
Systematically Extending a High-Level Code
Generator with Support for Tensor Cores

Lukas Siefke
University of Münster
Münster, Germany

lukas.siefke@wwu.de

Bastian Köpcke
University of Münster
Münster, Germany

bastian.koepcke@wwu.de

Sergei Gorlatch
University of Münster
Münster, Germany
gorlatch@wwu.de

Michel Steuwer
The University of Edinburgh
Edinburgh, United Kingdom
michel.steuwer@ed.ac.uk

Abstract
High-level code generators like Halide, Lift, and RISE make
a compelling proposition: write programs in a simple high-
level language and get high-performing GPU code “for free”.
They achieve this feat by restricting the input language to
a specific domain (such as image and array processing in
Halide) or to a fixed set of flexible parallel patterns (as Lift
and RISE do). Implementing high-level code generators that
produce high-performance code is challenging, specifically
as the target hardware constantly evolves.
In this paper, we discuss how we systematically extend

the RISE high-level code generator with support for tensor
cores, a specialized hardware feature of recent Nvidia GPUs.
We highlight the design of RISE that makes it easily extensi-
ble by following a systematic bottom-up approach, that first,
exposes the imperative tensor core API to the code generator,
then, raises the abstractions to an internal low-level func-
tional representation, that, finally, is targeted by a rewrite
process that starts from a high-level functional program.
Our experimental evaluation shows that RISE with sup-

port for tensor cores generates code of competitive perfor-
mance to manually optimized CUDA code, which is only up
to 36%, but on average only 10%, slower than Nvidia’s highly
optimized cuBLAS library, and clearly outperforms any code
that does not exploit tensor cores.

1 Introduction
We are in a “new golden age of computer architecture” [5]
where performance and efficiency gains are made by special-
izing the hardware architecture. Hardware changes quickly,
as vendors develop specialized hardware solutions to accel-
erate common or important computational patterns. General
Matrix Multiplication (GEMM) is one of the most important
computations performed in high-performance computing,
and is used extensively in areas such as physics, statistics,
and – maybe currently most importantly – machine learning.
Recently, many specialized hardware designs for accelerating

GPGPU ’22, April 3, 2022, Virtual, Republic of Korea
2022.

deep learning workloads, mostly focused on GEMM, have
emerged. This includes Google’s TPUs, Graphcore’s AI ac-
celerator, and more [13]. In this paper, we are focusing on
Nvidia’s tensor cores that are an addition to their existing
GPU architectures, offering support to efficiently perform
GEMM computations with low floating-point precision.
While this new hardware promises high-performance

gains, programming GPUs manually – even without tensor
cores – is error-prone and difficult due to their high degree
of parallelism and a complex memory hierarchy that pro-
grammers have to manage manually. This leads to a mix of
high-level algorithmic ideas, such as tiling a matrix multipli-
cation, with many low-level implementation details making
reasoning about the correctness and efficiency of programs
difficult. To efficiently exploit tensor cores, we need to adapt
the high-level algorithm and perform low-level management
as well. We need to break up GEMM into smaller operations
each to be performed efficiently by tensor cores, and com-
bining many partial results into the single output. Despite
these challenges, it is highly desirable to utilize GPUs with
tensor cores for significant performance gains, e.g., up to 4×
improved performance for single precision GEMM [9].
A promising attempt to simplify GPU programming are

high-level libraries as well as high-level languages and their
code generators. While high-level libraries, such as cuBLAS,
Thrust, Tensorflow, and PyTorch are easy to use and
popular, they are also limited as they restrict programmers to
a narrow interface. High-level GPU programming languages
allow programmers to express more applications, but have
the challenge of compiling them to efficient code. Examples
of GPU array processing languages are Futhark [6], Dex [11],
Accelerate [1], and Halide [12]. None of these languages
have added support for tensor cores, despite the consider-
able performance gains available. Halide has an issue open
on GitHub1 since December 2019 that discusses some re-
stricted implementation strategies, but still no support has
been implemented.

1https://github.com/halide/Halide/issues/4481

https://orcid.org/0000-0001-5048-0741
https://github.com/halide/Halide/issues/4481

GPGPU ’22, April 3, 2022, Virtual, Republic of Korea Lukas Siefke, Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

In this paper, we extend the high-level language RISE [4]
and its Shine compiler [16] with support for tensor cores.
RISE has a multilayered design of different abstraction lev-
els from hardware to high-level algorithms and focuses on
extensibility [7]. This facilitates the main idea of this paper:
systematically expose tensor cores to non-expert program-
mers while still generating efficient code.

Our contributions are as follows:
• We present a systematic bottom-up approach to extend
the high-level RISE code generator, by:
1. exposing the tensor core API in the imperative abstrac-

tion layer of the code generator;
2. defining low-level functional tensor core patterns and a

translation from them to the imperative level;
3. providing rewrite rules that enable high-level functional

programs to be rewritten into low-level programs that
exploit tensor cores.

• We evaluate the code generated by our extended RISE
code generator and show performance competitive with
handwritten CUDA code exploiting tensor cores. The gen-
erated code is up to 36%, and on average only 10% slower
than the highly optimized cuBLAS, but much faster than
any code that does not exploit tensor cores.

2 Example: GEMM in RISE
In this section, we introduce the RISE language and its com-
piler Shine using a GEMM example application and a subset
of exemplary primitives.

2.1 Expressing GEMM in RISE
Lines 1–8 in Figure 1 show the Generalized Matrix Multi-
plication (GEMM) expressed in RISE. This is an example of
a high-level program that describes only what to compute,
without specifying how to map computation to the hard-
ware. This choice is left to the compiler and allows flexible
generation of high-performance code for different hardware
from the same high-level program.

GEMM describes the following computation:

𝐷 = 𝛼𝐴𝐵 + 𝛽𝐶

Here, matrices 𝐴 and 𝐵 are multiplied and scaled with the
scalar value 𝛼 and matrix𝐶 scaled by scalar value 𝛽 is added
to form the result matrix 𝐷 .
In the RISE program, the types of matrices 𝐴, 𝐵, and 𝐶

track their dimensions as seen in line 2 and 3. This makes
sure that only matrices with matching dimensions are multi-
plied. The computation is expressed in lines 4–8. The familiar
matrix multiplication is expressed in terms of the compu-
tational patterns zip, map, and reduce. Focusing first on the
matrix multiplication 𝐴𝐵, we can read the code as follows:
for each row of 𝐴 and each column of 𝐵 we compute the
dot product. The dot product is expressed in lines 6 and 7
by: pointwise combining row and column using zip, then

High-Level GEMM
1 depFun((m:Nat,n:Nat,k:Nat) =>
2 fun((A: Array[m,Array[k,f32]], B: Array[k,Array[n,f32]],
3 C: Array[m,Array[n,f32]], alpha: f32, beta: f32) =>
4 zip(A)(C) |> map(fun(rowAC =>
5 zip(B |> transpose)(snd(rowAC)) |> map(fun(colBC =>
6 zip(fst(rowAC))(fst(colBC)) |>
7 map(fun((a, b) => a * b)) |> reduce(+, 0) |>
8 fun(r => (alpha * r) + (beta * snd(colBC)))))))))

Rewriting

Optimization Strategy

Low-Level GEMM
9 depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
10 zip(A)(C) |> mapBlock(fun(rowAC =>
11 zip(B |> transpose)(snd(rowAC)) |>
12 mapThreads(fun(colBC => zip(fst(rowAC))(fst(colBC)) |>
13 reduceSeq(Local)(fun((acc,ab) =>
14 acc + fst(ab) * snd(ab)),0) |>
15 fun(r => (alpha * r) + (beta * snd(colBC)))))))))

Translation

Imperative GEMM
17 depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
18 parForBlock(m,Array[n,f16], output, fun(rowIdx,outRow =>
19 parForThreads(n,f16, outRow, fun(colIdx,outElem =>
20 new(Local,f32, fun((accumExp, accumAcc) =>
21 accumAcc = 0.0f;
22 for(k, fun(i => accumAcc = accumExp +
23 fst(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
24 fst(idx(colIdx, zip(transpose(B),
25 snd(idx(rowIdx, zip(A,C))))))))) *
26 snd(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
27 fst(idx(colIdx, zip(transpose(B),
28 snd(idx(rowIdx, zip(A,C)))))))))));
29 outElem = alpha * accumExp + beta *
30 snd(idx(colIdx, zip(transpose(B),
31 snd(idx(rowIdx, zip(A,C))))))))));
32 syncThreads()))))

Codegen

33 __global__ void gemm_kernel(float* __restrict__ output,
34 int m, int n, int k, const __half* __restrict__ A,
35 const __half* __restrict__ B,
36 const float* __restrict__ C, float alpha, float beta) {
37 for(int rowIdx=blockIdx.x;
38 blockIdx.x<m; rowIdx += gridDim.x) {
39 for(int colIdx=threadIdx.x;
40 threadIdx.x<n; rowIdx += blockDim.x) {
41 float accum = 0;
42 for (int i = 0; i < k; i++) {
43 accum = accum + A[i + rowIdx*k] * B[colIdx + i*n];
44 }
45 output[colIdx + rowIdx * n] =
46 alpha * accum + beta * C[colIdx + rowIdx*n];
47 }
48 __syncthreads(); }}

Figure 1. Compilaton of GEMM in RISE.

Systematically Extending a High-Level Code Generator with Support for Tensor Cores GPGPU ’22, April 3, 2022, Virtual, Republic of Korea

multiplying each pointwise pair using map, and, finally, com-
puting the sum using reduce. To generalize this description to
GEMM, we scale the computed element with alpha and add
the element from C that has been scaled with beta (line 8).

2.2 Compiling = Rewriting + Translation + Codegen
Compiling a high-level program to efficient code is a com-
plex process that involves performing optimizations as well
as lowering the abstractions from the high-level functional
input to the low-level imperative output. The Shine com-
piler breaks this process into three distinct steps: 1) opti-
mizations are applied in a rewrite process, transforming the
high-level function to a low-level functional program that
has all optimization decisions explicitly encoded; 2) the low-
level functional program is translated into an imperative
representation; and 3) the target code is generated.
Rewriting. The high-level input program is rewritten

into a low-level program using semantics-preserving rewrite
rules. Many individual rules are combined into larger op-
timization strategies, which can be expressed in a separate
strategy language called Elevate [4]. The rewriting can ei-
ther be manually controlled by a performance expert [7],
fully automated [15], or an automated process can be guided
by the expert [8]. Lines 9–15 in Figure 1 show one possible
low-level program for GEMM that has been obtained from
the high-level program via rewriting. Generic map primitives
have been rewritten to mapBlock and mapThreads which express
that each element of the input array has to be processed by
a thread block or a single thread, respectively. mapThreads is
nested inside mapBlock, meaning that we describe what every
thread block computes in terms of what every thread in the
thread block computes. Therefore, the input array can be
viewed as being distributed over thread blocks and threads,
which then process their share of the data. For GEMM, every
thread in a thread block, performs a sequential dot product
on the block’s row from the 𝐴 matrix and the thread’s col-
umn of the 𝐵 matrix (scaled by alpha) and adds the relevant
element from the 𝐶 matrix (scaled by beta) to the result. The
parameter Local in reduceSeq indicates that the fast thread local
memory of the GPU is used for the accumulator variable.

Translation.To generate CUDA code, low-level programs
are deterministically translated from the low-level functional
into an intermediate imperative representation. This repre-
sentation includes parallel for-loops, memory allocations,
synchronizations, and fully inlined anonymous functions.
Primitives that affect how arrays are indexed, e.g., transpose,
still exist and are resolved in the final codegen step.

Codegen. During the code generation step, these primi-
tives are compiled into index expressions. The rest of the code
generation is straightforward and generates CUDA equiva-
lents to the parallel for-loops and memory allocations.

Device Level

A B

+β x

C

x

D

=α x

+=

Tensor Core-API

x

Warp Level

+= β/α xxα x

β/α xx =
B

+α x

Block Level

Fragment

Global Memory

Figure 2. Schematic representation of a naive GEMM on a
GPU using tensor cores.

3 Towards Tensor Cores in RISE
Tensor cores are specialized hardware to speed up matrix
multiplications. The API for tensor cores enables threads of
a single warp to cooperate for using multiple tensor cores
concurrently, to perform a Matrix Multiply and Accumulate
(MMA) computation on three matrices of fixed sizes.

Utilising Tensor Cores for GEMM. To use tensor cores,
a GEMM implementation must be broken down into many
small MMA computations, using tiling. Figure 2 shows a
schema for an example implementation of GEMM, using
tensor cores. Instead of computing a dot-product per thread
like in Figure 1, the matrices are broken into blocks of multi-
ple rows or columns. Every thread block computes GEMM
between a block of 𝐴 rows, the entire 𝐵 matrix, and a block
of rows in the 𝐶 matrix. This is implemented by splitting
each row and column block into tiles that fit into a warp-
wide tensor core computation. This enables each warp to
perform a dot product over the matrix tiles (instead of scalar
elements) and to add the corresponding 𝐶 tile.

Programming Tensor Cores. To use tensor cores, tiles
must be stored in a specific format in the warp’s registers.
In CUDA, this format is represented by the fragment type.

The left-hand side of Listing 1 shows the fragment type as
well as important functions of the tensor core API. A frag-
ment has several attributes that must all be statically known.
The kind of the fragment (FragmKind) clarifies whether the tile
is used as the 𝐴, 𝐵 or accumulator matrix. Dimensions𝑚, 𝑛,
𝑘 specify all the dimensions that are used in a warp-wide
tensor core operation. This means that a fragment "knows"
about the dimension of the other fragments. Type parameter
𝑇 is a placeholder for a set of scalar data types that tensor
cores can work with, and the layout specifies how a matrix is
stored in memory (i.e., rowmajor or columnmajor). Function
mma_sync performs a warp-wide MMA operation on fragments
𝐴, 𝐵, 𝐶 and stores the result in 𝐷 . Functions load_matrix_sync

and store_matrix_sync are used to convert matrix tiles to and
from fragments. They take a reference to the fragment and a

GPGPU ’22, April 3, 2022, Virtual, Republic of Korea Lukas Siefke, Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

template<typename FragmKind, int m, int n, int k,
typename T, typename Layout=void> class fragment;

void mma_sync(
fragment<...> &D,
const fragment<...> &A,
const fragment<...> &B,
const fragment<...> &C);

void load_matrix_sync(fragment<...> &A,
const T* tile, unsigned l_dim, layout_t layout);

void store_matrix_sync(T* tile,
const fragment<...> &A,
unsigned l_dim, layout_t layout);

void fill_fragment(
fragment<...> &A, const T& value);

Fragment[m: Nat, n: Nat, k: Nat, t: DataType, f: FragmKind]

def mmaFragment(m:Nat, n:Nat, k:Nat, s:DataType, t:DataType,
A: Exp[Fragment[m,k,n,s,AMatrix], Rd],
B: Exp[Fragment[k,n,m,s,BMatrix], Rd],
C: Exp[Fragment[m,n,k,t,Accum], Rd],
D: Acc[Fragment[m,n,k,t,Accum]]): Comm

def loadFragment(f:FragmKind, m:Nat, n:Nat, k:Nat, t:DataType,
tile: Exp[Array[m,Array[n,t]], Rd], A: Acc[Fragment[m,n,k,t,f]]): Comm

def storeFragment(m:Nat, n:Nat, k:Nat, t:DataType,
A: Exp[Fragment[m,n,k,t,Accum],Rd], tile: Acc[Array[m,Array[n,t]]]): Comm

def fillFragment(f:FragmKind, m:Nat, n:Nat, k:Nat, t:DataType,
A: Acc[Fragment[m,n,k,t,f]], value: Exp[t, Rd]): Comm

Listing 1. The tensor core API compared to imperative primitives for tensor cores.

pointer to the tile. The leading dimension is used to load or
store matrices that have additional elements between their
rows or columns that can be ignored, e.g., when loading
tiles. Finally, function fill_fragment creates a fragment where
every element has the same specified value.

4 Systematically Exposing Tensor Cores
In this section, we show how we develop RISE abstractions
for tensor cores in a systematical way. We choose a bottom-
up approach and begin by developing low-level imperative
primitives that represent the tensor core API. Then, we show
how the imperative functionality is brought into the func-
tional world by developing corresponding low-level func-
tional primitives and a translation from functional to im-
perative. Using this approach, we increase the abstraction
level incrementally. This approach significantly simplifies
determining the requirements of the next higher abstraction.

4.1 Imperative Primitives
Listing 1 shows the CUDA tensor core API on the left and
on the right-hand the newly introduced type and primitives
of RISE. Analogously to the CUDA version of a fragment,
the fragment type in RISE is constructed from matrix di-
mensions, the data type of their elements and the fragment
kind. The matrix layout is not explicitly stored in the type
and instead inferred during code generation. Similarly, the
leading dimension (l_dim in the CUDA API) is inferred where
needed. We do not have to deal with the matrix layout or
leading dimension as this information can easily be inferred.
The types of the primitives consist of a list of parame-

ter types and a return type. In RISE Comm takes the role of
void. The mmaFragment primitive is generic over matrix dimen-
sions and data types, and accepts the same arguments as the
corresponding CUDA function. However, in the types, we
differentiate between acceptors (Acc) and expressions (Exp).
Acceptors represent memory locations that are write-only
and expressions are evaluated to a value that can only be read
if the expression has a read (Rd) annotation; otherwise they
have to be written into to memory first. Therefore – ignoring

tensorMatMulAdd: {m: Nat} -> {n: Nat} -> {k: Nat} ->
{s: DataType} -> {t: DataType} ->
Fragment[m,k,n,s, AMatrix] ->
Fragment[k,m,n,s, BMatrix] ->
Fragment[m,n,k,t, Accum] -> Fragment[m,n,k,t, Accum]

asFragment: {m: Nat} -> {n: Nat} -> {k: Nat} ->
{t: DataType} -> {f: FragmKind} ->
Array[m, Array[n, t]] -> Fragment[m,n,k,t, f]

asMatrix: {m: Nat} -> {n: Nat} -> {k: Nat} -> {t: DataType} ->
Fragment[m,n,k,t, Accum] -> Array[m, Array[n, t]]

generateFragment: {m: Nat} -> {n: Nat} -> {k: Nat} ->
{t: DataType} -> {f: FragmKind} ->
t -> Fragment[m,n,k,t, f]

mapFragment: {m: Nat} -> {n: Nat} -> {k: Nat} ->
{t: DataType} -> {f: FragmKind} ->
Fragment[m,n,k,t,f] -> (t -> t) -> Fragment[m,n,k,t, f]

Listing 2. Functional low-level primitives for tensor cores.

the generic parameters – mmaFragment takes four arguments:
three expressions representing the fragments of matrices
A, B, and C, and an acceptor representing the fragment of
matrix D in which to store the computed result. The types
of the other primitives are designed accordingly.

4.2 Low-Level Functional Primitives
Our next step is to introduce low-level functional primitives
as a target for rewriting, together with a translation to the
previously introduced imperative primitives.
Listing 2 shows the tensor core specific functional low-

levelRISE primitives. In contrast to the imperative primitives,
these primitives are functional and, therefore, have a non-
void return type. Primitive tensorMatMulAdd is similar to its
imperative counterpart mmaFragment. It is generic over matrix
dimensions and data types, has parameters for the three input
fragments, but returns the computed fragment instead of
storing it to memory as its imperative counterpart. Primitives
asFragment and asMatrix are used to convert a 2-dimensional
array to and from a fragment type. generateFragment creates a
fragment that is filled with a single value. mapFragment maps a
function to every element of a fragment, where the mapping

Systematically Extending a High-Level Code Generator with Support for Tensor Cores GPGPU ’22, April 3, 2022, Virtual, Republic of Korea

def accT(expr: Phrase[Exp[d,Wr]],
output: Phrase[Acc[t]]): Phrase[Comm] = expr match {

case tensorMatMulAdd(m,n,k,dt,dtAcc,aMatrix,bMatrix,cMatrix)
=> conT(aMatrix, fun(aMatrix => conT(bMatrix,
fun(bMatrix => conT(cMatrix, fun(cMatrix =>
mmaFragment(m, n, k, dt,
dtAcc, aMatrix, bMatrix, cMatrix, A)))))))

case asFragment(m, n, k, dt, f, tile)
=> conT(tile, fun(tile: =>
loadFragment(f, m, n, k, dt, tile, A)))

case asMatrix(m, n, k, dt, frag)
=> conT(frag, fun(frag: =>
storeFragment(m, n, k, dt, frag, A)))

case generateFragment(m, n, k, dt, f, fill)
=> conT(fill, fun(fill =>
fillFragment(f, m, n, k, dt, fill, A)))

case mapFragment(m, n, k, dt, f, function, input)
=> conT(input, fun(input: =>
forFragment(m, n, k, dt, f,
input, A, fun(element => fun(acceptor =>

accT(function(element), acceptor))))))
... }

Listing 3. Translation from functional to imperative.

is cooperatively performed by the threads (lanes) in a warp.
This is, for example, used to scale fragments with 𝛼 or 𝛽 .

4.3 Translating from Functional to Imperative
We extend the translation from functional to imperative of
RISE to support our new primitives. Listing 3 shows one of
RISE’s two translation function (accT), which creates imper-
ative code that evaluates a low-level functional expression
and writes the result into an output acceptor. For example,
to translate tensorMatMulAdd, we start by generating the im-
perative code for each input matrices. For this, we call the
second translation function (conT). Intuitively, the conT takes
a functional expression, generates imperative code which
evaluates the expression, and passes a handle for the result
to a continuation function that integrates the result into
the following imperative code. In the generated code for
tensorMatMulAdd, we pass handles for the generated inputs and
the result acceptor to the imperative tensor core primitive.

4.4 Targeting the Tensor Primitives via Rewriting
Finally, we have everything we need to write programs that
use tensor cores in low-level RISE. However, the goal is for
programmers not to write any low-level code and instead
to discover implementations that use tensor cores during
rewriting of high-level programs.We, therefore, need rewrite
rules that explain how tensor cores can be utilized. Listing 4
shows a rewrite rule that takes a high-level functional pro-
gram expressing matrix multiplication and rewrites it into
an equivalent low-level program that uses tensor cores. The
rule makes sure that the input matrices at the beginning
of the rewrite rule have types that are compatible with the
tensor core primitive. More complex rules in this style are
similarly introduced for GEMM and other use cases.

aTile: Array[16,Array[16,f16]] |> map(fun(aRow =>
bTile: Array[16,Array[16,f16]] |> map(fun(bCol =>
zip(aRow, bCol) |>
reduceSeq(fun(ac, ab =>
add(ac, mul(fst(ab), snd(ab)))))(0.0)))))

↦→

tensorMatMulAdd
(aTile: Array[16,Array[16,f16]] |> asFragment |> toMem(Local))
(bTile: Array[16,Array[16,f16]] |> transpose
|> asFragment |> toMem(Local))

(generateFragment(0.0) |> toMem(Local))
|> toMem(Local) |> asMatrix

Listing 4. A rewrite rule that replaces a 16 × 16 matrix mul-
tiplication with a warp-wide tensor core operation.

5 Experimental Evaluation
In this section, we evaluate our abstractions by generating
parallel GEMM in CUDA and comparing its performance to
manual naive and optimized implementations as well as the
state-of-the art cuBLAS library.

Experimental Setup. All measurements were performed
on CentOS 7.9.2009 with CUDA 11.1.1, with two different
GPUs: A professional level TITAN RTX and a high-end
consumer level GeForce RTX 2080 Ti. We compare mixed-
precision GEMM (elements of 𝐴 and 𝐵 are of half precision
floating-point values; other values are single precision) on
square matrices, and choose some arbitrary but fix non-zero
values for 𝛼 and 𝛽 . We assume that the 𝐵matrix is transposed
in memory. Additionally, cuBLAS requires that the 𝐶 matrix
is transposed as well. All input matrices are initialized with
random values. Input dimensions are chosen such that they
are dividable by tile sizes, and tile sizes such that they are
dividable by the fragment size of 16. With RISE, we generate
kernels for every matrix dimension and GPU and try differ-
ent configurations of thread blocks and tiling sizes from a
set of manually chosen values to select the fastest one.

We compare the performance to several other implemen-
tations: naive handwritten versions without and with tensor
cores (similar to the kernels described in Figure 1 and Fig-
ure 2, respectively), an optimized kernel with tensor cores
that is taken from the CUDA samples and cuBLAS without
and with tensor cores. All these kernels were adapted to
match our setting (such as using the same data types). The
naive handwritten kernels only work for small to medium-
sized matrices, as the simple parallelization method exceed
the physical GPU resources for larger matrices.

Results.We measure runtime by executing every kernel
50 times and plot the median floating-point-operations per
second in TFLOPS. Our results in Figure 3 show that using
tensor cores for GEMM is hugely beneficial and can increase
performance up to 7×. This has been observed before, e.g.,
in [9] with a similar performance trend across input sizes.

GPGPU ’22, April 3, 2022, Virtual, Republic of Korea Lukas Siefke, Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

T
ITA

N
 R

T
X

G
eF

orce R
T

X
 2080 T

i

256
512

768
1024

1536
2048

3072
4096

6144
8192

12288

16384

0

30

60

90

0

30

60

90

Matrix Dimension

T
F

LO
P

S

Generated from RISE
Handwritten Naive no TC

Handwritten Naive with TC
Handwritten Optimized with TC

cuBLAS no TC
cuBLAS with TC

Figure 3. Performance comparison of different GEMM im-
plementations. All matrix sizes are squared. The x-axis shows
the matrix dimensions, the y-axis show floating point opera-
tions per second in TFLOPS (higher is better).

Our generated kernels are faster than all the handwritten ker-
nels, including the ones exploiting tensor cores. The reason
for the generated code being faster than the optimized hand-
written kernel is that the generated kernels are easily tuned
for different thread block and tiling sizes, while the manual
versions assume specific configurations and tuning them, in
particular for larger input sizes, requires changes to how the
kernels operate. Our generated code clearly outperforms the
cuBLAS version that does not use tensor cores, and is at least
64% as fast as the professionally optimized (e.g., exploiting
assembly level instructions) cuBLAS implementation with
tensor cores. We show that our generated code can even be
faster than cuBLAS (by up to 54%), possibly by choosing a
better tiling strategy than cuBLAS.

6 Related Work
We already mentioned the functional array languages Accel-
erate [1], Futhark [6], Dex [11], and Halide [12] in Section 1.
These languages are designed to simplify high-performance
GPU programming. Nonetheless, to our knowledge, none
supports utilizing tensor cores.

Fireiron [3] is a language for describing implementations
of matrix multiplication. It supports tensor cores and is
able to generate highly performant code that is on par with
cuBLAS. However, Fireiron is less generic than our approach
and does not support automatic rewriting, making it a tool
for expert engineers.
Tensor cores can be utilized for algorithms aside from

matrix multiplication. It has been demonstrated that ten-
sor cores can be used to accelerate reductions and scan op-
erations [2, 10] or to implement Fast Fourier Transforms
[14]. While these show interesting applications for us to
investigate in the future, they focus on manual low-level
implementations instead of our higher-level abstractions.

7 Conclusion
In this paper, we have shown how to extend the RISE lan-
guage to support tensor cores. We demonstrated that its
compiler design enables us to systematically develop ab-
stractions by starting with a direct representation of an im-
perative primitive and step-by-step introducing machinery
for higher-level abstractions. Our evaluation shows, that this
approach generates high-performance code for matrix multi-
plication competitive to manually optimized CUDA code and
is only up to 36% slower than the highly optimized cuBLAS.

References
[1] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. Mc-

Donell, and Vinod Grover. 2011. Accelerating Haskell array codes
with multicore GPUs. In DAMP.

[2] Abdul Dakkak, Cheng Li, Isaac Gelado, Jinjun Xiong, and Wen-Mei W.
Hwu. 2018. Accelerating Reduction and Scan Using Tensor Core Units.
arXiv:1811.09736

[3] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav
Bodík, and Vinod Grover. 2020. Fireiron: A Data-Movement-Aware
Scheduling Language for GPUs. In PACT.

[4] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying
Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-
performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies. In ICFP.

[5] John L. Hennessy and David A. Patterson. 2019. A new golden age for
computer architecture. Commun. ACM 62, 2 (2019).

[6] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: purely func. GPU-programming
with nested parallelism and in-place array updates. In PLDI.

[7] Thomas Koehler and Michel Steuwer. 2021. Towards a Domain-
Extensible Compiler: Optimizing an Image Processing Pipeline on
Mobile CPUs. In CGO.

[8] Thomas Koehler, Phil Trinder, and Michel Steuwer. 2021. Sketch-
Guided Equality Saturation: Scaling Equality Saturation to Complex
Optimizations in Languages with Bindings. arXiv:2111.13040

[9] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S. Vetter. 2018. NVIDIA Tensor Core Programmability,
Performance & Precision. In IPDPS Workshops.

[10] Cristóbal A. Navarro, Roberto Carrasco, Ricardo J. Barrientos, Javier A.
Riquelme, and Raimundo Vega. 2021. GPU Tensor Cores for Fast
Arithmetic Reductions. IEEE TPDS 32, 1 (2021).

[11] Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vy-
tiniotis, Alexey Radul, Matthew J. Johnson, Jonathan Ragan-Kelley,
and Dougal Maclaurin. 2021. Getting to the point: index sets and
parallelism-preserving autodiff for pointful array prog.. In ICFP.

[12] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly
Barnes, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe, and Frédo
Durand. 2018. Halide: decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61, 1 (2018).

[13] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. 2021. AI Accelerator Survey and
Trends. In HPEC.

[14] Anumeena Sorna, Xiaohe Cheng, Eduardo F. D’Azevedo, Kwai Wong,
and Stanimire Tomov. 2018. Optimizing the FFT Using Mixed Precision
on Tensor Core Hardware. In HiPCW Workshops.

[15] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating perf. portable code using rewrite rules:
from high-level func. expr. to high-perf. OpenCL code. In ICFP.

[16] Michel Steuwer, Thomas Koehler, Bastian Köpcke, and Federico Piz-
zuti. 2022. RISE & Shine: Language-Oriented Compiler Design.
arXiv:2201.03611

https://arxiv.org/abs/1811.09736
https://arxiv.org/abs/2111.13040
https://arxiv.org/abs/2201.03611

	Abstract
	1 Introduction
	2 Example: GEMM in RISE
	2.1 Expressing GEMM in RISE
	2.2 Compiling = Rewriting + Translation + Codegen

	3 Towards Tensor Cores in RISE
	4 Systematically Exposing Tensor Cores
	4.1 Imperative Primitives
	4.2 Low-Level Functional Primitives
	4.3 Translating from Functional to Imperative
	4.4 Targeting the Tensor Primitives via Rewriting

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

