
Generating Work Efficient Scan Implementations
for GPUs the Functional Way

Federico Pizzuti, Michel Steuwer, Christophe Dubach

1 University of Edinburgh
2 McGill University

Abstract. Scan is a core parallel primitive. High-performance work-
efficient implementations are usually hard-coded, leading to performance
portability issues. Performance portability is usually achieved using a
generative approach, which decomposes the primitive in simpler, com-
posable parts, expressing the implementation space.
Data parallel functional languages excel at expressing programs as com-
position of simple patterns. Lift, Furthark, Accelerate have successfully
applied this technique to patterns such as parallel reduction and tiling.
However, work-efficient parallel scan is still provided as a hard-coded
builtin.
This paper shows how to decompose a classical GPU work-efficient paral-
lel scan in terms of other data-parallel functional primitives. This enables
the automatic exploration of the implementation design space, using a
set of simple rewrite rules.
As the evaluation shows, this technique outperforms hand-written base-
lines and Furthark, a state of the art high performance code generator.
In particular, this composable approach achieves a speedup of up to 1.5×
over hard-coded implementations on two different Nvidia GPUs.

1 Introduction

Parallel hardware offers great opportunities for performance but is difficult to
program. Modern parallel architectures are complex and it is hard for developers
to fully exploit their potential. A compiler-oriented approach is highly desirable
to exploit these systems automatically.

Data Parallel Functional Code Generators have been shown to be a viable so-
lution in tackling this challenge. Projects such as Lift[20], Futhark[8], and Accel-
erate[3], are capable of taking a high-level program and automatically generating
high-performance implementations, targeting a variety of platforms. Functional
representations possess a number of desirable characteristics: the lack of side
effects allows one to easily reason about parallelism, the emphasis on function
composition maps well to the idea of parallel patterns, and finally the rich type
systems allow the expressions of powerful invariants, enabling very sophisticated
program optimizations.

The approach is not without downsides. Many algorithms and applications
which are relatively straightforward to implement in a traditional low-level lan-
guage are not as clearly implemented in a functional style. This includes common

Michel Steuwer
This preprint has not undergone any post-submission improvements or corrections.
The Version of Record of this contribution is published in “Euro-Par 2022: Parallel Processing”,
and is available online at https://doi.org/10.1007/978-3-031-12597-3



2 Federico Pizzuti, Michel Steuwer, Christophe Dubach

application domains and algorithms for which a plethora of well-known imple-
mentations are readily available. This gap is due both to the highly constrained
nature of functional languages and their relative obscurity in the realm of high-
performance code generation for parallel hardware.

The most salient example of such a missing algorithm is scan, a core data-
parallel control pattern [11]. Scan is a crucial component to many application
domains, such as linear algebra [14] and computer graphics. There is extensive
literature both concerning the algorithmic approaches to the parallelization of
scan [4] and the concrete techniques to be used on specific platforms [19, 12].

However, in most data-parallel functional code generators, scan is either only
available as a sequential primitive, such as in the case of Lift compiler, or as a par-
allel primitive with a black-box implementation, such as in the case of Futhark.
While the latter approach offers at least some way to express a program us-
ing a parallel scan, it requires the compiler authors to provide a handwritten
implementation, either precluding the usage of the compiler’s own powerful op-
timization techniques or applying them in an ad-hoc way.

This paper addresses these shortcomings by deriving a functional formula-
tion of parallel scan, expressed within a data-parallel functional programming
language. As the compiler used has OpenCL as its primary target, the imple-
mentation used is optimized for a GPU system. The technique used is based on
publicly available code by NVidia [7].

The papers then demonstrates how to decompose a parallel scan implemen-
tation into a number of reusable and composable rewrite rules, modeling the
algorithm’s optimization space. These rewrites can be used to optimize arbitrary
scan calls, rewriting them into a parallel implementation. As the rules model an
optimization space, the compiler can automatically explore possible variations,
leading to significant performance gains across different GPU architectures. -
The automatic derivation of a parallel implementation of scan is a thoroughly
studied topic. A generic technique for deriving a scan parallelisation is given
in[13]. However, such schemes do not generate work-efficient implementations.
A parallel algorithm is said to be work efficient if its asymptotic complexity is
at most a constant factor away from the best known sequential implementation.
To the best of the authors’ knowledge, the method presented here is the first to
yield a work-efficient parallel scan from a high-level specification and suitable
for a GPU target.

In summary, this paper makes the following contributions

– presents a functional formulation for a GPU parallel scan, based on a number
of parallelization strategies.

– decomposes the functional formulation into a number of rewrite rules, mod-
eling a parametric space of parallel scan algorithms that can be mechanically
explored to derive efficient GPU scan implementations.

– evaluates the overall effectiveness of the approach, by comparing the gener-
ated code it with a handwritten reference implementation and the state-of-
the-art parallel code generator Futhark, outpeforming both by a factor of
1.5×



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 3

x1 x2 x3 x4 x5 x6 x7 x8

∑1
0 x

∑2
0 x

∑3
0 x

∑4
0 x

∑5
0 x

∑6
0 x

∑7
0 x

∑8
0 x

(a) Serial

x1 x2 x3 x4 x5 x6 x7 x8

∑1
0 x

∑2
0 x

∑3
0 x

∑4
0 x

∑5
0 x

∑6
0 x

∑7
0 x

∑8
0 x

(b) Scan-then-propagate
x1 x2 x3 x4 x5 x6 x7 x8

∑1
0 x

∑2
0 x

∑3
0 x

∑4
0 x

∑5
0 x

∑6
0 x

∑7
0 x

∑8
0 x

up
sw

ee
p

do
w

ns
w

ee
p

(c) Brent-Kung

x1 x2 x3 x4 x5 x6 x7 x8

brent-kung brent-kung brent-kung brent-kung

serial

∑1
0 x

∑2
0 x

∑3
0 x

∑4
0 x

∑5
0 x

∑6
0 x

∑7
0 x

∑8
0 x

(d) Hybrid

Fig. 1: Scan

2 Background

2.1 Parallel Scan

Scan is one of the fundamental data parallel control patterns [11]. The semantics
of scan are illustrated in the following equation:

scan(⊕, x0, [x1, . . . xn]) = [x0, x0 ⊕ x1, . . . , x0 ⊕ · · · ⊕ xn−1]

Given an associative binary operator a starting value and an input sequence,
generates a new sequence of n elements in which the i-th item is the result of
recursively applying the operator i times.

Being a well-studied operation, there is a wide number of known scan im-
plementations[9], with varying complexity and parallelism. Relevant strategies
for this paper include Serial scan(figure 1a), Scan-then-propagate(figure 1b) and
the Brent-Kung scan(figure 1c). The latter is both parallel and work-efficient.

Additional scan implementations may be derived by combining together dif-
ferent strategies. This is common when implementing parallel scan for devices
such as GPUs, and is the approach used by a well-known publicly available
NVidia implementation [7]. The algorithm, shown as (figure 1d) unfolds on two
levels: an outer scan following the scan-then-propagate strategy, and an inner
scan implementation parallelized using the Brent-Kung approach.



4 Federico Pizzuti, Michel Steuwer, Christophe Dubach

map : (T → U) → [T ]N → [U ]N
split : N → [T ]N·M → [[T ]N ]M
join : [[T ]N ]M → [T ]N·M

reduce : (T → T → T ) → T → [T ]N → T

scan : (T → T → T ) → T → [T ]N → [T ]N
zip : [T ]N → [U ]N → [(T,U)]N

Fig. 2: Data parallel patterns and their types.

2.2 Data Parallel Functional Code Generators

Data Parallel Functional Code Generators are compilers that take as input a
programs written in a functional programming language or expressed as a func-
tional IR to generate high-performance code targeting parallel architectures. The
functional style is used to express parallel programs as compositions of primi-
tive functions. These primitives often encode basic data-parallel patterns, such
as map and reduce, data reordering transformations such as split and join, and
elementary scalar operations.

This work has been implemented in a dialect of Lift, a data parallel language
used in a wide range of applications[20, 21, 6, 14].

The preferred data structure is the array, nested or multidimensional at the
language level, but often represented as a flat contiguous buffer in the generated
code. As the language is purely functional, arrays are never mutated. Rather,
patterns always produce new arrays. It is important to note that most of these
transformations are lazy whenever possible, avoiding spurious copies.

Data parallel functional languages tend to have rich type systems. This en-
ables the compiler to statically check invariants that otherwise either go unchecked,
or are implemented in terms of dynamic checks at run-time. For example, the
length of each arrays is tracked at the type level as a symbolic algebraic expres-
sion. In this paper, every array has it’s length represented as a symbolic formula.
Examples of this can be seen in the patterns described in figure 2.

3 Functional Formulation of Work Efficient Parallel Scan

This section presents a work-efficient GPU implementation of parallel scan ex-
pressed in the Lift dialect mentioned in the previous section. The code is an
adaptation of an handwritten NVidia implementation, whose imperative pseudo-
code is also shown. Algorithmically, this is a case of hybrid scan, as shown in
figure 1d, and can be analyized in terms of the outer and inner scans.

3.1 Outer Scan

Listing 1 shows the functional formulation of the outer scan side-by-side with
the equivalent imperative pseudo-code. The algorithm unfolds in three sections:
the block-scan phase, the global scan phase, and then the aggregation phase.

In the block scan phase, the data input is split in blocks of size BLK, and each
block_scan is computed in parallel. unzip is then used to separate an array of



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 5

1 parallel for i=0 to BLK do
2 block_scan(data[i*N/BLK], &sums[i])
3 sequential_scan(sums, global_scan)
4 parallel for b=0 to BLK do
5 parallel for i=0 to N/BLK do
6 data[b*BLK+i] = data[b*BLK+i] + global_scan[b]

1 let (data',sums) = data|> split(BLK)|> map(block_scan)|> unzip
2 let global_scan = sums|> scanSeq(+)
3 zip(data', global_scan)|> map(
4 (xs, b) => xs|> map(x =>x+b)
5 )|> join

Listing 1: Imperative pseudo-code and functional expression for the outer scan.

[(partial_scan, sum)] pairs into a pair of ([partial_scan],[sum]) arrays. This
corresponds to the multiple output parameters in the imperative pseudo-code.
global_scan is implemented sequentially, by calling the scanSeq primitive.

Finally, we reach at the aggregation step. The zip primitive associates each
block’s partial scan with the corresponding overall global_scan. The outer map
call operates over these (block, value) pairs, adding value to every element of
block. The blocks are concatenated by using join, which flattens the array.

It must be remarked that the functional version diverges somewhat from
the imperative version, which freely updates arrays in-place, something which is
difficult to express in a language that forbids. This has forced the introduction
of some intermediate variables, such as data' in listing 1.

3.2 Inner Scan

The inner block_scan is more complex to express faithfully in a functional style.
Just as in the case of the outer algorithm, we will have to give up on an in-
place formulation. However, the inner algorithm performs in-place writes within
sequential for loops, which prevents the introduction of intermediate variables.

Listing 2 demonstrates how to remedy the issue in the upsweep phase. No-
tice that the sequential iterations are in fact not dependent on the size of the
input but rather the fixed parameter BLK: implying the loop can be unrolled.
Afterward, we can proceed by introducing the intermediate variables in place of
every mutation step. This implies that the upsweep phase therefore no longer
updates the tree in place. Rather it constructs the tree level by level, storing
each successive layer in a different variable.



6 Federico Pizzuti, Michel Steuwer, Christophe Dubach

1 for d=0 to log2(n-1) do
2 parallel for k=0 to n-1 by 2^(d+1) do
3 x[k+2d] = x[k+2d-1]+x[j+2d]

1 // d = 0...
2 let up_0 = input |> split(2) |> map(+) |> join
3 // d = 1...
4 let up_1 = up_0 |> split(2) |> map(+) |> join
5 //....
6 let up_n = up_n-1 |> split(2) |> map(+) |> join

Listing 2: Imperative pseudo-code and functional expression of upsweep phase

With this knowledge, we notice that each iteration produces the next tree
layer by summing together adjacent pairs of the previous tree layer, expressed
functionally by chaining together the primitives split(2)|> map(+)|> join.

Likewise, listing 3 shows how the downsweep phase is unrolled to combine
the generated layers in Last-In-First-Out order. We begin the recursion with an
array containing a single element, 0. This corresponds to the line x[n-1]=0 in the
imperative code. The layers are then combined, via executing zip(prev_layer,
layer |> split(2))|> map(scan(+, 0))|> join, which is in fact equivalent to

the seemingly-unrelated loop body in the imperative pseudo-code: given two
layers, we match together one element of the previous (smaller) layer with two
elements of the successive, larger layer, with the pseudo-code lines 10-12 being
an in-lined sequential scan. The importance of generalizing this custom-looking
code into a scan call is shown in section 4.2. Finally, the functional version must
return the last tree layer and the block sum value, as the tuple (down_0, up_n
[0]).

We have now derived a working functional formulation of the GPU work
efficient scan, and have encountered some limitations of the functional approach,
such as introducing intermediate variables have been introduced for in-place
updates – although this limitation can be overcome in certain cases, such as
when the intermediate layers are used only once (such as the case for up_n and
down_n. As we will see in the section 6, even when fusion is not possible, these
intermediates do not significantly affect the performance of the generated code.

4 Modeling the Optimization Space with Rewrite Rules

The aim of this section is to derive an optimization process capable of mapping
uses of the scan pattern to work-efficient parallel implementations. We will do
so by generalizing the functional formulation presented in section 4.



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 7

5 sum = x[n-1]
6 x[n-1] = 0
7 for d = log2(n-1) down to 0 do
8 parallel for k = 0 to n-1 by 2^(d+1) do
9 t = x[k + 2d - 1];

10 [k + 2d - 1] = x[k + 2d]
11 x[k + 2d] = t + x[k + 2d]

7 let down_n = [0]
8 let down_n-1 =
9 zip(down_n, up_n |> split(2)) |>

10 map(scanSeq(+)) |> join
11 ....
12 let down_0 =
13 zip(input, up_0 |> split(2)) |>
14 map(scanSeq(+)) |> join
15 (down_0, up_n[0])

Listing 3: Imperative pseudo-code and matching functional expression of down-
sweep phase.

A straightforward way to provide this optimization may be to substitute the
handwritten functional implementation for suitable uses of scan, or expose it as
a standard library function. However, this solutions have several limitations.

Firstly, the handwritten functional implementation makes use of two distinct
and orthogonal parallelization strategies: the scan-then-reduce and brent-kung.
It is reasonable to assume that in certain circumstances the compiler should be
able to apply the two optimizations independently. For instance, for sufficiently
small inputs just parallelizing the outer scan may have acceptable performance.

Moreover, in the course of implementing the functional version, a number
of implementation details had to be decided, such as fixing the block size and
the depth of the parallel scan tree, which materializes in the source code by
influencing the amount of unrolled operations. These choices may not be optimal
for many uses of the scan primitive. Indeed, in section 6 we will show how
significant performance gains can be obtained by supporting a degree of variation
in the algorithm used to generate optimized parallel scans.

The goal, therefore, is not just to express an optimization, but rather to
model an optimization space. We achieve this by using a system of parametric
rewrite rules, which the compiler can then use to generate the optimized code, be
it on the basis of a set of heuristics, a user-defined specification, or an extensive
process of automatic exploration.



8 Federico Pizzuti, Michel Steuwer, Christophe Dubach

scan-then-reduce(BS)
1 match scan(f,zero,input)
2 if input.size % BS == 0 7→
3 let chunks = split(input, BS) |>
4 map(chunk => scan(f,zero,chunk))
5 let sums = chunks |> map(reduce(f, zero))
6 let scans = scan(f,zero, sums)
7 zip(chunks, scans) |> map(
8 (chunk, x) => chunk |> map(y => f(x,y)))

Listing 4: The scan-then-reduce rule parallelizes an abstract scan call.

4.1 Optimization via Rewrite Rules

Functional representations simplify the expression of program transformations
using rewrite rules. A rewrite rule is a transformation that matches specified
program patterns, rewriting them in accordance with a different pattern. This
paper uses Elevate [5], a DSL for expressing rewrite rules in a compositional
style. Primitive rules are specified via matching over program fragments, and
then larger rules – known as strategies – are constructed by composing existing
rules using a generic family of combinator functions.

In the syntax of the rewrite rules shown here, highlighted code refers to pro-
gram fragments, while non-highlighted code is the rewrite rule logic – tasked
with finding and replacing the such fragments. Rule logic can query type infor-
mation, such as inspecting the known length of an array, be parameterized by
numerical values, and perform simple numerical and logical computation.

Optimizations that are normally implemented ad-hoc within the compiler can
therefore be expressed in this generic system. The rest of this section covers in
detail the transformations generating work-efficient parallel scan implementation
from an abstract high-level description.

4.2 Algorithmic Optimization

scan-then-reduce The first rule applied is scan-then-reduce (Listing 4). It
matches a call to an abstract scan scan(f,zero,input), replacing it with a paral-
lelized version that uses the scan-then-propagate algorithm. The parameter BS
expresses the block size for the parallel sub-scans. The rule requires the scan’s
input array to be divisible by BS. This is a necessary correctness check.

brent-kung As seen in section 3.2, the work-efficient block-level scan is an in-
stance of Brent-Kung scan, which we also seek to express as a rewrite rule. As
we have seen before, a Brent-Kung parallel scan recursively computes (upsweep
phase) or consumes (downsweep phase) layers of a tree. In the functional formu-
lation, this iteration is necessarily unrolled, as expressing it as a loop requires
mutating the array that stores the tree.



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 9

brent-kung-step(BF)
1 match scan(f,zero,input)
2 if input.size % BF == 0 7→
3 // Upsweep
4 let partials = input |> split(BF) |>
5 map(chunk => reduce(f, zero, chunk))
6 // Recursion point
7 let rest = scan(f, zero, partials)
8 // Downsweep
9 zip(rest, partials |> split(BF)) |>

10 map((r, ps) => scan(f, r ps)) |> join

Listing 5: Each application of the rule adds one layer to the parallelization tree.

brent-kung(BF)
1 match scan(f,zero,input)
2 if (log(BF, input.size) is whole) 7→
3 num_iterations := log(BF, input.size)
4 iterate(num_iterations)(
5 first(scan)(brent-kung-step(BF))
6 ) @ scan(f,zero,input)

Listing 6: The rule rewrites an abstract scan into a brent-kung parallel scan

This expansion is expressed with recursive rewrite rules. Listing 5 shows
the rule for the recursive step. The rule is parameterized by the tree branch
factor BF . The rule’s body has three parts: first and last are the upsweep and
downsweep phases. In between, the rule inserts an abstract scan call, acting as
the recursion point. Based on brent-kung-step we can build the full brent-kung
rule (listing 6), which expresses the iterative behavior. It inspects the size of the
input array in the matched scan call to compute the depth of the parallel tree,
determining the number of recursive applications of brent-kung-step.

The rule uses combinators: rules parametrized by other rules. The first com-
binator is first(scan)(brent-kung-step(BF)). It generates a rewrite rule that
finds the first instance of scan, and rewrites it using brent-kung-step(BF). The
iterate(num_iterations) combinator then applies this repeatedly. This compo-
sition of combinators results in an iterative expansion of the scan supplied, each
step adding one layer of upsweep before the scan and one layer of downsweep
after the matched scan call, while simultaneously shrinking the leftover scan
input by a factor of 2.



10 Federico Pizzuti, Michel Steuwer, Christophe Dubach

parallel-scan(BS, BF)
1 match scan(f,zero,input)
2 if BS % BF == 0
3 if input.size % BS == 0 7→
4 (scan-then-reduce(BS);
5 first(scan)(brent-kung(BF))
6 ) @ scan(f,zero,input)

Listing 7: The parallel-scan rule combines parallelization strategies into the com-
plete GPU scan.

parallel-scan We can now express the algorithm for the full GPU parallel
scan by combining scan-then-propagate and brent-kung into a single rule, whose
definition is shown in listing 7. The rule first applies the scan-then-propagate,
followed by the brent-kung rule on the first instance of scan encountered.

5 Optimization Space Exploration

5.1 Expressing Scan Variants

As we have seen in the previous section, the brent-kung rewrite rule works by
recursively expanding a call to scan into a parallel tree computation. Given block
size BS and tree branching factor BF , the process is iterated logF (BS). As a
variation, it is possible to terminate this expansion earlier, by parametrizing the
brent-kung rule by TD, the maximum depth of tree expansion.

The overall optimization from scan to parallel scan now admits three possible
parameters: the tree growth factor BF , the block size BS (obtained from the
input parameter type), and the parallelization tree depth TD. These parameters
delineate a space of possible optimizations. Given a value for the block size BS,
the possible parallel tree depth ranges from TD = 0, which generates a fully
sequential scan, to D = logBF (BS), yielding the canonical Brent-Kung scan.
Intermediate values express hybrid versions, such as that shown in listing 8.

To see why such intermediate optimization points may be of interest, consider
that on a GPU target each block maps to an OpenCL work-group. As the value
of successive layers depends on that of preceding layers, these must be computed
sequentially, introducing a synchronization point. Shrinking the parallel tree
depth reduces the amount of synchronization necessary, but also trades away
parallel computation for sequential work, growing exponentially as TD decreases
by a factor of BF . For small reductions in TD this may be a positive trade-off.

5.2 Exploring Scan Variants

Finding the optimal (BF ,BS,TD) triple is not a straightforward task: a sound
choice of parameters requires knowledge of the target platform. For example,



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 11

1 void block_sum(float output[S], float input[S])
2 local float up1[8], up2[4], dn2[4], dn1[8];
3 parallel for block=0 to S/16
4 float* in = &input[16*block];
5 float* out = &output[16*block];
6 parallel for i=0 to 8
7 up1[k] = in[2*i]+in[2*i+1];
8 parallel for i=0 to 4
9 up2[k] = up1[2*i]+up1[2*i+1];

10 dn2[0] = 0;
11 for i=1 to 4
12 dn2[i] = dn2[i-1]+up2[i];
13 parallel for k=0 to 4
14 dn1[2*i]=dn2[i]; dn1[2*i+1]=dn2[i]+up1[2*i];
15 parallel for k=0 to 8
16 out[2*i]=dn1[i]; out[2*i+1]=dn1[i]+in[2*i];

Listing 8: Block sum with BF=2, BS=16, TD=2.

when targeting GPUs, the number of local thread used equals BFTD. This value
should be larger then the GPU’s warp size to avoid needless stalls, but not too
large, to minimize synchronization.

The compiler then generates and tests the variations, finding the best triple
for the target architecture. In this paper, the search space is sufficiently small
that it is practical to exhaustively explore it. Should the search space become
large, one can alternatively use a more sophisticated search strategy, such as
using an generic autotuner like OpenTuner.

6 Evaluation

This section presents the paper’s experimental results. All measurements are
performed using the compiler’s OpenCL CUDA back-end, targeting version 1.2
of the standard, driver version 10.2.185 and are run on NVidia GeForce GTX
1070 and NVidia A100 GPUs. All times refer to GPU computation time only.
The scans compute the prefix sum of 32-bit floating-point values.

6.1 Performance of Scan Block Variants

Section 5.1 parametrized the work-efficient parallel scan generation by the triple
of Branching Factor(BF ), Block Size(BS) and Tree Depth(TD). This section
presents the details of exploring this delimited space of possible variants.

We begin by fixing the value of BF = 2, which implies that the parallel
iteration tree is a binary tree. For ease of presentation, we introduce the new pa-
rameter SE ∈ [0, BS], indicating the number of Sequentially Scanned Elements.



12 Federico Pizzuti, Michel Steuwer, Christophe Dubach

32 64 128 256 512

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
10

15

20

25

Number of sequentially scanned elements

T
h

ro
u

g
h

p
u

t 
(G

E
le

m
/s

) Scan block size

(a) NVidia GTX 1070

32 64 128 256 512

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

50

75

100

Number of sequentially scanned elements

T
h

ro
u

g
h

p
u

t 
(G

E
le

m
/s

) Scan block size

(b) NVidia A100

Fig. 3: Throughput of automatically explored variations of block_scan. Each ver-
sion is parameterized by the scan block size (top) and by the number of elements
that are sequentially scanned (bottom).

We wish SE = 0 to yield a fully parallel scan, while SE = BS corresponds
to an entirely sequential one. This desired behavior corresponds to constraining
TD = log2(BS − SE). The range of sensible values for BS is shaped by the
GPU’s architecture, as it directly correlates to the amount of local memory re-
quired. Here, it ranges from 32 to 512, doubling each step. Fixing BS also allows
determining the range of valid SE values: 1 to 16, also doubling each time.

Figure 3 shows the results of exhaustively exploring the space delimited by
these constraints. The source program is a prefix sum computation over an array
of 25.6 million 32-bit floating-point elements. Executing the whole exploration
takes approximately 40 minutes on the author’s commodity hardware platform.

For both GPUs, the best versions have SE > 4. This is likely because higher
values of SE imply a reduction in synchronization points, as these are required
between parallel iterations. The trade-off is only beneficial with larger block sizes,
as a small block with positive SE will lead to many of the warp’s threads being
idle. While the optimal values for SE and BS vary across GPU architectures,
our approach can easily adapt to each platform’s characteristics.

6.2 End-to-end comparison

The quality of our approach is evaluated by measuring the end-to-end perfor-
mance of the generated code. This includes the block-scan as well as the sub-
sequent propagation phases. The comparison covers both the baseline parallel
scan shown in section 4 and the result of variant exploration in section 5 with
two reference implementation. The first is a handwritten version provided by
NVidia[7], and the second is the code produced by the Futhark compiler[8], a
state-of-the-art data-parallel functional generator.

The results are shown in figure 4. Across both GPUs, the optimized version
significantly outperforms both reference implementations. This is in contrast to
Futhark, whose performance varies significantly across architectures. By express-
ing the optimization process via rewrite rules, our compiler can reliably generate
high-performance code.



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 13

Handcoded

Autogen(sec. 4)

Optimized (sec. 5)

Futhark
6

8

10

12

0 500 1000 1500 2000

Input Size (MB)

T
h

ro
u

g
h

p
u

t 
(G

E
le

m
/s

)

(a) NVidia GTX 1070

Handcoded

Autogen(sec. 4)

Optimized (sec. 5)

Futhark

25

30

35

40

45

0 500 1000 1500 2000

Input Size (MB)

T
h

ro
u

g
h

p
u

t 
(G

E
le

m
/s

)

(b) NVidia A100

Fig. 4: End-to-end throughput of scan implementations. Autogen refers the code
generation shown insection 4. Optimized refers to the best version obtained
in section 5. Handcoded is the NVidia optimized version shown in [7], and
Futhark is the version generated by the Futhark compiler[8].

7 Related Work

Data Parallel Functional Code Generators A recent trend in the design of high-
performance code generators that use functional languages as inputs or internal
representations. These include Lift [20, 21], Futhark [8], Single-assignment C [18]
and Accelerate [3]. These compilers leverage the properties of a functional style
to generate high-performance code for GPUs and other accelerators.

Rewrite Rules & Optimization Spaces The use of rewrite rules to express opti-
mizations is well attested in the literature. We expressed our rewrite rules via
the Elevate [5], which has also been similarly used for image processing applica-
tions [10]. The Spiral [16] compiler spearheaded using rewrite rules to optimize
Digital Signal Processing applications in the SPL [22] language.

Petabricks [1] has been used to explore the design space of optimization for
sorting algorithms. The use of an auxiliary language to model optimizations has
similarities in Halide [17] schedules.

Parallel Scan There is a wide literature concerning the use of scan in parallel
programs, starting from the seminal work of Blelloch [2]. Much work has gone
into producing parallel implementation for the GPUs, from early CUDA imple-
mentations[7] to libraries such as CUDPP [19] and CUB [12]. Parallel scan is also
a topic of relevance in the functional programming community. In particular [13,
4], which show algorithms to derive parallel scan implementations.

8 Conclusion

This paper presented a functional formulation of work-efficient parallel scan. We
have decomposed it in a series of rewrite rules, modeling an optimization space.
Exploring this space yields efficient implementations across GPUs from the same
high-level source, consistently outperforming both an hand-written implementa-
tion and state of the art code generator, with up to 1.5x improvement.



14 Federico Pizzuti, Michel Steuwer, Christophe Dubach

Acknowledgements and Data Availability Statement

The datasets and code generated and evaluated in the current study are available
in the Figshare repository: https://doi.org/10.6084/m9.figshare.19980176 [15].This
work has been supported by the Engineering and Physical Sciences Research
Council, grant number 1819353. We also acknowledge the support of the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grants Program [grant RGPIN-2020-05889], and the Canada CIFAR AI Chairs
Program.

References

1. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Ama-
rasinghe, S.: Petabricks: A language and compiler for algorithmic choice. ACM
Sigplan Notices 44(6), 38–49 (2009). https://doi.org/10.1145/1542476.1542481

2. Blelloch, G.E.: Scans as primitive parallel operations. IEEE Transactions on com-
puters 38(11), 1526–1538 (1989). https://doi.org/10.1109/12.42122

3. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Ac-
celerating haskell array codes with multicore gpus. In: POPL-DAMP (2011).
https://doi.org/10.1145/1926354.1926358

4. Elliott, C.: Generic functional parallel algorithms: Scan and fft. Pro-
ceedings of the ACM on Programming Languages 1(ICFP), 1–25 (2017).
https://doi.org/10.1145/3110251

5. Hagedorn, B., Lenfers, J., Koehler, T., Gorlatch, S., Steuwer, M.: A language
for describing optimization strategies. arXiv preprint arXiv:2002.02268 (2020).
https://doi.org/10.48550/arXiv.2002.02268

6. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.:
High performance stencil code generation with lift. In: CGO (2018).
https://doi.org/10.48550/arXiv.2002.02268

7. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with cuda. GPU
gems 3(39), 851–876 (2007)

8. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
purely functional gpu-programming with nested parallelism and in-place array up-
dates. In: PLDI (2017). https://doi.org/10.1145/3062341.3062354

9. Hinze, R.: An algebra of scans. In: International Conference on Mathematics of Pro-
gram Construction. pp. 186–210 (2004). https://doi.org/10.1007/978-3-540-27764-
4_11

10. Koehler, T., Steuwer, M.: Towards a domain-extensible compiler: Optimizing an
image processing pipeline on mobile cpus. CGO (2021)

11. McCool, M., Reinders, J., Robison, A.: Structured parallel pro-
gramming: patterns for efficient computation. Elsevier (2012).
https://doi.org/10.1145/2382756.2382773

12. Merrill, D., Garland, M.: Single-pass parallel prefix scan with decoupled look-back.
NVIDIA, Tech. Rep. NVR-2016-002 (2016)

13. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Auto-
matic inversion generates divide-and-conquer parallel programs. PLDI (2007).
https://doi.org/10.1145/1273442.1250752



Gen. Work Eff. Scan Impl. for GPUs the Fun. Way 15

14. Pizzuti, F., Steuwer, M., Dubach, C.: Generating fast sparse matrix vec-
tor multiplication from a high level generic functional IR. In: CC (2020).
https://doi.org/10.1145/3377555.3377896

15. Pizzuti, F., Steuwer, M., Dubach, C.: Artifact and instruction for repli-
cation of experiments in the europar ’22 paper titled: "generating work
efficient scan implementations for gpus the functional way" (2022).
https://doi.org/10.6084/m9.figshare.19980176

16. Puschel, M., Moura, J.M., Johnson, J.R., Padua, D., Veloso, M.M., Singer,
B.W., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., et al.: Spi-
ral: Code generation for dsp transforms. Proceedings of the IEEE (2005).
https://doi.org/10.1109/JPROC.2004.840306

17. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amaras-
inghe, S.P.: Halide: a language and compiler for optimizing parallelism, lo-
cality, and recomputation in image processing pipelines. In: PLDI (2013).
https://doi.org/10.1145/2499370.2462176

18. Scholz, S.: Single assignment C: efficient support for high-level ar-
ray operations in a functional setting. J. Funct. Program. (2003).
https://doi.org/10.1017/S0956796802004458

19. Sengupta, S., Harris, M., Garland, M., et al.: Efficient parallel scan algorithms for
gpus. NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003 1(1), 1–17 (2008)

20. Steuwer, M., Fensch, C., Lindley, S., Dubach, C.: Generating performance
portable code using rewrite rules: from high-level functional expressions to
high-performance opencl code. In: Fisher, K., Reppy, J.H. (eds.) ICFP (2015).
https://doi.org/10.1145/2784731.2784754

21. Steuwer, M., Remmelg, T., Dubach, C.: Lift: a functional data-parallel IR for high-
performance GPU code generation. In: CGO (2017)

22. Xiong, J., Johnson, J., Johnson, R., Padua, D.: Spl: A language and com-
piler for dsp algorithms. ACM SIGPLAN Notices 36(5), 298–308 (2001).
https://doi.org/10.1145/378795.378860


