
Investigating Magic Numbers: Improving the Inlining
Heuristic in the Glasgow Haskell Compiler

Celeste Hollenbeck
c.hollenbeck@sms.ed.ac.uk
University of Edinburgh

Edinburgh, UK

Michael F. P. O’Boyle
mob@inf.ed.ac.uk

University of Edinburgh
Edinburgh, UK

Michel Steuwer
michel.steuwer@ed.ac.uk
University of Edinburgh

Edinburgh, UK

Abstract
Inlining is a widely studied compiler optimization that is par-
ticularly important for functional languages such as Haskell
and OCaml. The Glasgow Haskell Compiler (GHC) inliner
is a heuristic of such complexity, however, that it has not
significantly changed for nearly 20 years. It heavily relies
on hard-coded numeric constants, or magic numbers, based
on out-of-date intuition. Dissatisfaction with inlining perfor-
mance has led to the widespread use of inlining pragmas by
programmers.

In this paper, we present an in-depth study of the effect of
inlining on performance in functional languages. We specif-
ically focus on the inlining behavior of GHC and present
techniques to systematically explore the space of possible
magic number values, or configurations, and evaluate their
performance on a set of real-world benchmarks where in-
line pragmas are present. Pragmas may slow down individ-
ual programs, but on average improve performance by 10%.
Searching for the best configuration on a per-program basis
increases this performance to an average of 27%. Search-
ing for the best configuration for each program is, however,
expensive and unrealistic, requiring repeated compilation
and execution. This paper determines a new single config-
uration that gives a 22% improvement on average across
the benchmarks. Finally, we use a simple machine learning
model that predicts the best configuration on a per-program
basis, giving a 26% average improvement.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Compilers.

Keywords: Inlining, Haskell, GHC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9438-3/22/09. . . $15.00
https://doi.org/10.1145/3546189.3549918

ACM Reference Format:
Celeste Hollenbeck,Michael F. P. O’Boyle, andMichel Steuwer. 2022.
Investigating Magic Numbers: Improving the Inlining Heuristic in
the Glasgow Haskell Compiler. In Proceedings of the 15th ACM
SIGPLAN International Haskell Symposium (Haskell ’22), September
15–16, 2022, Ljubljana, Slovenia.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3546189.3549918

1 Introduction
Inlining is a classical compiler optimization that has been
studied extensively in imperative languages, such as byDavid-
son and Holler [1992], Chen et al. [1993], and Cavazos and
O’Boyle [2005], as well as in functional languages, for exam-
ple by Peyton Jones and Marlow [2002]. Inlining of function
calls is easy to implement in a compiler: replace the call of
a function by an instance of the function’s body. However,
deciding which function call to inline is not straightforward.
Chen et al. showed in 1993 the complex performance con-
siderations of inlining, requiring a balance of the benefits
of eliminating function call overhead with the additional
required code space and its potential downsides, such as
increased pressure on the instruction cache.

Peyton Jones and Marlow [2002] pointed out that inlining
is particularly important in functional languages, as it sub-
sumes other optimizations that are performed separately in
an imperative setting, such as copy propagation and jump
elimination.
In addition, functional programs often contain signifi-

cantly more functions that need to be considered for inlin-
ing, due to the frequent use of anonymous functions (a.k.a.,
lambda expressions) and the cultural encouragement to use
function abstractions abundantly. Furthermore, inlining is
not restricted to functions but can be performed for every
let-bound variable. Practical functional programming relies
on the ability of optimizing compilers, such as the Glasgow
Haskell Compiler (GHC), to aggressively inline function calls
and compile away the complex abstractions expressed in user
code.

Peyton Jones and Marlow, the primary developers of GHC,
call effective inlining “particularly crucial in getting good per-
formance”, state that “it is our experience that the inliner is a
lead player in many [performance] improvements”, and also
“No other single aspect of the compiler has received so much at-
tention” [2002]. Similarly, Minsky highlights the significance
for OCaml, as “inlining is about more than just function call

https://orcid.org/0000-0002-2922-5954
https://orcid.org/0000-0003-1619-5052
https://orcid.org/0000-0001-5048-0741
https://doi.org/10.1145/3546189.3549918
https://doi.org/10.1145/3546189.3549918

Haskell '22, September 15�16, 2022, Ljubljana, Slovenia Celeste Hollenbeck, Michael F. P. O'Boyle, and Michel Steuwer

overhead. That's because inlining grows the amount of code
that the optimizer can look at at a given point, and that makes
other optimizations more e�ective�[2016]. While OCaml has
improved inlining with a new compiler intermediate rep-
resentation, maybe surprisingly, the approach of GHC to
inlining has not changed signi�cantly in the last 20 years.

If this optimization is so critical to functional program-
ming in general, and GHC's performance in particular�why
has it not been re-examined, given the massive hardware
changes witnessed in the last 20 years? A likely reason is that
its inlining decisions are poorly understood, rely on hard-
wired constants, and are scattered throughout the compiler.
While Peyton Jones and Marlow [2002] describe the overall
design choices of the GHC inliner and particular implementa-
tion challenges, they avoid discussing the crucial numerical
parameters that make up the heuristics that eventually de-
cide to inline or not. The heuristics' complex implementation
and their reliance on these numbers makes evaluating and
modifying GHC's inlining behaviour di�cult.

These hand-coded numerical parameters re�ect the GHC
developers' �best guess� as to what should be inlined, and
they are often accommodated by comments expressing the
arbitrary nature of the choices made for their values. This
highlights them asmagic numbers, a term described by Miller
et al. [2009], and makes modi�cation challenging. Further-
more, changes to these parameters�and GHC in general�are
still performance tested against thenofib benchmark suite
described by Partain in 1993. Thenofib suite itself is falling
into obsoleteness, as observed by Marlow already over 15
years ago [2005]. Inlining in GHC is thus a compiler opti-
mization that is thought to be highly signi�cant, yet di�cult
to modify and evaluate.

Dissatisfaction with the performance of GHC's inliner is
highlighted by developers' frequent use of pragmas to manu-
ally annotate their code in an attempt to coerce GHC to inline
speci�c functions and improve performance. Our investiga-
tions revealed that 1 in 5 of Haskell projects uploaded to
Hackage, the Haskell community's central package archive,
contain manually inserted �inline� compiler pragmas.

In this paper, we systematically study inlining in the con-
text of functional languages. We focus speci�cally on the
performance of GHC's inliner, as GHC is one of the most
widely used optimizing functional compilers and known to
deliver good performance. While our experimental evalua-
tion is speci�c to GHC, our methodology and �ndings are of
interest to compiler engineers of other functional languages.

We study inlining across a set of real-world Haskell bench-
marks where programmers resorted to the use of pragmas to
improve inlining performance. We investigate the in�uence
of the magical number values within GHC's inliner by pa-
rameterizing them and automatically exploring the space of
possible parameter values. In some cases, we observe signi�-
cant possible performance gains for well-chosen parameter
values on a per-benchmark basis. We are also able to �nd

a single parameter con�guration that gives an average per-
formance gain across the benchmarks. Finally, we employ a
simple machine learning model that predicts good parameter
values and delivers good speedups for an unseen program
without the need for excessive compilation and execution.

To summarize, we make the following contributions:
� we present a real-world benchmark suite for evaluating

GHC's performance, sourced from popular Hackage open-
source packages [Hollenbeck 2022];

� we perform an in-depth experimental analysis of the per-
formance of GHC's inliner across a range of real-world
benchmarks;

� we show empirical evidence for the bene�ts of using au-
tomated tuning techniques to improve the performance
of the GHC inliner;

� and we demonstrate the bene�ts of using of a simple
predictive model that delivers signi�cant performance.

2 Background
2.1 Inlining in Functional Languages

In functional languages, inlining may simply be described as
replacing the use of an identi�er in an expression with the
identi�er's de�nition. An example in Haskell, originally pre-
sented by Peyton Jones and Marlow [2002], is given below:

let f = \x -> x*3 in f (a+b) - c
=) (a+b)*3 - c

Peyton Jones and Marlow [2002] identify three distinct
program transformations that collectively perform the inlin-
ing for the example above:
1. Theinlining itself replacing a use of alet -bound identi-

�er (here: f) by a copy of its de�nition (here:\x -> x*3):

let f = \x -> x*3 in f (a+b) - c
=) let f = \x -> x*3 in (\x -> x*3) (a+b) - c

2. Dead code eliminationthat removes unnecessarylet -
bindings where the bound identi�er is not used in the
body of thelet , as it is the case in the example:

let f = \x -> x*3 in (\x -> x*3) (a+b) - c
=) (\x -> x*3) (a+b) - c

3. V-reductiontransforming a lambda application into alet -
binding, enabling further inlining:

(\x -> x*3) (a+b) - c
=) (let x = a+b in x*3) - c

To �nalize the example, we perform moreinlining and
dead code eliminationsteps:

(let x = a+b in x*3) -c
=) (let x = a+b in (a+b)*3) -c
=) (a+b)*3 -c

As Haskell is a lazy and pure functional language,inlining,
dead code elimination, andV-reductionare always legal trans-
formations that do not alter the program's meaning.Dead
code eliminationandV-reductionare easy to implement, as

Investigating Magic Numbers: Improving the Inlining Heuristic in the Glasgow Haskell Compiler Haskell '22, September 15�16, 2022, Ljubljana, Slovenia

both of them are generally bene�cial, whereas deciding when
to inline what identi�er is challenging. Therefore, GHC per-
forms inlining with careful consideration, despite its heavy
reliance on good inlining decisions for further optimization.
To determine when inlining may expose further opportu-
nities for optimization, GHC must examine the context in
which the inlinee occurs to balance the bene�ts of inlining
with potential negative e�ects, such as code duplication.

2.2 Overview of the GHC Inlining Heuristic

The logic for GHC's inlining decisions is scattered through-
out the codebase. A search for �CoreUnfold� brings up 30 dif-
ferent �les in GHC's compiler directory. We thus present a
simpli�ed account of the heuristic, depicted in Figure 1.

The callSiteInline function (top right of Figure 1) is
invoked to determine whether to inline or not. Any inlining
decision which requires nontrivial consideration is labeled as
aCoreUnfolding and passed to the functiontryUnfolding
(middle of Figure 1), which makes a value judgment based
upon the estimated size of the callee, its arguments, how it
�ts within its context, and other interesting attributes. At a
highly simplistic level, it calculates the cost and bene�t of
inlining: if the cost minus bene�t is less than a threshold,
then it performs inlining.

The calculation happens in this line:

small_enough =
(size - discount) <= ufUseThreshold dflags

which determines acceptability, wheresize is determined
by a traversal of the inlinee anddiscount is calculated with
consideration to the inlinee's arguments, the continuation,
and dynamic �ags optionally set upon compilation. The dis-
count represents the value gained, which would o�set the
cost of inlining large things. This computation happens when
the Simpli�er�a module where GHC iteratively applies opti-
mizations to the Core intermediate representation (Core IR)
code�calls tryUnfolding on aCoreUnfolding.

Each inlining decision additionally depends upon consid-
erations including but not limited to: the type of the expres-
sion, its arity, its number and characterization of arguments,
the phase of compilation, and a number of calculated dis-
counts and thresholds written directly into GHC simply as
best-judgment constants.

2.3 Magic Numbers in the Inliner

The calculations for bothsize anddiscount rely upon sev-
eral magic numbers written directly into the inliner. An
example of the use of these numbers occurs in the �rst few
lines of the functioncomputeDiscount, shown in Figure 2,
which computes a discount value for all functions being con-
sidered for inlining. IncomputeDiscount, the number 10
refers to a discount given for the function itself.

Figure 1. Visualization of GHC's Inliner. The function
callSiteInline is declared in CoreUnfold.hs and is called
from Simplify.hs. Rounded boxes indicate functions, ovals
indicate conditions, and dotted boxes indicate unfolding IDs.

In this example, making the number 10 larger would give
the inlinable item a larger discount to o�set its size, increas-
ing its likelihood to be inlined. Such a modi�cation would

Haskell '22, September 15�16, 2022, Ljubljana, Slovenia Celeste Hollenbeck, Michael F. P. O'Boyle, and Michel Steuwer

computeDiscount :: [Int] -> Int -> [ArgSummary]
-> CallCtxt
-> Int

computeDiscount arg_discounts
res_discount
arg_infos
cont_info

= 10 -- Discount of 10 because the result
-- replaces the call
-- so we count 10 for the function itself

Figure 2. First part of thecomputeDiscountfunction, with
the magic number 10, in CoreUnfold.hs.

makeall functions more likely to be inlined because they
would start with a higher base discount, before the addi-
tion of any discounts based upon their arguments (which
would be calculated in the lines immediately following in
computeDiscount):

+ 10 * length actual_arg_discounts
+ round (ufKeenessFactor dflags *

-- Discount of 10 for each arg supplied ,
-- because the result replaces the call

fromIntegral (total_arg_discount + res_discount '))

Figure 3. Second part of thecomputeDiscount function,
with the magic number 10, in CoreUnfold.hs.

Additionally, the termres_discount' , short for �result
discount�, adds a discount when an e�ciency is expected
to be gained through inlining�for example, through case
reductions. Its numerical value is computed by considering
a simpli�ed version of the context, represented by the data
type CallCtxt . The original code of Figure 4 shows how
some of these possibleCallCtxt values are assigned to the
magic number40to return as a result forres_discount' in
one single line of code, along with the comments right after
it which debate its accuracy.

Magic numbers such as these are scattered throughout the
entire inliner, and its decisions are fundamentally dependent
upon them. We set out in this paper to study the impact of
these magical numbers systematically.

3 Approach
For this study, we wanted to answer the question:Could a
modi�cation to the inliner's thresholds yield a performance
improvement across Haskell code execution time?If the answer
to that question isyes, then we face two additional questions:
If so, how much improvement might we expect to see by
modifying GHC's inlining thresholds? If not, how should we
then modify GHC to attain an optimal improvement?

It is necessary to answer these questions before redesign-
ing the inliner, given the complexity of the system. Thus,

_ -> 40 ` min` res_discount
-- ToDo : this 40 ` min` res_discount doesn ' t
-- seem right
-- for DiscArgCtxt it shouldn ' t matter because
-- the function will get the arg discount
-- for any non - triv arg
-- for RuleArgCtxt we do want to be keener to
-- inl ine ; but not only constructor results
-- for RhsCtxt I suppose that exposing a data
-- con is good in general
-- And 40 seems very arbitrary

Figure 4. GHC 8.10.3: CoreUnfold.hs, line 1640. The top
line of code calculates the value forres_discount' seen in
Figure 3. The developer's comments highlight some of the
arbitrary decisions made.

we constructed a set of benchmarks with the intention of
revealing weaknesses in GHC's inlining decision process.
We then modi�ed GHC 8.10.3 such that we could change its
inliner's magic number values through dynamic �ags to see
how much we could a�ect the benchmarks' execution times
through the inliner alone.

3.1 Optimization Space Exploration

Because parameterizing all of the inliner's thresholds would
have been intractable, we focused on 10 hand-coded magic-
number constants to expose as dynamic �ags, which could
then be passed into GHC when compiling an application.
Additionally, in our optimization space, we included two
of GHC's built-in dynamic �ags. Combined, this totals 12
parameters.

To approximately quantify the type of inlining decisions
being performed, we added hooks to GHC 8.10.3 and com-
piled it against the Cabal library, where Cabal is the canon-
ical system for building and installing Haskell packages.
During compilation, GHC performed 8,708,142 nontrivial
inlining decisions, where �nontrivial� means any inlining
for which it is not obvious that it should de�nitely be in-
lined. Among these nontrivial inlinings,81”8% were des-
ignated asUnfIfGoodArgs�which means their unfolding
would be large enough to require consideration, but not so
large to immediately disqualify it from inlining. Before decid-
ing whether to inline, GHC gives these potential inlinings a
reduction in their calculated sizes via a discount calculation:

discounted_size = size - discount .

We therefore decided to create parameters from magic
numbers involved in the calculation ofsize anddiscount .

3.2 Characterization of the Parameters

Each parameter was selected because it had a direct impact
on GHC's inlining decisions and would likely produce an

Investigating Magic Numbers: Improving the Inlining Heuristic in the Glasgow Haskell Compiler Haskell '22, September 15�16, 2022, Ljubljana, Slovenia

Table 1. Inlining parameter dynamic �ags, their descriptions, and original values.

Flag Description
Original
Value

nontrivarg-disc Discount for an argument labeled �NonTrivial�. 10
funcitself-disc Constant discount value added to every function inlined. 10
actarg-disc Discount for each argument. 10
discargctxt-disc Context is the argument of a function with non-zero argument discount. 40
ruleargctxt-disc Context is the argument of a function with rules. 40
rhsctxt-disc The context is the right-hand side of a let. 40
arbctxt-disc The wild card remaining to catch any other type of context and calculate its discount. 40
cosbase Base size value of a class op. 20
cosargs Size metric added for each argument of a class op. 10
bigalt Size component of the biggest alternative when scrutinizing a case expression argument. 20
funfolding-fun-discount Adjust the eagerness of GHC to inline functions. 60
funfolding-dict-discount Adjust the eagerness of GHC to inline dictionaries. 30

observable e�ect on runtime performance. Table 1 describes
each parameter and gives their names and original values.

Three parameters,cosbase, cosargs, andbigalt, calculate
various components of an inlinee's size. The remaining 9
help calculate its discount, or the numerical value estimated
to o�set the cost of inlining. We also included the built-in
GHC dynamic �ags-funfolding-fun-discountand-funfolding-
dict-discount, as they both pertained speci�cally to inlining.

4 Benchmark Construction
To experimentally evaluate the performance of GHC's inliner,
we needed a benchmark suite that would allow us to analyze
the performance impact of di�erent inlining decisions.

Thenofib benchmark suite was originally constructed to
be a substantial, diverse, relevant set of programs in 1993;
but now, most of its programs run for a fraction of a second,
as pointed out by Marlow [2005]. Unfortunately, despite its
age, no�b has yet to be replaced or upgraded. As an alter-
native, we wanted to allow developers to experiment and
evaluate on interchangeable, testable, real-world packages
from Hackage so that the resultant benchmarks would be
heterogeneous and relevant to real-world needs. We based
that assumption on previous work to construct a benchmark
suite for JavaScript, as described by Richards et al. [2011a].

We therefore constructed a tool in Python to select Hack-
age packages speci�cally to suit our benchmarking goal: to
identify room for execution time improvement as it pertains
to inlining. These programs needed to run for an adequate
amount of time, perform a variety of di�erent tasks, and
have consistent execution times such that the same inlining
decisions would reproduce the same results.

4.1 Benchmark Selection

Stackage is a distribution of a subset of Hackage, where pack-
ages within the same snapshot will build together and pass
all of their tests. For our benchmarks, we selected packages

contained within a single Stackage snapshot.1 In this Stack-
age Nightly build, 854 of 2218 packages (about 39%) used
QuickCheck, a tool which generates random tests developed
by Claessen and Hughes [2000]. Initially, these randomly
generated tests were a signi�cant source of unwanted noise.
To address this, we set QuickCheck's random seed to one
constant and made its test times consistent. We then enabled
our scripts to automatically patch all selected packages' de-
pendencies with our modi�ed QuickCheck.

In our Stackage snapshot, 421 of the 2218 packages con-
tained INLINE pragmas�or about 19%. We hypothesized
these packages may provide code where developers had iden-
ti�ed a good set of problems upon which to evaluate inlining.
Section 4.2 explains the motivation for that decision.

In�uenced by our observation of pragmas, we identi�ed
236 packages with INLINE pragmas in their �src� folders that
could be run withcabal new-test . From those packages,
we sub-selected 10 which each ran over 4 seconds, decreasing
the likelihood that any speedup percentages observed would
fall outside the range of noise. Table 2 characterizes the
selected 10 packages.

4.2 The Consideration of INLINE Pragmas

Compiler pragmas are lines of code speci�c to individual
compilers, rather than the grammars of languages them-
selves. Programmers insert these pragmas to instruct a com-
piler on how to process and optimize certain input programs.

In GHC, a pragma to instruct GHC to inline a function
is known as anINLINEpragma. AnINLINEpragma may be
placed beneath the declaration of a function to coerce GHC
to try to inline the function, if it can.

An example of the use of anINLINEpragma is:

key_function :: Int -> String -> (Bool , Double)
{-# INLINE key_function # -}

1stackage-nightly-2020-01-31

Haskell '22, September 15�16, 2022, Ljubljana, Slovenia Celeste Hollenbeck, Michael F. P. O'Boyle, and Michel Steuwer

Table 2. Selected Stackage packages and their information. SLOC are estimates. Descriptions were taken from the packages'
Hackage pro�les.

Package Version SLOC Description
Default
Sec.

INLINE
Pragmas

hw-rankselect 0.13.3.1 1387 E�cient rank and select operations on large bit-vectors 8.18 88
ListLike 4.6.3 3402 The ListLike package provides typeclasses and instances to

allow polymorphism over many common datatypes.
23.04 2

loop 0.3.0 155 Fast loops (for when GHC can't optimize forM_) 19.94 8
metrics 0.4.1.1 1819 High-performance application metric tracking 58.48 9
midi 0.2.2.2 5094 Handling of MIDI messages and �les 19.18 2
monoid-subclasses 1.0.1 4900 Subclasses of Monoid 35.12 334
nonempty-containers 0.3.3.0 10055 Non-empty variants of containers data types 4.38 520
poly 0.3.3.0 2040 Haskell library for univariate and multivariate polynomials,

backed by Vector.
94.56 57

reinterpret-cast-0.1.0 0.1.0 122 Memory reinterpretation casts for Float/Double and
Word32/Word64

26.86 3

set-cover 0.1 2781 Solve exact set cover problems like Sudoku, 8 Queens, Soma
Cube, Tetris Cube

15.55 16

An INLINEpragma does not guarantee inlining. For exam-
ple, GHC will not inline a function which breaks the loop of
a mutually-recursive group. Coercing an inline may not have
a positive e�ect on performance, and theINLINEpragma
may have no e�ect if the function is small enough that GHC
would inline it anyway. Developers insert these pragmas at
their discretion, usually in the hope to improve the program's
performance.

4.3 Pragma Example

User-inserted compiler pragmas may hint that a compiler's
optimization decisions could be improved. This snippet from
poly contains the INLINE pragma{-# INLINE integral #-} :

-- | Compute an indefini te integral of a polynomial ,
-- sett ing constant term to zero .
--
-- >>> integral (3 * X^2 + 3) :: UPoly Double
-- 1.0 * X^3 + 3.0 * X
integral :: (Eq a, Fractional a ,Vector v (Word ,a)) =>

Poly v a -> Poly v a
integral (Poly xs) = Poly

$ map (\(p ,c) -> (p+1, c /(fromIntegral p + 1))) xs
{ -# INLINE integral # -}

Here, the functionintegral is overloaded. Without inlin-
ing it, integral would get passed a dictionary of functions
for the possible types ofà'.

When integral is inlined, GHC may see that `a' has a
speci�c type�for example, �oat�and then specialize for it.
In this way, we can sometimes substitute the retrieval and
application of unknown higher-order functions with single
machine instructions by telling GHC to inline with pragmas.
This makes the resultant code much faster.

5 Experimental Setup
To analyze, explore, and improve the performance of the
GHC inliner, we perform an in-depth experimental evalua-
tion on our benchmarks. In all experiments, programs are
executed 10 times and average time is reported. The default
baseline is the execution time of a package compiled with
unmodi�ed GHC 8.10.3 andINLINEpragmas disabled. We
refer to such execution times aswithout pragmas. If INLINE
pragmas are enabled, this is referred to aswith pragmas.

We wanted to explore both parameter values which were
likely to yield good performance and also values from a
larger range; therefore, we sampled from both a normal dis-
tribution and a uniform distribution. Sampling from a normal
distribution stays near GHC's original values at the mean
and assumes that they are reasonable values. The normal
distribution therefore takes̀ as the original �ag's value and
f = 0”4. If the generated number was negative, number gen-
eration recurred until sampling produced a positive value.
We ran 140 con�gurations randomized in this manner: 70 on
the packages with pragmas and 70 without.

We ran additional con�gurations from a uniform distribu-
tion with a lower bound of 0 and an upper bound of2 � N,
where# was the default value. For this experiment, we col-
lected 250 con�gurations without pragmas and 250 with
pragmas. The �nal result contained 640 randomly sampled
data points, 320 without pragmas and 320 with pragmas.
When we evaluate the performance impact of searching for
good con�gurations, we refer to this assearch. We ran all
benchmarks in isolation on a dedicated server (AMD EPYC
7720P CPU,256 GBRAM).

6 Experimental Results
We �rst examine the impact of pragmas and a per-program
parameter con�guration search on the benchmarks. Then

	Abstract
	1 Introduction
	2 Background
	2.1 Inlining in Functional Languages
	2.2 Overview of the GHC Inlining Heuristic
	2.3 Magic Numbers in the Inliner

	3 Approach
	3.1 Optimization Space Exploration
	3.2 Characterization of the Parameters

	4 Benchmark Construction
	4.1 Benchmark Selection
	4.2 The Consideration of INLINE Pragmas
	4.3 Pragma Example

	5 Experimental Setup
	6 Experimental Results
	6.1 Performance Improvement
	6.2 Analysis
	6.3 The Single Best Configurations
	6.4 A Simple Machine Learning Predictive Model
	6.5 Cross-Architecture Transference
	6.6 Results Summary

	7 Related Work
	8 Conclusions
	References

