on four case studies: 1) Gaussian Convolution (CONV) which is a popular
stencil computation, 2) GEneral Matrix-Matrix multiplication (GEMM) which is a linear algebra
routine, 3) Coupled Cluster (CCSD(T)) which is important in quantum chemistry [14], and 4) Proba-
bilistic Record Linkage (PRL) which is widely used in data mining [52]. We use the recent CPU and
GPU implementations of these four applications presented in [51], and we show experimentally
that when using ATF for auto-tuning, these implementations can be auto-tuned to better perfor-
mance than current state-of-practice solutions, e.g., Facebook’s TensorComprehensions library [67]
which relies on state-of-the-art polyhedral techniques combined with a special-purpose auto-tuner,
as well as hand-optimized vendor libraries such as Intel MKL/MKL-DNN [21, 22] and NVIDIA
cuBLAS/cuDNN [42, 44] for linear algebra routines and stencil computations, respectively.

The implementations in [51] are written in OpenCL in order to target different kinds of architec-
tures, and they rely on multiple tuning parameters, including sizes of tiles and numbers of threads
on different memory and core layers. The parameters have various interdependencies among them,
e.g., the value of a tile size tuning parameter on an upper memory layer has to be a multiple of a
tile on a lower memory layer – an interdependency among the tile size parameters – because a
lower-layer tile is a chunk of an upper-layer tile. We refer the reader to [51] for more details about
the tuning parameters and their corresponding interdependencies, as this is not the focus of this
paper.

App. Input Size #TPs TP Groups Min. RS Max. RS Med. RS Avg. RS |SP| FT
1 CONV 4096 × 4096 14 {1, 1, 2, 2, 4, 4} 2 4092 4092 2339.29 1.69 ∗ 108 1.49 ∗ 10−23
2 GEMM 10 × 500 × 64 19 {1, 1, 2, 3, 4, 4, 4} 2 500 10 121.84 2.51 ∗ 108 2.47 ∗ 10−17
3 CCSD(T) 24 × 16 × 16 × 24 × 16 × 16 × 24 39 {1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 7} 2 24 16 15.46 8.81 ∗ 1018 1.47 ∗ 10−25
4 PRL 1024 × 1024 14 {1, 1, 2, 2, 4, 4} 2 1024 1024 586.14 2.31 ∗ 107 1.33 ∗ 10−19

Table 1. Auto-tuning characteristics of our four application studies.

Relevant for the evaluation in this paper are the auto-tuning characteristics of our four stud-
ies, which are summarized in Table 1: 1) number of tuning parameters (denoted as #TPs in the
table); 2) number of groups of interdependent tuning parameters, as defined in Section 3, and the
groups’ individual sizes (TP Groups); 3) minimum parameter range size (Min. RS); 4) maximum
parameter range size (Max. RS); 5) median parameter range size (Med. RS); 6) average parameter
range size (Avg. RS); 8) size of the constrained search space (|SP|); 9) fraction (FT ) of the uncon-
strained search space that represents valid configurations. For example, application CONV has 14
tuning parameters which are automatically split by ATF in 6 groups of interdependent parame-
ters – two groups comprising 1 parameter, two groups comprising 2 parameters, and two groups
comprising 4 parameters. Characteristics Min. RS, Max. RS, Med. RS, Avg. RS, |SP|, and FT depend
on the particular input size of the applications, because the input size is used to calculate the upper
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bound of some of the tuning parameters’ ranges. For example, the range of the tile size tuning
parameter is defined as all values between 1 and the input size [51]. In the table, we present values
of the input-dependent characteristics for the same input sizes as also used in [51], e.g., real-world
sizes taken from deep learning. For example, for input size 4096 × 4096, CONV’s parameters have a
minimum range size of 2 (a boolean parameter) and a maximum range size of 4092 (tile size); CONV’s
median range size is 4092, and on average, the ranges of CONV’s tuning parameters contain 2339.29
values. The constrained search space of CONV (which comprises only valid configurations, as in
ATF, CLTune, and KernelTuner) has a size of 1.69 ∗ 108 for input size 4096 × 4096. The FT value
(1.49 ∗ 10−23 in this example) denotes which fraction of the unconstrained search space represents
valid configurations. For example, the unconstrained search space of CONV has a size of 1.13 ∗ 1031
and only a fraction of 1.49 ∗ 10−23 of configurations within the space (= 1.69 ∗ 108 many) are valid.

Table 1 shows that our case studies have very different auto-tuning characteristics, thus enabling
a thorough evaluation of the ATF framework.

7.3 Comparison of Auto-Tuning Efficiency
We compare the auto-tuning efficiency of ATF which implements our novel mechanisms presented
in Sections 3-5 to the auto-tuning efficiency of: i) OpenTuner which is designed for programs
whose tuning parameters have no interdependencies; ii) CLTune which supports interdependencies
among tuning parameters; iii) ATF’s former implementation [49, 50] which relies on prototype
mechanisms for search space generation, storing, and exploration. For brevity, we do not present our
experimental results for the general-purpose auto-tuning frameworks libtuning and KernelTuner,
because our results for them are analogous to those that we obtain for OpenTuner and CLTune: the
same as OpenTuner, libtuning is optimized toward programs whose tuning parameters have no
interdepencies, and KernelTuner relies on exactly the same mechanisms for search space generation
and storing as CLTune. Thus, even though libtuning and KernelTuner use other kinds of search
techniques than OpenTuner and CLTune, both have difficulties with auto-tuning our case studies
for the same reasons as OpenTuner and CLTune.
Additionally, we compare the performance of our application case studies auto-tuned using

ATF against the newest versions of state-of-practice, high-performance computing libraries that
use their own optimized implementations of these applications: a) Intel MKL-DNN 0.21.5 / MKL
2020 [21, 22] and NVIDIA cuDNN 7.6.5 / cuBLAS 10.2 [42, 44] which are architecture-specific ap-
proaches for high-performance convolution computations and linear algebra routines on CPU
and GPU, respectively; the libraries rely on hand-optimized assembly code, rather than auto-
tuned OpenCL programs as we do; b) Conv2D and CLBlast [40, 41] which are auto-tunable
OpenCL implementations of convolution and matrix multiplication, respectively, for CPUs and
GPUs; both implementations rely on CLTune for auto-tuning, which is specifically designed and
optimized toward auto-tuning these two implementations [41]; c) TensorComprehensions [67]
and COGENT [29] which are recent approaches optimized toward efficiently computing CCSD(T)
on NVIDIA GPUs; TensorComprehensions generates its own CCSD(T) implementation based on
state-of-the-art polyhedral techniques, and it is tightly coupled to a self-provided, special-purpose
auto-tuner; COGENT generates CUDA code for CCSD(T) that relies on hand-crafted heuristics for
optimization, rather than auto-tuning; d) the hand-optimized, parallel Java implementation of PRL
for multi-core CPU that is currently used by EKR [20] – the largest cancer registry in Europe.
Table 2 shows the measured runtimes of our four case studies on CPU (left part of the table)

and GPU (right part) when auto-tuned using ATF, compared to auto-tuning the application studies
using the existing general-purpose auto-tuners listed above. We auto-tune each of our four studies
for 4h with each auto-tuning framework; the studies are denoted in the table as: ATF, OpenTuner,
CLTune, CLTune (pruned) which is CLTune with an expert-pruned search space, and ATF (former)
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ATF

ATF

ATF

ATF

Table 2. Auto-tuning efficiency of ATF vs state-of-the-art auto-tuners and high-performance libraries on
CPU (left part of the table) and GPU (right part) for application studies: CONV (Gaussian Convolution), GEMM
(GEneral Matrix-Matrix multiplication), CCSD(T) (Coupled Cluster), and PRL (Probabilistic Record Linkage).

which is ATF’s prototype implementation [49, 50]. For a fair comparison, we conduct each tuning
run for ten times, and we present for each framework the results of the best run. High-performance
libraries that rely on their own implementations of our application studies are also presented in
the table and highlighted italic.
In addition to the runtimes of the application studies, we present in Table 2 for each frame-

work and library also: i) the time required for generating a study’s search space, ii) the search
space size for each particular study, iii) the number of valid configurations explored in the 4h of
tuning time for each study, and iv) the number of invalid configurations explored. Note that ATF,
CLTune, and ATF (former) explore only valid configurations, but at the cost of the search space
generation time. In contrast, OpenTuner relies on the unconstrained search spaces and thus, it
requires no search space generation time; however, at the cost of invalid configurations within its
search space. The high-performance libraries Intel MKL-DNN/MKL and NVIDIA cuDNN/cuBLAS (for
CONV and GEMM), as well as libraries COGENT (for study CCSD(T)) and EKR (for PRL) do not rely on
auto-tuning; therefore, they do not generate or explore search spaces. The TensorComprehensions
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library uses internally a domain-specific, special-purpose auto-tuner which explores valid configu-
rations only. To make comparison more challenging for ATF, we use for TensorComprehensions a
tuning time of 12h, rather than 4h as for ATF. Note that we cannot report the search space size of
TensorComprehensions, because the size is not listed in its log files.

We observe in Table 2 that frameworks OpenTuner, CLTune, and ATF (former) have difficulties
with auto-tuning most of our application studies. In case of CLTune and ATF (former), this is
because they require a too high search space generation time, which we discuss and analyze in
detail in the next subsection. OpenTuner cannot find a single valid configuration in the tuning time
of 4h, in all 10 tuning runs per particular application, because it relies on the unconstrained search
space which contains too many invalid configurations.

For CLTune in Table 2, we use also a hand-pruned search space (denoted as CLTune (pruned) in
the table), because pruning is usually required in CLTune for generating its search spaces in adequate
time [41]. To generate the pruned CLTune search spaces, we use exactly the same restricted ranges
of tuning parameters that are recommended by the CLTune experts [41]: range {1, 8, 16, 32} for the
number of threads on different layers, rather than the parameters’ complete range {1, . . . , 𝑁 } which
we use for ATF, where 𝑁 is the input size; for sizes of tiles, we use range {1, 16, 32, 64, 128} instead
of {1, . . . , 𝑁 }. For the further tuning parameters of our four studies, the CLTune experts provide
no pruning recommendations; thus, to avoid missing well-performing values in these parameters’
ranges, we use for them the original, unrestricted ranges which we also use for ATF. We observe
in Table 2 that search space pruning enables CLTune to generate its search space in acceptable
time. For example, for application CONV, CLTune (pruned) needs 1.227s to generate CONV’s search
space, while without pruning, CLTune needs > 4h. However, pruning severely affects applications’
performance: slowdowns ranging from 1.06× (for PRL) to up to > 104× (for CONV) when comparing
CLTune (pruned) to ATF on GPU. This is because pruning by hand is a complex task and thus,
it often excludes well-performing configurations out of the search space, even when using the
pruned parameter ranges recommended by the CLTune experts. For example, for application CONV
on GPU, ATF determines as optimal number of threads the (counter-intuitive [43]) value of 372,
which is not represented in CLTune’s recommended, hand-pruned ranges. ATF is able to find such
counter-intuitive parameter values, because classification of configurations in well-performing and
not well-performing is left entirely to ATF (without relying on the programmer for hand-pruning).
As compared to high-performance libraries, we observe in Table 2 that ATF auto-tunes our

applications to better performance. In case of MKL-DNN, MKL, cuDNN, cuBLAS, COGENT, and EKR, this
is because we rely on auto-tuning for the particular input size, while the libraries use hand-crafted
heuristics optimized toward average high performance over different sizes; thereby, the libraries
avoid the time-intensive process of auto-tuning for the particular size. However, as we demonstrate
in Section 7.6, auto-tuning for the input size is well amortized in many application areas [63], e.g.,
deep learning, where the same sizes are reused in each program run.
High-performance libraries Conv2D and CLBlast in Table 2 provide their own, auto-tunable

OpenCL implementations that rely on CLTune for auto-tuning. In contrast to these two libraries, we
achieve better performance by auto-tuning with ATF the implementations provided in [51]; these
implementations have larger search spaces than Conv2D and CLBlast and thus, they enable a
more fine-grained optimization for the target architecture and input/output characteristics (this
is discussed in detail in [51]). The larger spaces in [51] cannot be generated using CLTune (as
confirmed in Table 2), because CLTune relies on a straightforward search space generation process
(discussed in Section 3).

In the following, we compare ATF to the state-of-the-art frameworks in terms of each particular
phase of the auto-tuning process.
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7.4 Generating, Storing, and Exploring Constrained Search Spaces
This section experimentally evaluates ATF’s three main contributions presented in this paper
(Sections 3-5) by measuring and assessing the search space generation time, the memory footprint,
and the exploration efficiency of ATF for constrained search spaces as compared to CLTune
and ATF’s prototype implementation [49, 50]. In particular, we show that even when improving
search space generation in the state-of-the-art auto-tuning frameworks, which is one of their main
limitations (as discussed in the previous subsection), the approaches would still suffer from severe
weaknesses regarding search space storing and exploration.

Note that a comparison with OpenTuner and libtuning for generating/storing/exploring con-
strained search spaces is not possible, because both approaches rely on the unconstrained search
space (see Section 2.1), with the major drawbacks discussed in Section 7.2. We also refrain from pre-
senting our experimental results for KernelTuner, because it relies on exactly the same mechanisms
for generating, storing, and exploring constrained search spaces as CLTune; thus, both approaches
achieve analogous results, even though KernelTuner uses other kinds of search techniques.

Generating Constrained Search Spaces. Figure 3 reports the measured search space generation
time for our four application case studies when using ATF which implements our novel mechanism
for generating constrained search spaces (introduced in Section 3), compared to the search space
generation mechanisms of CLTune and ATF’s former implementation [49, 50]. In addition, we
compare also to a state-of-the-art constraint solver [39] which is designed for combinatorial
problems and thus can be exploited also for search space generation in auto-tuning. We show for
each application the generation time for different square, power-of-two input sizes. The generation
times are growing with the input sizes, because the sizes are used to calculate the upper bounds for
some of the tuning parameter ranges, e.g., tile size parameters. For each combination of application
and input size, we measure the search space generation times up to 12h on our system. For larger
input sizes, the generation times of our competitors often exceed 12h (e.g., in case of study CONV,
for sizes 24, 25, . . . ). In these cases, we report a theoretically computed generation time (highlighted
as dashed lines in Figure 3) which we compute based on the average times measured for smaller
input sizes.
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Fig. 3. Search space generation time (lower is better) of ATF vs. ATF’s former implementation [49, 50],
Constraint Solver (CS) [39], and CLTune [41] for our four case studies using different square, power-of-two
input sizes. We use a logarithmic scale on the y-axis: seconds (s), hours (h), months (m), centuries (c). When
search space generation time exceeds 12h, we use a theoretically computed generation time (highlighted
as dashed line). For study CCSD(T), we cannot present the search space generation time of CLTune and CS,
because CLTune requires > 12h generation time for each input size of CCSD(T), and CS crashes due to large
memory footprint. CS also crashes for other applications on large sizes because of its large memory footprint.

We observe in Figure 3 that ATF generates constrained search spaces faster than its competitors,
by several orders of magnitude, already on small input sizes (note the logarithmic scale in the
figure). For example, CLTune requires > 1h for generating the search space of CONV even for small
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8 × 8 input images, while ATF requires only 21ms to generate the same space – a speedup of > 105.
This is because CLTune relies on a naive search space generation algorithm (discussed in Section 3)
which iterates over the huge unconstrained search space containing more than 109 configurations
for 8 × 8 input images. In contrast, ATF uses our novel search space generation algorithm which
enables generating groups of interdependent parameters independently and in parallel (referred to
as Optimization 1 in Section 3), and ATF also checks constraints early in the search space generation
process (Optimization 2).
Compared to ATF’s prototype implementation [49, 50], our new search space generation algo-

rithm exploits parameter constraints for each particular parameter, while the former implementation
of ATF used a proof-of-concept search space generation algorithm in which, for simplicity, parame-
ter constraints were checked for all parameters within a group at group’s last parameter. This is
sufficient for ATF’s initially targeted application class – BLAS routines on small input sizes – and
makes implementation in [49, 50] simpler, however, at the cost of a high search space generation
time for other important applications, as shown in Table 2.

In contrast to ATF’s former implementation, the constraint solver (CS in Figure 3) uses parameter
constraints for each particular parameter. However, the solver does not exploit parameter grouping
and parallelization (ATF’s Optimization 1), causing significantly higher search space generation
time than our novel space generation algorithm in ATF.

Asymptotic behavior differs over approaches, because ATF and the solver check constraints early
for each particular parameter, while ATF’s former implementation and CLTune check constraints
late, for entire groups of parameters (ATF former) or simultaneously for all parameters (CLTune).

Storing Constrained Search Spaces. We compare the memory requirements of the constrained
search space built by ATF which relies on its novel chain-of-trees structure (discussed in Section 4)
against CLTune and ATF’s former implementation for our four case studies using again different
square, power-of-two input sizes. CLTune and ATF’s former implementation rely on the same,
memory-intensive, one-dimensional search space representation. Consequently, both approaches
suffer from a memory crash for already quite small input sizes.

In the following, tomake comparison challenging for ATF, we compute theoretically theminimum
memory requirement of the one-dimensional search space representation in CLTune and ATF’s
former implementation for each particular combination of application and input size, as follows.
In both frameworks, the search space is a flat array of configurations which comprise particular
values of the tuning parameters (e.g., 14 parameters in case of application CONV – see column #TPs
in Table 1). Each tuning parameter value has at least a size of 1 byte (usually more, e.g., 4 byte
in case of an integer parameter); this results in the following minimum memory requirement
of the one-dimensional search space: |SP| * #TPs * 1 Byte. Here, |SP| denotes the number of
configurations within the space, which is equal to the search space size; #TPs denotes the number
of parameter values per configuration, which is equal to the number of tuning parameters. We
compute |SP| for all applications and input sizes using ATF which (in contrast to CLTune and
former ATF) is capable of generating and storing large spaces.

In Figure 4, we observe for all four applications that our chain-of-trees search space representation
in ATF requires significantly less memory than the one-dimensional space representation used
in CLTune and former ATF (note the logarithmic scale in the figure). For example, application
CCSD(T)’s one-dimensional search space requires for input size 212 the prohibitively high amount of
>1019GB (calculated according to the formula above), while ATF’s search space structure requires
only 256KB for storing the same space – a memory consumption reduced by a factor of >1022.
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Fig. 4. Memory footprint (lower is better) of ATF vs. CLTune [41] and ATF’s former implementation [49, 50]
(both rely on same search space representation) for our four application case studies using different square,
power-of-two input sizes. We use a logarithmic scale on the y-axis.

Exploring Constrained Search Spaces. Figure 5 shows the advantages of ATF’s multi-dimensional
exploration strategy (described in Section 5) over a one-dimensional strategy (as in CLTune and
ATF’s prototype implementation) drawn as box plots. Each plot shows 10 runtimes of a particular
study, obtained after 10 independent auto-tuning runs of 4h each. A box depicts the 25% − 75%
quartiles, i.e., half of the configurations obtained after the 10 independent auto-tuning runs achieve
a runtime that lays within the box. The vertical lines connect for each study the runtime of the
worst auto-tuning run (i.e., the final configuration after 10 runs that achieves the least runtime) with
the runtime of the best run. We auto-tune all applications for NVIDIA Tesla V100 GPU using the
input sizes from Table 1. Note that different tuning runs usually find different final configurations,
because search techniques are not deterministic; for example, techniques usually start exploration
at a random configuration within the search space.
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Fig. 5. Search space exploration efficiency (lower is better) of ATF vs. CLTune [41] and ATF’s former imple-
mentation [49, 50] (both rely on same search space representation) for our four application case studies using
search techniques Simulated Annealing (SA) and AUC bandit (AUC). We use a logarithmic scale on the y-axis.

Figure 5 confirms that, when exploring a constrained search space in multiple dimensions (as
described in Section 5), by exploiting the structure of ATF’s chain-of-trees space representation,
we usually find better-performing parameter configurations in the same auto-tuning time (4h in
the figure) as compared to the traditional, one-dimensional exploration strategy in CLTune and
ATF’s former implementation.

For the simulated annealing search – CLTune’s most efficient search technique [41] – we observe
considerably better tuning results for the multi-dimensional exploration strategy in ATF, compared
to exploration in only one dimension: an average speedup of 102×, i.e., we can improve the runtime
of our case studies on average by 102× when using ATF for 4h of auto-tuning as compared to auto-
tuning the applications for 4h using CLTune or former ATF. This is because simulated annealing
requires a long time for selecting the next configuration when the search space is one-dimensional
and large [10]. When exploiting ATF’s chain-of-trees structure, we perform exploration in multiple
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dimensions; in each dimension, we explore a corresponding level of the chain-of-trees structure,
rather than in the large search space. This allows more configurations to be explored and results in
better configurations being found in 4h of tuning time.

We also observe in Figure 5 better exploration efficiency for the AUC bandit search – currently
one of the most efficient search techniques [2, 49] – when relying on ATF’s multi-dimensional
exploration approach. This is because exploration in multiple dimensions enables better exploiting
locality information within space’s particular dimensions [70], which is especially beneficial for
large spaces, e.g., the space of CCSD(T).

Note that our chain-of-trees search space structure enables at least the same exploration efficiency
as the traditional exploration strategy in one dimension, for any search technique: search techniques
can straightforwardly access our chain-of-trees search space structure in a one-dimensional fashion
(exactly as in CLTune and ATF’s former implementation) by iterating over the chain-of-tree’s
leaves.

7.5 ATF for Further Application Classes
ATF has been already successfully used for auto-tuning applications from different important
domains [18, 31, 40, 48, 49, 51, 52, 58, 59]. For example, ATF (already in its prototype imple-
mentation [49, 50]) has proved to achieve tuning results of the same or even higher quality as
OpenTuner and CLTune for their favorable application classes [49]: i) GCC compiler’s optimization
flags [2] (favorable for OpenTuner), as an example application whose tuning parameters have no
interdependencies, and ii) CLBlast library’s GEMM implementation [40] (favorable for CLTune)
whose tuning parameters have interdependencies among them.

Compared to OpenTuner, this is because GCC flags’ tuning parameters have no interdependen-
cies, causing both OpenTuner and ATF to generate, store, and explore the same (unconstrained)
search space, and because ATF provides (among others) the highly-efficient AUC bandit search
technique [49] which is also used by OpenTuner for search space exploration. Consequently, both
OpenTuner and ATF achieve for GCC flags the same good auto-tuning results.

As compared to CLTune, ATF is able to auto-tune the CLBlast’s GEMM routine to better perfor-
mance than CLTune, by up to 17× (as shown in [49]), even though CLTune is specifically designed
toward auto-tuning this routine [41]. This is because the CLTune user has to massively hand-prune
the ranges of GEMM’s tuning parameters (i.e., remove valid values out of the ranges) in order
to generate CLTune’s search space in acceptable time. However, such pruning massively shrinks
GEMM’s search space, by factors > 1000×, thereby usually losing well-performing configurations
within the space [49].

7.6 ATF for a Real-World Application
ATF can significantly speedup real-world applications that rely on compute-intensive kernels like
those discussed in Section 7.3. We demonstrate this for the real-world example siamese which is
used for handwriting recognition within the popular deep-learning framework Caffe [25].
Table 3 shows our performance analysis for siamese. We observe that GEMM is called in

siamese over 50 million times in total, on 25 input sizes (which remain fixed for different inputs of
siamese [25]). For computing GEMM on CPU, the siamese implementation in Caffe relies on the
ATLAS library [69] which uses a self-provided special-purpose auto-tuner for optimization; for
GEMM on GPU, siamese uses the hand-optimized NVIDIA cuBLAS library which we discussed in
Section 7.3. Alternatively to ATLAS and cuBLAS, the Caffe user can optionally choose the CLBlast
library (also discussed in Section 7.3), which relies on CLTune for auto-tuning.

Table 3 shows that the siamese application requires for computing GEMM on CPU via ATLAS
in total 2.1h, which makes up 53% of siamese’s total runtime on CPU (3.9h); on GPU, siamese
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Intel Xeon Gold 6140 CPU NVIDIA V100 GPU

No.
Input Size num

calls
ATLAS
runtime

CLBlast ATF
cuBLAS
runtime

CLBlast ATF

runtime speedup 
over ATLAS runtime speedup

over ATLAS runtime speedup
over cuBLAS runtime speedup

over cuBLASM N K

1. 50 64 500 8420128 0.2760 0.4720 0.58 0.0366 7.55 0.0133 0.0331 0.40 0.0061 2.17
2. 20 576 25 8420128 0.0848 0.1165 0.73 0.0281 3.01 0.0123 0.0213 0.58 0.0041 3.00
3. 20 576 1 8420128 0.0263 0.0539 0.49 0.0102 2.57 0.0061 0.0198 0.31 0.0041 1.50
4. 50 64 1 8420128 0.0038 0.0160 0.24 0.0025 1.54 0.0072 0.0199 0.36 0.0041 1.75
5. 500 64 50 6400000 0.2705 0.2147 1.26 0.0224 12.06 0.0082 0.0225 0.36 0.0061 1.33
6. 50 500 64 6400000 0.2668 0.2539 1.05 0.0455 5.86 0.0225 0.0224 1.00 0.0061 3.67
7. 20 25 576 6400000 0.0612 0.5655 0.11 0.0269 2.28 0.0143 0.0345 0.42 0.0061 2.33
8. 64 500 800 100002 1.1326 2.3305 0.49 0.1581 7.17 0.0195 0.0440 0.44 0.0195 1.00
9. 64 10 500 100002 0.0724 0.4678 0.15 0.0224 3.23 0.0133 0.0329 0.40 0.0061 2.17
10. 64 500 1 100002 0.0419 0.0652 0.64 0.0157 2.67 0.0061 0.0198 0.31 0.0041 1.50
11. 64 10 1 100002 0.0047 0.0109 0.43 0.0012 4.03 0.0061 0.0195 0.31 0.0041 1.50
12. 64 2 10 100002 0.0031 0.0176 0.18 0.0008 3.91 0.0123 0.0200 0.62 0.0041 3.00
13. 64 2 1 100002 0.0015 0.0095 0.16 0.0012 1.25 0.0072 0.0193 0.37 0.0041 1.75
14. 500 800 64 100000 1.0922 1.2813 0.85 0.0863 12.65 0.0123 0.0296 0.41 0.0164 0.75
15. 64 800 500 100000 1.1098 1.9104 0.58 0.0850 13.06 0.0174 0.0375 0.46 0.0215 0.81
16. 64 500 10 100000 0.0749 0.0889 0.84 0.0227 3.30 0.0133 0.0212 0.63 0.0041 3.25
17. 10 500 64 100000 0.0686 0.1517 0.45 0.0312 2.20 0.0184 0.0215 0.86 0.0051 3.60
18. 64 10 2 100000 0.0053 0.0122 0.43 0.0017 3.14 0.0072 0.0199 0.36 0.0041 1.75
19. 2 10 64 100000 0.0036 0.0218 0.16 0.0013 2.66 0.0174 0.0215 0.81 0.0041 4.25
20. 100 500 800 20200 1.5435 2.3467 0.66 0.2584 5.97 0.0256 0.0500 0.51 0.0256 1.00
21. 100 10 500 20200 0.0753 0.4875 0.15 0.0256 2.95 0.0133 0.0325 0.41 0.0061 2.17
22. 100 500 1 20200 0.0629 0.0687 0.92 0.0173 3.64 0.0061 0.0203 0.30 0.0041 1.50
23. 100 10 1 20200 0.0073 0.0141 0.52 0.0017 4.21 0.0072 0.0197 0.36 0.0041 1.75
24. 100 2 10 20200 0.0049 0.0279 0.18 0.0017 2.87 0.0113 0.0200 0.56 0.0041 2.75
25. 100 2 1 20200 0.0025 0.0125 0.20 0.0011 2.18 0.0072 0.0201 0.36 0.0041 1.75

Table 3. Auto-tuning efficiency of ATF for the siamese neural network (runtimes in ms).

requires 10min for GEMM via cuBLAS, which is 83% of siamese’s total GPU runtime (13min).
However, when replacing ATLAS and cuBLAS by the ATF-optimized GEMM implementation in [51]
(which we discussed in Section 7.3), we can speedup siamese’s total runtime by 1.78× on CPU (to
2.2h) and by 1.85× on GPU (to 7 min). This is because ATF is capable of auto-tuning the GEMM
implementaiton in [51] to higher performance than ATLAS and cuBLAS, by up to 13× on CPU and
4× on GPU, as shown in Table 3.

ATF achieves better performance than ATLAS, because ATLAS relies on small search spaces and
ignores correlations among tuning parameters by auto-tuning parameters independently of each
other; most likely, this is done in ATLAS to simplify the auto-tuning process which would otherwise
require similar mechanisms as presented for ATF in this paper. Compared to cuBLAS, our better
performance is because we rely on auto-tuning for the particular input size, while cuBLAS uses
hand-crafted heuristics optimized toward average high-performance over various sizes, thereby
avoiding the auto-tuning overhead. However, auto-tuning is an amortized one-time overhead in
many application areas. For example, in siamese, the same 25 input sizes (listed in Table 3) are
reused in each program run, such that auto-tuning becomes an acceptable one-time overhead per
target architecture only.

8 COMPARISON TO RELATEDWORK
Auto-tuning approaches can be classified in two major categories: 1) special-purpose systems
which are designed toward a particular application class (e.g., linear algebra routines or stencil
computations), and 2) general-purpose frameworks which target a broad range of arbitrary (possibly
emerging/upcoming) application classes.
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Special-purpose auto-tuning has proved to achieve impressive tuning results for important
applications, e.g.: FFT [16], DSP [47], chemistry computations [7], linear algebra [33, 69], self-
adaptive architectures [24], geophysics [55], code mapping [35], multi-GPU systems [54], hardware
synthesis [9], compiler optimization [15, 17, 32], code variant tuning [37, 61, 62], networks-on-
chip [28], stencil computations [12, 36], resource virtualization [68], loop optimization [11], shared
memory multiprocessors [57], load balancing [71], threading models [26, 56], machine learning [30],
graph analytics [1], dynamic parallelism [60], and execution policies [8]. However, special-purpose
auto-tuning severely hinders programmer’s productivity, because a special-purpose auto-tuner has
to be designed and implemented for each particular application class.
The alternative approach, general-purpose auto-tuning, aims at tackling the productivity issue

by providing the programmer with a general framework for conveniently generating special-
purpose auto-tuning systems. The currently popular general-purpose auto-tuning frameworks are
OpenTuner [2], CLTune [41], KernelTuner [66], and libtuning [46]. These approaches generate
efficient special-purpose auto-tuners for applications whose tuning parameters are either indepen-
dent of each other (OpenTuner and libtuning) or have small ranges (CLTune and KernelTuner).
However, the approaches have weaknesses regarding auto-tuning recent parallel applications for
state-of-the-art architectures, because such applications rely on interdependent tuning param-
eters with large ranges. OpenTuner and libtuning often fail for such applications because, by
design, they assume tuning parameters to be independent of each other. In contrast, CLTune and
KernelTuner are designed toward interdependent tuning parameters, but they struggle with large
ranges for such parameters, because they rely on straightforward mechanisms for generating,
storing, and exploring the search spaces of such parameters. The weaknesses of the state-of-the-art
general-purpose approaches are discussed in Sections 3-5 and shown experimentally in Section 7.

Classical approaches for general-purpose auto-tuning of programs with interdependent tuning
parameters are ActiveHarmony [65] and Orio [19, 38]. ActiveHarmony uses for generating its
constrained search space the constraint solver that we discussed in Section 7.4. However, Active-
Harmnoy suffers from similar high search space generation time as CLTune whose time is higher
than the time we present for the solver in Figure 3. This is because ActiveHarmony internally relies
on search space constraints, similarly as CLTune, thereby hindering the solver from achieving its
full performance potential (which is still lower than ATF’s efficiency for search space generation,
as shown in Figure 3). Furthermore, ActiveHarmony suffers from high memory footprint and
a time-intensive search space exploration process. This is because ActiveHarmony uses search
techniques to explore the unconstrained search space and whenever an invalid configuration is
found, it maps the configuration to a valid configurations in its (previously generated) constrained
search space based on Approximate Nearest Neighbour (ANN) search [3]. However, ANN has two
major drawbacks when used in auto-tuning: 1) high memory footprint: for d tuning parameters
and a search space size of n, ANN requires O(d·n)memory space, similarly as CLTune, while ATF’s
memory footprint is usually substantially less (Figure 4); 2) time-intensive initialization: ANN
requires additional, significant initialization time, of O(d·n·log(n)), for preparing its internal data
structures. In contrast to ActiveHarmnony, we introduce an exploration strategy for ATF toward
directly exploring the constrained search space, based on our novel chain-of-trees search space
structure from Section 4, thereby avoiding the memory and time intensive process of ANN. The
other classical approach Orio supports interdependent parameters by exploring the unconstrained
search space (similarly as OpenTuner and libtuning) and setting a penalty value for invalid con-
figurations; thereby, Orio avoids generating and storing the entire search space [38] as inherently
required by our ATF approach (as well as CLTune and KernelTuner). However, by relying on the
unconstrained search space, Orio suffers from the same weaknesses as discussed and experimentally
shown in this paper for OpenTuner and libtuning.
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We present the Auto-Tuning Framework (ATF) which addresses the weaknesses in state-of-the-
art general-purpose auto-tuning for programs with interdependent tuning parameters. ATF was
originally introduced in previous work – as both online approach based on a C++ user interface [50],
as well as an offline approach that relies on a Domain-Specific Language (DSL) for auto-tuning [49] –
where its user interface and convenient usage are presented. For example, the previous work shows
that ATF’s user interface provides (at least) the same user experience as compared to the interfaces
of the state-of-the-art frameworks CLTune and OpenTuner.

In contrast to the previous work about ATF, we introduce in this paper novel, optimized mecha-
nisms for generating, storing, and exploring the search space of interdependent tuning parameters
(constrained search space). The former implementation of ATF [49, 50] relies on only straightfor-
ward, prototype mechanisms for these three main phases of auto-tuning (not presented or published
in the previous work); thereby, former ATF is unfeasible for important applications, as confirmed
experimentally in Section 7. In particular, we introduce a novel chain-of-trees search space structure
which significantly reduces memory footprint of constrained search spaces, thereby enabling auto-
tuning important parallel applications within the memory limitations of state-of-the-art parallel
systems (Figure 4). Moreover, our novel chain-of-trees structure significantly improves exploring
large search spaces (Figure 5). We also present an improved algorithm for generating constrained
search spaces more efficiently than in ATF’s prototype implementation [49, 50] by: i) exploiting
parameter constraints on each particular tuning parameter, rather than only on a group of inter-
dependent parameters, and ii) parallelizing the generation of the individual search space parts
of an interdependent parameter group. Our experiments in Section 7 confirm that ATF’s novel
mechanisms for search space generation, optimization, and exploration – the key contributions of
this work – significantly improve the auto-tuning efficiency of former ATF; thereby, we combine
auto-tuning efficiency (this paper) with productivity (previous work [49, 50]).
Our new mechanisms are especially important for online auto-tuning where auto-tuning is

performed at program runtime: our novel search space generation mechanism contributes to
significantly lower program initialization time than competitors (Figure 3), because in online auto-
tuning, the search space is usually generated at program start based on runtime values (e.g., the input
size). Moreover, our exploration mechanism finds well-performing configurations faster (Figure 5),
thereby further contributing to lower program runtime. Related approaches like ActiveHarmony
when used for the special-case of online auto-tuning rely on penalty values to avoid their time-
intensive processes of constrained search space generation and exploration. However, relying
on penalty values is unfeasible when aiming at auto-tuning modern parallel applications, as we
discussed in detail and showed experimentally in this paper at the examples of OpenTuner and
libtuning.

9 CONCLUSION
The Auto-Tuning Framework (ATF) is a general-purpose auto-tuning approach for programs with
interdependent tuning parameters. This paper presents novel mechanisms for ATF toward efficiently
generating, storing, and exploring the search spaces of such parameters. Compared to the state-of-
the-art general-purpose auto-tuning frameworks, ATF’s new contributions improve each particular
phase of the auto-tuning process: 1) ATF generates the search spaces of interdependent tuning
parameters faster, 2) ATF requires less memory for storing these spaces, and 3) ATF achieves a
higher exploration efficiency for such spaces. Our experiments confirm that ATF substantially
enhances general-purpose auto-tuning as compared to the state of the art, and it enables efficiently
auto-tuning applications from popular application domains, including stencil computations, linear
algebra routines, quantum chemistry computations, and data mining algorithms.
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