
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Structural Subtyping as Parametric Polymorphism

WENHAO TANG, The University of Edinburgh, United Kingdom

DANIEL HILLERSTRÖM, Huawei Zurich Research Center, Switzerland

JAMES MCKINNA, Heriot-Watt University, United Kingdom

MICHEL STEUWER, Technische Universität Berlin, Germany and the University of Edinburgh, UK

ORNELA DARDHA, University of Glasgow, United Kingdom

RONGXIAO FU, The University of Edinburgh, United Kingdom

SAM LINDLEY, The University of Edinburgh, United Kingdom

Structural subtyping and parametric polymorphism provide a similar kind of flexibility and reusability to

programmers. For example, both enable the programmer to supply a wider record as an argument to a function

that expects a narrower one. However, the means by which they do so differs substantially, and the precise

details of the relationship between them exists, at best, as folklore in literature.

In this paper, we systematically study the relative expressive power of structural subtyping and parametric

polymorphism. We focus our investigation on establishing the extent to which parametric polymorphism, in

the form of row and presence polymorphism, can encode structural subtyping for variant and record types.

We base our study on various Church-style _-calculi extended with records and variants, different forms of

structural subtyping, and row and presence polymorphism.

We characterise expressiveness by exhibiting compositional translations between calculi. For each trans-

lation we prove a type preservation and operational correspondence result. We also prove a number of

non-existence results. By imposing restrictions on both source and target types, we reveal further subtleties in

the expressiveness landscape, the restrictions enabling otherwise impossible translations to be defined. More

specifically, we prove that full subtyping cannot be encoded via polymorphism, but we show that several

restricted forms of subtyping can be encoded via particular forms of polymorphism.

1 INTRODUCTION
Subtyping and parametric polymorphism offer two distinct means for writing modular and reusable

code. Subtyping allows one value to be substituted for another provided that the type of the former

is a subtype of that of the latter [Cardelli 1988; Reynolds 1980]. Parametric polymorphism allows

functions to be defined generically over arbitrary types [Girard 1972; Reynolds 1974].

There are two main approaches to syntactic subtyping: nominal subtyping [Birtwistle et al. 1979]

and structural subtyping [Cardelli 1984, 1988; Cardelli and Wegner 1985]. The former defines a

subtyping relation as a collection of explicit constraints between named types. The latter defines

a subtyping relation inductively over the structure of types. This paper is concerned with the

latter. For programming languages with variant types (constructor-labelled sums) and record types

(field-labelled products) it is natural to define a notion of structural subtyping. We may always treat

a variant with a collection of constructors as a variant with an extended collection of constructors

(i.e., variant subtyping is covariant). Dually, we may treat a record with a collection of fields as a

record with a restricted collection of those fields (i.e., record subtyping is contravariant).

We can implement similar functionality to record and variant subtyping using row polymor-
phism [Rémy 1994; Wand 1987]. A row is a mapping from labels to types and is thus a common

ingredient for defining both variants and records. Row polymorphism is a form of parametric

Authors’ addresses: Wenhao Tang, The University of Edinburgh, United Kingdom, wenhao.tang@ed.ac.uk; Daniel

Hillerström, Huawei Zurich Research Center, Switzerland, daniel.hillerstrom@ed.ac.uk; James McKinna, Heriot-Watt

University, United Kingdom, j.mckinna@hw.ac.uk; Michel Steuwer, Technische Universität Berlin, Germany and the

University of Edinburgh, UK, michel.steuwer@tu-berlin.de; Ornela Dardha, University of Glasgow, United Kingdom,

ornela.dardha@glasgow.ac.uk; Rongxiao Fu, The University of Edinburgh, United Kingdom, s1742701@sms.ed.ac.uk; Sam

Lindley, The University of Edinburgh, United Kingdom, sam.lindley@ed.ac.uk.

HTTPS://ORCID.ORG/0009-0000-6589-3821
HTTPS://ORCID.ORG/0000-0003-4730-9315
HTTPS://ORCID.ORG/0000-0001-6745-2560
HTTPS://ORCID.ORG/0000-0001-5048-0741
HTTPS://ORCID.ORG/0000-0001-9927-7875
HTTPS://ORCID.ORG/0009-0005-6966-4037
HTTPS://ORCID.ORG/0000-0002-1360-4714
https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0003-4730-9315
https://orcid.org/0000-0003-4730-9315
https://orcid.org/0000-0001-6745-2560
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0001-9927-7875
https://orcid.org/0009-0005-6966-4037
https://orcid.org/0000-0002-1360-4714
https://orcid.org/0000-0002-1360-4714


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

polymorphism that allows us to abstract over the extension of a row. Intuitively, by abstracting

over the possible extension of a variant or record we can simulate the act of substitution realised

by structural subtyping. Such intuitions are folklore, but pinning them down turns out to be sur-

prisingly subtle. In this paper we make them precise by way of translations between a series of

different core calculi enjoying type preservation and operational correspondence results as well as

non-existence results. We show that though folklore intuitions are to some extent correct, exactly

how they manifest in practice is remarkably dependent on what assumptions we make, and much

more nuanced than we anticipated. We believe that our results are not just of theoretical interest. It

is important to carefully analyse and characterise the relative expressive power of different but

related features to understand the extent to which they overlap, placing the design of practical

programming language on a more scientific basis.

To be clear, there is plenty of other work that hinges on inducing a subtyping relation based on

generalisation (i.e. polymorphism) — and indeed this is the basis for principal types in Hindley-

Milner type inference — but that this paper is about something quite different, namely encoding

prior notions of structural subtyping using polymorphism. In short, principal types concern poly-

morphism as subtyping whereas this paper concerns subtyping as polymorphism.

In order to distil the features we are interested in down to their essence and eliminate the

interference on the expressive power of other language features (such as higher-order store), we

take plain Church-style call-by-name simply-typed _-calculus (_) as our starting point and consider

the relative expressive power of minimal extensions in turn. We begin by insisting on writing

explicit upcasts, type abstractions, and type applications in order to expose structural subtyping

and parametric polymorphism at the term level. Later we also consider ML-style calculi, enabling

new expressiveness results by exploiting the type inference for rank-1 polymorphism. For the

dynamic semantics, we focus on the reduction theory generated from the 𝛽-rules, adding further

𝛽-rules for each term constructor and upcast rules for witnessing subtyping.

First we extend the simply-typed _-calculus with variants (_[ ] ), which we then further augment

with simple subtyping (_⩽[ ] ) that only considers the subtyping relation shallowly on variant and

record constructors (width subtyping), and (higher-rank) row polymorphism (_
𝜌

[ ] ), respectively.

Dually, we extend the simply-typed _-calculus with records (_⟨⟩), which we then further augment

with simple subtyping (_⩽⟨⟩) and (higher-rank) presence polymorphism (_\⟨⟩) respectively. Presence

polymorphism [Rémy 1994] is a kind of dual to row polymorphism that allows us to abstract

over which fields are present or absent from a record independently of their potential types,

supporting a restriction of a collection of record fields, similarly to record subtyping. We then

consider richer extensions with strictly covariant subtyping (_⩽co[ ] , _⩽co⟨⟩ ) which propagates the

subtyping relation through strictly covariant positions, and full subtyping (_⩽full[ ] , _⩽full⟨⟩ ) which

propagates the subtyping relation through any positions. We also consider target languages with

both row and presence polymorphism (_
𝜌\

[ ] , _
𝜌\

⟨⟩ ). Our initial investigations make essential use of

higher-rank polymorphism. Subsequently, we consider ML-like calculi with rank-1 row or presence

polymorphism (_
𝜌1

⟨⟩ , _
\1
⟨⟩ , _

𝜌1

[ ] , _
\1
[ ] ), which admit Hindley-Milner type inference [Damas and Milner

1982] without requirements of type annotations or explicit type abstractions and applications. The

focus on rank-1 polymorphism demands a similar restriction to the calculi with subtyping (_⩽full⟨⟩1 ,

_⩽full⟨⟩2 , _⩽full[ ]1 , _⩽full[ ]2 ), which constrains the positions where records and variants can appear in types.

In this paper, we will consider only correspondences expressed as compositional translations
inductively defined on language constructs following Felleisen [1991]. In order to give a refined

characterisation of expressiveness and usability of the type systems of different calculi, we make

use of two orthogonal notions of local and type-only translations.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Structural Subtyping as Parametric Polymorphism 3

_\[ ] _⩽full[ ]2 _\1[ ]

_[ ] _⩽[ ] _⩽co[ ] _⩽full[ ] _
𝜌\

[ ]

_
𝜌

[ ] _⩽full[ ]1 _
𝜌1

[ ]

_

_\⟨⟩ _⩽full⟨⟩1 _\1⟨⟩

_⟨⟩ _⩽⟨⟩ _⩽co⟨⟩ _⩽full⟨⟩ _
𝜌\

⟨⟩

_
𝜌

⟨⟩ _⩽full⟨⟩2 _
𝜌1

⟨⟩

§4.2
§4.1

§4.3
§4.4

§4.5

§4.5

§5.4

§5.2

§5.1

§5.1

§5.3

extension

local type-only

local term-involved

global type-only

non-existence of type-only

§6

§6

§6

§6

restriction

Extensions and restrictions go from calculi with shorter names to those with longer names

(e.g. _ [] extends _ and _\1[] restricts _\[] ).

Fig. 1. Overview of translations and non-existence results covered in the paper.

• A local translation restricts which features are translated in a non-trivial way. It provides non-
trivial translations only of constructs of interest (e.g., record types, record construction and

destruction, when considering record subtyping), and is homomorphic on other constructs;

a global translation may allow any construct to have a non-trivial translation.

• A type-only translation restricts which features a translation can use in the target language.

Every term must translate to itself modulo constructs that serve only to manipulate types

(e.g., type abstraction and application); a term-involved translation has no such restriction.

Local translations capture the intuition that a feature can be expressed locally as a macro rather

than having to be implemented by globally changing an entire program [Felleisen 1991]. Type-only

translations capture the intuition that a feature can be expressed solely by adding or removing type

manipulation operations (such as upcasts, type abstraction, and type application) in terms, thereby

enabling a more precise comparison between the expressiveness of different type system features.

This paper gives a precise account of the relationship between subtyping and polymorphism for
records and variants. We present relative expressiveness results by way of a series of translations

between calculi, type preservation proofs, operational correspondence proofs, and non-existence

proofs. The main contributions of the paper (summarised in Figure 1) are as follows.

• We present a collection of examples in order to convey the intuition behind all translations

and non-existence results in Figure 1 (Section 2).

• We define a family of Church-style calculi extending lambda-calculus with variants and

records, simple subtyping, (higher-rank) row polymorphism, and (higher-rank) presence

polymorphism (Section 3).



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

• We prove that simple subtyping can be elaborated away for variants and records by way of

local term-involved translations (Sections 4.1 and 4.3).

• We prove that simple subtyping can be expressed as row polymorphism for variants and pres-

ence polymorphism for records by way of local type-only translations (Sections 4.2 and 4.4).

• We prove that there exists no type-only translation of simple subtyping into presence

polymorphism for variants or row polymorphism for records (Section 4.5).

• We expand our study to calculi with covariant and full subtyping and with both row- and

presence-polymorphism, covering further translations and non-existence proofs (Section 5).

In so doing we reveal a fundamental asymmetry between variants and records.

• We prove that if we suitably restrict types and switch to ML-style target calculi with implicit

rank-1 polymorphism, then we can exploit type inference to encode full subtyping for

records and variants using either row polymorphism or presence polymorphism (Section 6).

• For each translation we prove type preservation and operational correspondence results.

Sections 7.1 and 7.2 discuss extensions. Section 7.3 discusses related work. Section 7.4 concludes.

2 EXAMPLES
To illustrate the relative expressive power of subtyping and polymorphism for variants and records

with a range of extensions, we give a collection of examples. These cover the intuition behind the

translations and non-existence results summarised in Figure 1 and formalised later in the paper.

2.1 Simple Variant Subtyping as Row Polymorphism
We begin with variant types. Consider the following function.

getAge = _x [Age:Int;Year:Int] . case x {Age y ↦→ y;Year y ↦→ 2023 − y}
The variant type [Age : Int;Year : Int] denotes the type of variants with two constructors Age and
Year each containing an Int. We cannot directly apply getAge to the following variant

year = (Year 1984) [Year:Int]

as year and x have different types. With simple variant subtyping (_⩽[ ] ) which considers subtyping

shallowly on variants, we can upcast year : [Year : Int] to the supertype [Age : Int;Year : Int]
which has more labels. This makes intuitive sense, as it is always safe to treat a variant with fewer

constructors (Year in this case) as one with more constructors (Age and Year in this case).

getAge (year ▷ [Age : Int;Year : Int])
One advantage of subtyping is reusability: by upcasting we can apply the same getAge function to

any value whose type is a subtype of [Age : Int;Year : Int].
age = (Age 9) [Age:Int]
getAge (age ▷ [Age : Int;Year : Int])
In a language without subtyping (_[ ] ), we can simulate applying getAge to year by first de-

constructing the variant using case and then reconstructing it at the appropriate type — a kind of

generalised [-expansion on variants.

getAge (case year {Year y ↦→ (Year y) [Age:Int;Year:Int]})

This is the essence of the translation _⩽[ ] _[ ] in Section 4.1. The translation is local in the sense

that it only requires us to transform the parts of the program that relate to variants (as opposed to

the entire program). However, it still comes at a cost. The deconstruction and reconstruction of

variants adds extra computation that was not present in the original program.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Structural Subtyping as Parametric Polymorphism 5

Can we achieve the same expressive power of subtyping without non-trivial term de- and re-

construction? Yes we can! Row polymorphism (_
𝜌

[ ] ) allows us to rewrite yearwith a type compatible

(via row-variable substitution) with any variant type containing Year : Int and additional cases.
1

year′ = Λ𝜌. (Year 1984) [Year:Int;𝜌 ]

As before, the translation to year′ also adds new term syntax. However, the only additional syntax

required by this translation involves type abstraction and type application; in other words the

program is unchanged up to type erasure. Thus we categorise it as a type-only translation as

opposed to the previous one which we say is term-involved. We can instantiate 𝜌 with (Age : Int)
when applying getAge to it. The parameter type of getAge must also be translated to a row-

polymorphic type, which requires higher-rank polymorphism. Moreover, we re-abstract over year′

after instantiation to make it polymorphic again.

getAge′ = _x∀𝜌.[Age:Int;Year:Int;𝜌 ] . case (x ·) {Age y ↦→ y;Year y ↦→ 2023 − y}
getAge′ (Λ𝜌. year′ (Age : Int; 𝜌))

The type application x · instantiates 𝜌 with the empty closed row type ·. The above function

application is well-typed because we ignore the order of labels when comparing rows (Age :

Int;Year : Int; 𝜌 ≡ Year : Int;Age : Int; 𝜌) as usual. This is the essence of the local type-only

translation _⩽[ ] _
𝜌

[ ] in Section 4.2.

We are relying on higher-rank polymorphism here in order to simulate upcasting on demand.

For instance, an upcast on the parameter of a function of type (∀𝜌.[Age : Int;Year : Int; 𝜌]) → B is

simulated by instantiating 𝜌 appropriately. We will show in Section 2.4 that restricting the target

language to rank-1 polymorphism requires certain constraints on the source language.

2.2 Simple Record Subtyping as Presence Polymorphism
Now, we consider record types, through the following function.

getName = _x ⟨Name:String⟩ . (x .Name)

The record type ⟨Name : String⟩ denotes the type of records with a single field Name containing a

string. We cannot directly apply getName to the following record

alice = ⟨Name = "Alice";Age = 9⟩

as the types of alice and x do not match. With simple record subtyping (_⩽⟨⟩), we can upcast

alice : ⟨Name : String;Age : Int⟩ to the supertype ⟨Name : String⟩. It is intuitive to treat a record
with more fields (Name and Age) as a record with fewer fields (only Name in this case).

getName (alice ▷ ⟨Name : String⟩)

Similarly to variant subtyping, we can reuse getName on records of different subtypes.

bob = ⟨Name = "Bob";Year = 1984⟩
getName (bob ▷ ⟨Name : String⟩)

In a language without subtyping (_⟨⟩), we can first deconstruct the record by projection and then

reconstruct it with only the required fields, similarly to the generalised [-expansion of records.

getName ⟨Name = alice.Name⟩

1
We omit the kinds of row variables for simplicity. They can be easily reconstructed from the contexts.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

This is the essence of the local term-involved translation _⩽⟨⟩ _⟨⟩ in Section 4.3. Using presence

polymorphism (_\⟨⟩), we can simulate alice using a type-only translation.

alice′ = Λ\1\2 . ⟨Name = "Alice";Age = 9⟩⟨Name\1 :String;Age\2 :Int⟩

The presence variables \1 and \2 can be substituted with a marker indicating that the label is either

present • or absent ◦. We can instantiate \2 with absent ◦ when applying getName to it, ignoring

the Age label. This resolves the type mismatch as the equivalence relation on row types considers

only present labels (Name\ : String ≡ Name\ : String;Age◦ : Int). For a general translation, we
must make the parameter type of getName presence-polymorphic, and re-abstract over alice′.

getName′ = _x∀\ .⟨Name\ :String⟩ . ((x •).Name)
getName′ (Λ\ . alice′ \ ◦)

This is the essence of the local type-only translation _⩽⟨⟩ _\⟨⟩ in Section 4.4. The duality between

variants and records is reflected by the need for dual kinds of polymorphism, namely row and

presence polymorphism, which can extend or shrink rows, respectively.

2.3 Exploiting Contravariance
We have now seen how to encode simple variant subtyping as row polymorphism and simple

record subtyping as presence polymorphism. These encodings embody the intuition that row

polymorphism supports extending rows and presence polymorphism supports shrinking rows.

However, presence polymorphism is typically treated as an optional extra for row typing. For

instance, Rémy [1994] uses row polymorphism for both record and variant types, and introduces

presence polymorphism only to support record extension and default cases (which fall outside the

scope of our current investigation).

This naturally raises the question of whether we can encode simple record subtyping using row

polymorphism alone. More generally, given the duality between records and variants, can we swap

the forms of polymorphism used by the above translations?

Though row polymorphism enables extending rows and what upcasting does on record types is

to remove labels, we can simulate the same behaviour by extending record types that appear in

contravariant positions in a type. The duality between row and presence polymorphism can be

reconciled by way of the duality between covariant and contravariant positions. Let us revisit our

getName alice example, which we previously encoded using polymorphism. With row polymor-

phism (_
𝜌

⟨⟩), we can give the function a row polymorphic type where the row variable appears in

the record type of the function parameter.

getName✗ = Λ𝜌._x ⟨Name:String;𝜌 ⟩ . (x .Name)

Now in order to apply getName✗ to alice, we simply instantiate 𝜌 with (Age : Int).

getName✗ (Age : Int) alice

Though the above example suggests a translation which only introduces type abstractions and

type applications, the idea does not extend to a general composable translation. Intuitively, the main

problem is that in general we cannot know which type should be used for instantiation (Age : Int
in this case) in a compositional type-only translation, which is only allowed to use the type of

getName and alice ▷ ⟨Name : String⟩. These tell us nothing about Age : Int.
In fact a much stronger result holds. In Section 4.5, we prove that there exists no type-only

encoding of simple record subtyping as row polymorphism ( _⩽⟨⟩ _
𝜌

⟨⟩ ), and dually for variant

types with presence polymorphism ( _⩽[ ] _\[ ] ).



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Structural Subtyping as Parametric Polymorphism 7

2.4 Full Subtyping as Rank-1 Polymorphism
The kind of translation sought in Section 2.3 cannot be type-only, as it would require us to know

the type used for instantiation. A natural question is whether type inference can provide the type.

In order to support decidable, sound, and complete type inference, we consider a target calculus

with rank-1 polymorphism (_
𝜌1

⟨⟩ ) and Hindley-Milner type inference. Now the getName alice

example type checks without an explicit upcast or type application.
2

getName = _x . (x .Name) : ∀𝜌.⟨Name : String; 𝜌⟩ → String
alice = ⟨Name = "Alice";Age = 9⟩ : ⟨Name : String;Age : Int⟩
getName alice : String

Type inference automatically infers a polymorphic type for getName, and instantiates the variable 𝜌

with Age : Int. This observation hints to us that we might encode terms with explicit record upcasts

in _
𝜌1

⟨⟩ by simply erasing all upcasts (and type annotations, given that we have type inference). The

global nature of erasure implies that it also works for full subtyping (_⩽full⟨⟩ ) which lifts the width

subtyping of rows to any type by propagating the subtyping relation to the components of type

constructors. For instance, the following function upcast using full subtyping is also translated into

getName alice, simply by erasing the upcast.

(getName ▷ (⟨Name : String;Age : Int⟩ → String)) alice

Thus far, the erasure translation appears to work well even for full subtyping. Does it have any

limitations? Yes, we must restrict the target language to rank-1 polymorphism, which can only

generalise let-bound terms. The type check would fail if we were to bind getName via _-abstraction

and then use it at different record types. For instance, consider the following function which

concatenates two names using the ++ operator and is applied to getName.

(_f ⟨Name:String⟩→String. f (alice ▷ ⟨Name : String⟩) ++ f (bob ▷ ⟨Name : String⟩)) getName

The erasure of it is

(_f . f alice ++ f bob) getName

which is not well-typed as f can only have a monomorphic function type, whose parameter type

cannot unify with both ⟨Name : String;Age : Int⟩ and ⟨Name : String;Year : Int⟩.
In order to avoid such problems, we will define an erasure translation on a restricted subcal-

culus of _⩽full⟨⟩ . The key idea is to give row-polymorphic types for record manipulation functions

such as getName. However, the above function takes a record manipulation function of type

⟨Name : String⟩ → String as a parameter, which cannot be polymorphic as we only have rank-1

polymorphism. Inspired by the notion of rank-n polymorphism, we say that a type has rank-n
records, if no path from the root of the type (seen as an abstract syntax tree) to a record type passes

to the left of n or more arrows. We define the translation only on the subcalculus _⩽full⟨⟩2 of _⩽full⟨⟩ in

which all types have rank-2 records.

Such an erasure translation underlies the local type-only translation _⩽full⟨⟩2 _
𝜌1

⟨⟩ .

We obtain a similar result for presence polymorphism. With presence polymorphism, we can

make all records presence-polymorphic (similar to the translation in Section 2.2), instead of making

all record manipulation functions row-polymorphic. For instance, we can infer the following types

2
Actually, the principal type of getName should be ∀𝛼 𝜌.⟨Name : 𝛼 ; 𝜌 ⟩ → 𝛼 . We ignore value type variables for simplicity.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

for the getName alice example.

getName = _x . (x .Name) : ⟨Name : String⟩ → String
alice = ⟨Name = "Alice";Age = 9⟩ : ∀\1\2.⟨Name\1 : String;Age\2 : Int⟩
getName alice : String

Consequently, records should appear only in positions that can be generalised with rank-1 poly-

morphism, which can be ensured by restricting _⩽full⟨⟩ to the subcalculus _⩽full⟨⟩1 in which all types

have rank-1 records. We give a local type-only translation: _⩽full⟨⟩1 _\1⟨⟩ .

For variants, we can also define the notion of rank-n variants similarly. Dually to records, we can

either make all variants be row-polymorphic (similar to the translation in Section 2.1) and require

types to have rank-1 variants (_⩽full[ ]1 ), or make all variant manipulation functions be presence-

polymorphic and require types to have rank-2 variants (_⩽full[ ]2 ). For instance, we can make the

getAge function presence-polymorphic.

getAge = _x . case x {Age y ↦→ y;Year y ↦→ 2023 − y} : ∀\1\2.[Age\1 : Int;Year\2 : Int] → Int
year = Year 1984 : [Age : Int]
getAge year

We give two type-only translations for full variant subtyping: _⩽full[ ]1 _
𝜌1

[ ] and _⩽full[ ]2 _\1[ ] .

We give a detailed discussion of the four erasure translations for rank-1 polymorphism with

type inference in Section 6.

2.5 Strictly Covariant Record Subtyping as Presence Polymorphism
The encodings of full subtyping discussed in Section 2.4 impose restrictions on types in the source

language and rely heavily on type-inference. We now consider to what extent we can support a

richer form of subtyping than simple subtyping if we return our attention to target calculi with

higher-rank polymorphism and no type inference.

One complication of extending simple subtyping to full subtyping is that if we permit propagation

through contravariant positions, then the subtyping order is reversed. To avoid this scenario, we

first consider strictly covariant subtyping relation derived by only propagating simple subtyping

through strictly covariant positions (i.e. never to the left of any arrow). For example, the upcast

getName ▷ (⟨Name : String;Age : Int⟩ → String) in Section 2.4 is ruled out. We write _⩽co⟨⟩ for our

calculus with strictly covariant record subtyping.

Consider the function getChildName returning the name of the child of a person.

getChildName = _x ⟨Child:⟨Name:String⟩⟩ . getName (x .Child)
We can apply getChildName to carol who has a daughter alice with the strictly covariant

subtyping relation ⟨Name : String;Child : ⟨Name :String;Age : Int⟩⟩ ⩽ ⟨Child : ⟨Name :String⟩⟩.
carol = ⟨Name = "Carol";Child = alice⟩
getChildName (carol ▷ ⟨Child : ⟨Name : String⟩⟩)

If we work in a language without subtyping (_⟨⟩), we can still use [-expansions instead, by nested

deconstruction and reconstruction.

getChildName ⟨Child = ⟨Name = carol.Child.Name⟩⟩
In general, we can simulate the full subtyping (not only strictly covariant subtyping) of both records

and variants using this technique. The nested de- and re-construction can be reformulated into

coercion functions to be more compositional [Breazu-Tannen et al. 1991]. In Section 5.1, we show

the standard local term-involved translation _⩽full[ ] ⟨⟩ _[ ] ⟨⟩ formalising this idea.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Structural Subtyping as Parametric Polymorphism 9

However, for type-only encodings, the idea of making every record presence-polymorphic in

Section 2.2 does not work directly. Following that idea, we would translate carol to

carol✗ = Λ\ ′
1
\ ′
2
. ⟨. . . ;Child = alice′⟩⟨Name\

′
1 :String;Child\

′
2 :∀\1\2 .⟨Name\1 :String;Age\2 :Int⟩⟩

Then, as \1 and \2 are abstracted inside a record, we cannot directly instantiate \2 with ◦ to remove

the Age label without deconstructing the outer record. However, we can tweak the translation by

moving the quantifiers ∀\1\2 to the top-level through introducing new type abstraction and type

application, which gives rise to a translation that is type-only but global.

carol′ = Λ\1\2\3\4 .⟨. . . ;Child = alice′ \3 \4⟩⟨Name\1 :String;Child\2 :⟨Name\3 :String;Age\4 :Int⟩⟩

Now we can remove the Name of carol′ and Age of alice′ by instantiating \1 and \4 with ◦. As
for simple subtyping, we make the parameter type of getChildName polymorphic, and re-abstract

over carol′.

getChildName′ = _x∀\1\2 .⟨Child
\
1 :⟨Name\2 :String⟩⟩ . getName ((x • •) .Child)

getChildName′ (Λ\1\2. carol′ ◦ \1 \2 ◦)

This is the essence of the global type-only translation _⩽co⟨⟩ _\⟨⟩ in Section 5.2.

2.6 No Type-Only Encoding of Strictly Covariant Variant Subtyping as Polymorphism
We now consider whether we could exploit hoisting of quantifiers in order to encode strictly

covariant subtyping for variants (_⩽co[ ] ) using row polymorphism. Interestingly, we will see that

this cannot work, thus breaking the symmetry between the results for records and variants we

have seen so far. To understand why, consider the following example involving nested variants.

data = (Raw year) [Raw:[Year:Int] ]
data ▷ [Raw : [Year : Int;Age : Int]]

Following the idea of moving quantifiers, we can translate data to use a polymorphic variant, and

the upcast can then be simulated by instantiation and re-abstraction.

data✗ = Λ𝜌1𝜌2 . (Raw (year′ 𝜌2)) [Raw:[Year:Int;𝜌2 ];𝜌1 ]
Λ𝜌1𝜌2 . data✗ 𝜌1 (Age : Int; 𝜌2)

So far, the translation appears to have worked. However, it breaks down when we consider the

case split on a nested variant. For instance, consider the following function.

parseAge = _x [Raw:[Year:Int] ] . case x {Raw y ↦→ getAge (y ▷ [Age : Int;Year : Int])}
parseAge data

It uses an upcast and the getAge function from Section 2.1 in the case clause. We can directly pass

the nested variant data to it.

The difficulty with encoding parseAge with row polymorphism is that the abstraction of the

row variable for the inner record of data✗ is hoisted up to the top-level, but case split requires a

monomorphic value. Thus, we must instantiate 𝜌2 with Age : Int before performing the case split.

parseAge✗ = _x∀𝜌1𝜌2 .[Raw:[Year:Int;𝜌2 ];𝜌1 ] . case (x · (Age : Int)) {Raw y ↦→ getAge y}
parseAge✗ data✗

However, this would not yield a compositional type-only translation, as the translation of the case
construct only has access to the types of x and the whole case clause, which provide no information

about Age : Int. Moreover, even if the translation could somehow access this type information, the

translation would still fail if there were multiple incompatible upcasts of y in the case clause.

case x {Raw y ↦→ . . . y ▷ [Age : Int;Year : Int] . . . y ▷ [Age : String;Year : Int]}



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

The first upcast requires 𝜌2 to be instantiated with Age : Int but the second requires it to be

instantiated with the incompatible Age : String. The situation is no better if we add presence

polymorphism. In Section 5.3, we prove that there exists no type-only encoding of strictly covariant

variant subtyping as row and presence polymorphism ( _⩽co[ ] _
𝜌\

[ ] ).

2.7 No Type-Only Encoding of Full Record Subtyping as Polymorphism
For variants, we have just seen that a type-only encoding of full subtyping does not exist, even if we

restrict propagation of simple subtyping to strictly covariant positions. For records, we have seen

how to encode strictly covariant subtyping with presence polymorphism by hoisting quantifiers to

the top-level. We now consider whether we could somehow lift the strictly covariance restriction

and encode full record subtyping with polymorphism?

The idea of hoisting quantifiers does not work arbitrarily, exactly because we cannot hoist

quantifiers through contravariant positions. Moreover, presence polymorphism alone cannot extend

rows. Consider the full subtyping example getName ▷ (⟨Name : String;Age : Int⟩ → String) from
Section 2.4. The getName function is translated to the getName′ function in Section 2.2, which

provides no way to extend the parameter record type with Age : Int.

getName′ = _x∀\ .⟨Name\ :String⟩ . ((x •).Name)
A tempting idea is to add row polymorphism:

getName′✗ = Λ𝜌._x∀\ .⟨Name\ :String;𝜌 ⟩ . ((x •).Name)
Now we can instantiate 𝜌 with Age : Int to simulate the upcast. However, this still does not work.

One issue is that we have no way to remove the labels introduced by the row variable 𝜌 in the

function body, as x is only polymorphic in \ . For instance, consider the following upcast of the

function getUnit which replaces the function body of getName with an upcast of x.

getUnit = _x ⟨Name:String⟩ .(x ▷ ⟨⟩)
getUnit ▷ (⟨Name : String;Age : Int⟩ → ⟨⟩)

Following the above idea, getUnit is translated to

getUnit✗ = Λ𝜌._x∀\ .⟨Name\ :String;𝜌 ⟩ .x ◦
Then, in the translation of the upcast of getUnit, the row variable 𝜌 is expected to be instantiated

with a row containing Age : Int. However, we cannot remove Age : Int again in the translation of

the function body, meaning that the upcast inside getUnit cannot yield an empty record.

Section 5.4 expands on the discussion here and proves that there exists no type-only translation

of unrestricted full record subtyping as row and presence polymorphism ( _⩽full⟨⟩ _
𝜌\

⟨⟩ ).

3 CALCULI
The foundation for our exploration of relative expressive power of subtyping and parametric

polymorphism is Church’s simply-typed _-calculus [Church 1940]. We extend it with variants and

records, respectively. We further extend the variant calculus twice: first with simple structural

subtyping and then with row polymorphism. Similarly, we also extend the record calculus twice:

first with structural subtyping and then with presence polymorphism. In Section 5 and 6, we explore

further extensions with strictly covariant subtyping, full subtyping and rank-1 polymorphism.

3.1 A Simply-Typed Base Calculus _
Our base calculus is a Church-style simply typed _-calculus, which we denote _ . Figure 2 shows

the syntax, static semantics, and dynamic semantics of it. The calculus features one kind (Type)



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Structural Subtyping as Parametric Polymorphism 11

Syntax

Kind ∋ K ::= Type | RowL []⟨⟩
Type ∋ A, B ::= 𝛼 | A → B

| [R]
[ ]
| ⟨R⟩

⟨⟩
TyEnv ∋ Δ ::= · | Δ, 𝛼

Env ∋ Γ ::= · | Γ, x : A

Row ∋ R ::= · | ℓ : A; R
[ ] ⟨⟩

Term ∋ M,N ::= x | _xA .M | M N
| (ℓ M)A | case M {ℓi xi ↦→ Ni}i [ ]
| ⟨ℓi = Mi⟩i | M .ℓ

⟨⟩
Label ⊇ L ∋ ℓ [ ] ⟨⟩

Static Semantics

Δ ⊢ A : K

K-Base

Δ, 𝛼 ⊢ 𝛼 : Type

K-Arrow
Δ ⊢ A : Type Δ ⊢ B : Type

Δ ⊢ A → B : Type

K-EmptyRow

Δ ⊢ · : RowL
[]⟨⟩

K-ExtendRow
Δ ⊢ A : Type Δ ⊢ R : RowL⊎{ℓ }

Δ ⊢ ℓ : A; R : RowL
[]⟨⟩

K-Variant
Δ ⊢ R : Row∅

Δ ⊢ [R] : Type
[ ]

K-Record
Δ ⊢ R : Row∅

Δ ⊢ ⟨R⟩ : Type
⟨⟩

Δ; Γ ⊢ M : A

T-Var

Δ; Γ, x : A ⊢ x : A

T-Lam
Δ; Γ, x : A ⊢ M : B

Δ; Γ ⊢ _xA .M : A → B

T-App
Δ; Γ ⊢ M : A → B

Δ; Γ ⊢ N : A

Δ; Γ ⊢ M N : B

T-Inject
(ℓ : A) ∈ R
Δ; Γ ⊢ M : A

Δ; Γ ⊢ (ℓ M) [R] : [R]
[ ]

T-Case
Δ; Γ ⊢ M : [ℓi : Ai]i

[Δ; Γ, xi : Ai ⊢ Ni : B]i
Δ; Γ ⊢ case M {ℓi xi ↦→ Ni}i : B

[ ]

T-Record
[Δ; Γ ⊢ Mi : Ai]i

Δ; Γ ⊢ ⟨ℓi = Mi⟩i : ⟨ℓi : Ai⟩i
⟨⟩

T-Project
Δ; Γ ⊢ M : ⟨R⟩
(ℓ : A) ∈ R

Δ; Γ ⊢ M .ℓ : A
⟨⟩

Dynamic Semantics

𝛽-Lam (_xA.M) N {𝛽 M [N/x]
𝛽-Case

[ ]
case (ℓj M)A {ℓi xi ↦→ Ni}i {𝛽 Nj [M/xj]

𝛽-Project
⟨⟩

⟨(ℓi = Mi)i⟩.ℓj {𝛽 Mj

Fig. 2. Syntax, static semantics, and dynamic semantics of _ (unhighlighted parts), and its extensions with
variants _[ ] (highlighted parts with [] subscript), and records _⟨⟩ (highlighted parts with ⟨⟩ subscript).

to classify well-formed types. We will enrich the structure of kinds in the subsequent sections

when we add rows (e.g. Sections 3.2 and 3.5). The syntactic category of types includes abstract base

types (𝛼) and the function types (A → B), which classify functions with domain A and codomain B.
The terms consist of variables (x), _-abstraction (_xA.M) binding variable x of type A in term M ,

and application (M N ) of M to N . We track base types in a type environment (Δ) and the type of

variables in a term environment (Γ). We treat environments as unordered mappings. The static and



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

Syntax Term ∋ M ::= . . . | M ▷ A [ ] ⟨⟩
Static Semantics

A ⩽ A′

S-Variant
dom(R) ⊆ dom(R′) R′ |dom(R) = R

[R] ⩽ [R′]
[ ]

S-Record
dom(R′) ⊆ dom(R) R|dom(R′ ) = R′

⟨R⟩ ⩽ ⟨R′⟩
⟨⟩

Δ; Γ ⊢ M : A

T-Upcast
Δ; Γ ⊢ M : A A ⩽ B

Δ; Γ ⊢ M ▷ B : B
[ ] ⟨⟩

Dynamic Semantics

▷-Variant [ ] (ℓ M)A ▷ B{▷ (ℓ M)B

▷-Record ⟨⟩ ⟨ℓi = Mℓi ⟩i ▷ ⟨ℓ ′j : Aj⟩j {▷ ⟨ℓ ′j = Mℓ ′j
⟩j

Fig. 3. Extensions of _[ ] with simple subtyping _⩽[ ] (highlighted parts with [] subscript), and extensions of

_⟨⟩ with simple subtyping _⩽⟨⟩ (highlighted parts with ⟨⟩ subscript).

dynamic semantics are standard. We implicitly require type annotations in terms to be well-kinded,

e.g., Δ; Γ ⊢ _xA .M : A → B requires Δ ⊢ A.

3.2 A Calculus with Variants _[ ]
_[ ] is the extension of _ with variants. Figure 2 incorporates the extensions to the syntax, static

semantics, and dynamic semantics. Rows are the basis for variants (and later records). We assume a

countably infinite set of labels L𝜔 . Given a finite set of labels L, a row of kind RowL denotes a

partial mapping from the cofinite set (L𝜔 \L) of all labels except those in L to types. We say that a

row of kind Row∅ is complete. A variant type ([R]) is given by a complete row R. A row is written as

a sequence of pairs of labels and types. We often omit the leading ·, writing e.g. ℓ1 : A1, . . . , ℓn : An or

(ℓi : Ai)i when n is clear from context. We identify rows up to reordering of labels. Injection (ℓ M)A
introduces a term of variant type by tagging the payloadM with ℓ , whose resulting type is A. A case

split (case M {ℓi xi ↦→ Ni}i) eliminates an M by matching against the tags ℓi. A successful match

on ℓi binds the payload of M to xi in Ni. The kinding rules ensure that rows contain no duplicate

labels. The typing rules for injections and case splits and the 𝛽-rule for variants are standard.

3.3 A Calculus with Variants and Structural Subtyping _⩽[ ]

_⩽[ ] is the extension of _[ ] with simple structural subtyping. Figure 3 shows the extensions to syntax,

static semantics, and dynamic semantics.

Syntax. The explicit upcast operator (M ▷ A) coerces M to type A.

Static Semantics. The S-Variant rule asserts that variant [R] is a subtype of variant [R′] if row R′

contains at least the same label-type pairs as row R. We write dom(R) for the domain of row R (i.e.

its labels), and R|L for the restriction of R to the label set L. The T-Upcast rule enables the upcast
M ▷ B if the term M has type A and A is a subtype of B.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Structural Subtyping as Parametric Polymorphism 13

Syntax Type ∋ A ::= . . . | ∀𝜌K .A
Row ∋ R ::= . . . | 𝜌

Term ∋ M ::= . . . | Λ𝜌K .M | M R
TyEnv ∋ Δ ::= . . . | Δ, 𝜌 : K

Static Semantics

Δ ⊢ A : K

K-RowVar

Δ, 𝜌 : RowL ⊢ 𝜌 : RowL

K-RowAll
Δ, 𝜌 : RowL ⊢ A : Type

Δ ⊢ ∀𝜌RowL .A : Type

Δ; Γ ⊢ M : A

T-RowLam
Δ, 𝜌 : K ; Γ ⊢ M : A 𝜌 ∉ ftv(Γ)

Δ; Γ ⊢ Λ𝜌K .M : ∀𝜌K .A
T-RowApp
Δ; Γ ⊢ M : ∀𝜌K .B Δ ⊢ A : K

Δ; Γ ⊢ M A : B[A/𝜌]
Dynamic Semantics

𝜏-RowLam (Λ𝜌K .M) R{𝜏 M [R/𝜌]

Fig. 4. Extensions of _[ ] with row polymorphism _
𝜌
[ ] .

Dynamic Semantics. The ▷-Variant reduction rule coerces an injection (ℓ M) of type A to a larger

(variant) type B. We distinguish upcast rules from 𝛽 rules writing instead{▷ for the reduction
relation. Correspondingly, we write⇝▷ for the compatible closure of{▷.

3.4 A Calculus with Row Polymorphic Variants _𝜌[ ]
_
𝜌

[ ] is the extension of _[ ] with row polymorphism. Figure 4 shows the extensions to the syntax,

static semantics, and dynamic semantics.

Syntax. The syntax of types is extended with a quantified type (∀𝜌K .A) which binds the row

variable 𝜌 with kind K in the type A (the kinding rules restrict K to always be of kind RowL for

some L). The syntax of rows is updated to allow a row to end in a row variable (𝜌). A row variable

enables the tail of a row to be extended with further labels. A row with a row variable is said to be

open; a row without a row variables is said to be closed.

Terms are extended with type (row) abstraction (Λ𝜌K .M) binding the row variable 𝜌 with kind

K in M and row application (M R) of M to R. Finally, type environments are updated to track the

kinds of row variables.

Static Semantics. The kinding and typing rules for row polymorphism are the standard rules for

System F specialised to rows.

Dynamic Semantics. The new rule 𝜏-RowLam is the standard 𝛽 rule for System F, but specialised

to rows. Though it is a 𝛽 rule, we use the notation{𝜏 to distinguish it from other 𝛽 rules as it only

influences types. This distinction helps us to make the meta theory of translations in Section 4

clearer. We write⇝𝜏 for the compatible closure of{𝜏 .

3.5 A Calculus with Records _⟨⟩
_⟨⟩ is _ extended with records. Figure 2 incorporates the extensions to the syntax, static semantics,

and dynamic semantics. As with _[ ] , we use rows as the basis of record types. The extensions

of kinds, rows and labels are the same as _[ ] . As with variants a record type (⟨R⟩) is given by a

complete row R. Records introduction ⟨ℓi = Mi⟩i gives a record in which field i has label ℓi and
payload Mi. Record projection (M .ℓ) yields the payload of the field with label ℓ from the record M .

The static and dynamic semantics for records are standard.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

Syntax

Kind ∋ K ::= . . . | Pre
Type ∋ A ::= . . . | ∀\ .A
Row ∋ R ::= . . . | ℓP : A; R

Presence ∋ P ::= ◦ | • | \
Term ∋ M ::= . . . | Λ\ .M | M P | ⟨ℓi = Mi⟩Ai
TyEnv ∋ Δ ::= . . . | Δ, \

Static Semantics

Δ ⊢ A : K

K-Absent

Δ ⊢ ◦ : Pre

K-Present

Δ ⊢ • : Pre

K-PreVar

Δ, \ ⊢ \ : Pre

K-PreAll
Δ, \ ⊢ A : Type

Δ ⊢ ∀\ .A : Type

K-ExtendRow
Δ ⊢ P : Pre
Δ ⊢ A : Type

Δ ⊢ R : RowL⊎{ℓ }

Δ ⊢ ℓP : A; R : RowL

Δ; Γ ⊢ M : A

T-PreLam
Δ, \ ; Γ ⊢ M : A \ ∉ ftv(Γ)

Δ; Γ ⊢ Λ\ .M : ∀\ .A

T-PreApp
Δ; Γ ⊢ M : ∀\ .A Δ ⊢ P : Pre

Δ; Γ ⊢ M P : A[P/\ ]

T-Record
[Δ; Γ ⊢ Mi : Ai]i

Δ; Γ ⊢ ⟨ℓi = Mi⟩
⟨ℓPii :Ai ⟩i
i : ⟨ℓPii : Ai⟩i

T-Project
Δ; Γ ⊢ M : ⟨R⟩ (ℓ• : A) ∈ R

Δ; Γ ⊢ M .ℓ : A

Dynamic Semantics
𝛽-Project ⟨(ℓi = Mi)i⟩A.ℓj {𝛽 Mj

𝜏-PreLam (Λ\ .M) P {𝜏 M [P/\ ]

Fig. 5. Extensions and modifications to _⟨⟩ with presence polymorphism _\⟨⟩ . Highlighted parts replace the
old ones in _⟨⟩ , rather than extensions.

3.6 A Calculus with Records and Structural Subtyping _⩽⟨⟩

_⩽⟨⟩ is the extension of _⟨⟩ with structural subtyping. Figure 3 shows the extensions to syntax, static

semantics, and dynamic semantics. The only difference from _⩽[ ] is the subtyping rule S-Record
and dynamic semantics rule ▷-Record. The subtyping relation (⩽) is just like that for _⩽[ ] except R
and R′ are swapped. The S-Record rule states that a record type ⟨R⟩ is a subtype of ⟨R′⟩ if the row
R contains at least the same label-type pairs as R′. The ▷-Record rule upcasts a record ⟨ℓi = Mi⟩i to
type ⟨R⟩ by directly constructing a record with only the fields required by the supertype ⟨R⟩. We

implicitly assume that the two indexes j range over the same set of integers.

3.7 A Calculus with Presence Polymorphic Records _\⟨⟩
_\⟨⟩ is the extension of _⟨⟩ with presence-polymorphic records. Figure 5 shows the extensions to

the syntax, static semantics, and dynamic semantics.

Syntax. The syntax of kinds is extended with the kind of presence types (Pre). The structure of
rows is updated with presence annotations on labels (ℓPii : Ai)i . Following Rémy [1994], a label can

be marked as either absent (◦), present (•), or polymorphic in its presence (\ ). Note that in either

case, the label is associated with a type. Thus, it is perfectly possible to say that some label ℓ is

absent with some type A. As for row variables, the syntax of types is extended with a quantified



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Structural Subtyping as Parametric Polymorphism 15

type (∀\ .A), and the syntax of terms is extended with presence abstraction (Λ\ .M) and application

(M P). To have a deterministic static semantics, we need to extend record constructions with type

annotations to indicate the presence types of labels (⟨ℓi = Mi⟩A). Finally, the structure of type

environments is updated to track presence variables. With presence types, we not only ignore the

order of labels, but also ignore absent labels when comparing row types. We also ignore absent

labels when comparing two typed records in _\⟨⟩ . For instance, the row ⟨ℓ1 = M; ℓ2 = N ⟩⟨ℓ•1 :A;ℓ◦2 :B⟩ is
equivalent to ⟨ℓ1 = M⟩⟨ℓ•1 :A⟩ .

Static Semantics. The kinding and typing rules for polymorphism (K-PreAll, T-PreLam, T-PreApp)
are the standard ones for System F specialised to presence types. The first three new kinding rules

K-Absent, K-Present, and K-PreVar handle presence types directly. They assign kind Pre to absent,

present, and polymorphic presence annotation respectively. The kinding rule K-ExtendRow is

extended with a new kinding judgement to check P is a presence type. The typing rules for records,

T-Record, and projections, T-Project, are updated to accommodate the presence annotations on

labels. The typing rule for record introduction, T-Record, is changed such that the type of each

component coincides with the annotation. The projection rule, T-Project, is changed such that the

ℓ component must be present in the record row.

Dynamic Semantics. The new rewrite rule 𝜏-PreLam is the standard 𝛽 rule for System F, but

specialised to presence types. As with _
𝜌

[ ] we use the notation{𝜏 to distinguish it from other 𝛽

rules and write⇝𝜏 for its compatible closure. The 𝛽-Project★ rule is the same as 𝛽-Project, but
with a type annotation on the record.

4 SIMPLE SUBTYPING AS POLYMORPHISM
In this section, we consider encodings of simple subtyping. We present four encodings and two

non-existence results as depicted in Fig. 1. Specifically, in addition to the standard term-involved

encodings of simple variant and record subtyping in Section 4.1 and Section 4.3, we give type-only

encodings of simple variant subtyping as row polymorphism in Section 4.2, and simple record

subtyping as presence polymorphism in Section 4.4. For each translation, we establish its correctness

by demonstrating the preservation of typing derivations and the correspondence between the

operational semantics. In Section 4.5, we show the non-existence of type-only encodings if we

swap the row and presence polymorphism of the target languages.

Compositional Translations. We restrict our attention to compositional translations defined

inductively over the structure of derivations. For convenience we will often write these as if they

are defined on plain terms, but formally the domain is derivations rather than terms, whilst the

codomain is terms. In this section translations on derivations will always be defined on top of

corresponding compositional translations on types, kind environments, and type environments, in

such a way that we obtain a type preservation property for each translation. In Sections 5 and 6 we

will allow non-compositional translations on types (as they will necessarily need to be constructed

in a non-compositional global fashion, e.g., by way of a type inference algorithm).

4.1 Local Term-Involved Encoding of _⩽[ ] in _[ ]

We give a local term-involved compositional translation from _⩽[ ] to _[ ] , formalising the idea of

simulating age ▷ [Age : Int;Year : Int] with case split and injection in Section 2.1.

J−K : Derivation → Term
JM [ℓi :Ai ]i ▷ [R]K = case JMK {ℓi xi ↦→ (ℓi xi) [R]}i



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

The translation has a similar structure to the [-expansion of variants:

[-Case M [ℓi :Ai ]i {[ case M {ℓi xi ↦→ (ℓi xi) [ℓi :Ai ]i }i
The following theorem states that the translation preserves typing derivations. Note that compo-

sitional translations always translate environments pointwise. For type environments, we have

JΓ, x : AK = JΓK, x : JAK. For kind environments, we have the identity function JΔK = Δ.

Theorem 4.1 (Type Preservation). Every well-typed _⩽[ ] term Δ; Γ ⊢ M : A is translated to a
well-typed _[ ] term JΔK; JΓK ⊢ JMK : JAK.

In order to state an operational correspondence result, we first define {𝛽▷ as the union of

{𝛽 and{▷, and⇝𝛽▷ as its compatible closure. There is a one-to-one correspondence between

reduction in _⩽[ ] and reduction in _[ ] .

Theorem 4.2 (Operational Correspondence). For the translation J−K from _⩽[ ] to _[ ] , we have
Simulation If M ⇝𝛽▷ N, then JMK⇝𝛽 JN K.
Reflection If JMK⇝𝛽 JN K, then M ⇝𝛽▷ N.

Intuitively, every step of 𝛽-reduction in _⩽[ ] is mapped to itself in _[ ] . For every step of upcast

reduction ofM [R′ ] ▷ [R] in _⩽[ ] , the ▷-Variant rule guarantees thatM must be a variant value. Thus,

it is mapped to one step of 𝛽-reduction which reduces the [-expansion of M . The full proofs of

type preservation and operational correspondence can be found in Appendix B.1.

4.2 Local Type-Only Encoding of _⩽[ ] in _
𝜌

[ ]

We give a local type-only translation from _⩽[ ] to _
𝜌

[ ] by making variants row-polymorphic, as

demonstrated by year′ and getAge′ in Section 2.1.

J−K : Type → Type
J[R]K = ∀𝜌RowR .[JRK; 𝜌]

J−K : Row → Row
J(ℓi : Ai)iK = (ℓi : JAiK)i

J−K : Derivation → Term
J(ℓ M) [R]K = Λ𝜌RowR .(ℓ JMK) [JRK;𝜌 ]

Jcase M {ℓi xi ↦→ Ni}iK = case (JMK ·) {ℓi xi ↦→ JNiK}i
JM [R] ▷ [R′]K = Λ𝜌RowR′ .JMK@ (JR′\RK; 𝜌)

The RowR is short for Rowdom(R) and R\R′ is defined as row difference:

R\R′ = (ℓ : A) (ℓ :A) ∈R and (ℓ :A)∉R′

The translation preserves typing derivations.

Theorem 4.3 (Type Preservation). Every well-typed _⩽[ ] term Δ; Γ ⊢ M : A is translated to a
well-typed _𝜌[ ] term JΔK; JΓK ⊢ JMK : JAK.

In order to state an operational correspondence result, we introduce two auxiliary reduction

relations. First, we annotate the type application introduced by the translation of upcasts with the

symbol @ to distinguish it from the type application introduced by the translation of case. We

write{a for the associated reduction and⇝a for its compatible closure.

a-RowLam (Λ𝜌K .M)@A{a M [A/𝜌]
Then, we add another intuitive reduction rule for upcast in _⩽[ ] , which allows nested upcasts to

reduce to a single upcast.

▶-Nested M ▷ A ▷ B{▶ M ▷ B

We write {▷▶ for the union of {▷ and {▶ , and⇝▷▶ for its compatible closure. There are

one-to-one correspondences between 𝛽-reductions (modulo⇝𝜏 ), and between upcast and⇝a .



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Structural Subtyping as Parametric Polymorphism 17

Theorem 4.4 (Operational Correspondence). For the translation J−K from _⩽[ ] to _
𝜌

[ ] , we have

Simulation If M ⇝𝛽 N, then JMK⇝?

𝜏⇝𝛽 JN K; if M ⇝▷ N, then JMK⇝a JN K.
Reflection If JMK⇝?

𝜏⇝𝛽 JN K, then M ⇝𝛽 N; if JMK⇝a JN K, then M ⇝▷▶ N.

We write⇝?

𝜏 to represent zero or one step of⇝𝜏 . For the 𝛽-reduction of a case-split in _⩽[ ] , in

order to reduce further in _
𝜌

[ ] , the translation of it must first reduce the empty row type application

JMK · by⇝𝜏 . One step of upcast reduction in _⩽[ ] is simply mapped to the corresponding type

application in _
𝜌

[ ] . The other direction (reflection) is slightly more involved as one step of⇝a in

_
𝜌

[ ] may correspond to a nested upcast; hence the need for⇝▷▶ instead of⇝▷. The proofs of type
preservation and operational correspondence can be found in Appendix B.2.

4.3 Local Term-Involved Encoding of _⩽⟨⟩ in _⟨⟩

We give a local term-involved translation from _⩽⟨⟩ to _⟨⟩ , formalising the idea of simulating

alice ▷ ⟨Name : String⟩ with projection and record construction in Section 2.1.

J−K : Derivation → Term
JM ▷ ⟨ℓi : Ai⟩iK = ⟨ℓi = JMK.ℓi⟩i

The translation has a similar structure to the [-expanding of records, which is

[-Project M ⟨ℓi :Ai ⟩i {[ ⟨ℓi = M .ℓi⟩i
The translation preserves typing derivations.

Theorem 4.5 (Type Preservation). Every well-typed _⩽⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.

One upcast or 𝛽-reduction in _⩽⟨⟩ corresponds to a sequence of 𝛽-reductions in _⟨⟩ .

Theorem 4.6 (Operational Correspondence). For the translation J−K from _⩽⟨⟩ to _⟨⟩ , we have
Simulation If M ⇝𝛽▷ N, then JMK⇝∗

𝛽
JN K.

Reflection If JMK⇝𝛽 N ′, then there exists N such that N ′ ⇝∗
𝛽

JN K and M ⇝𝛽▷ N.

We write⇝∗
𝛽
to represent multiple (including zero) steps of⇝𝛽 . Unlike Theorem 4.2, one step

of reduction in _⩽⟨⟩ might be mapped to multiple steps of reduction in _⟨⟩ because the translation

of upcast possibly introduces multiple copies of the same term. For instance, JM ▷ ⟨ℓ1 : A; ℓ2 :

B⟩K = ⟨ℓ1 = JMK.ℓ1; ℓ2 = JMK.ℓ2⟩. One step of 𝛽-reduction in M in _⩽⟨⟩ is mapped to at least two

steps of 𝛽-reduction in the two copies of JMK in _⟨⟩ . Reflection is basically the reverse of simulation

but requires at least one step of reduction in _⟨⟩ . The proofs of type preservation and operational

correspondence can be found in Appendix B.3.

4.4 Local Type-Only Encoding of _⩽⟨⟩ in _\⟨⟩

Before presenting the translation, let us focus on order of labels in types. Though generally we

treat row types as unordered collections, in this section we assume, without loss of generality,

that there is a canonical order on labels, and the labels of any rows (including records) conform

to this order. This assumption is crucial in preserving the correspondence between labels and

presence variables bound by abstraction. For example, consider the type A = ⟨ℓ1 : A1; . . . ; ℓn : An⟩
in _⩽⟨⟩ . Following the idea of making records presence polymorphic as exemplified by getName′

and alice′ in Section 2.2, this record is translated as JAK = ∀\1 . . . \n .⟨ℓ\1
1

: JA1K; . . . ; ℓ\nn : JAnK⟩.
With the canonical order, we can guarantee that ℓi always appears at the i-th position in the record

and possesses the presence variable bound at the i-th position. The full translation is as follows.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

J−K : Type → Type
J⟨ℓi : Ai⟩iK = (∀\i)i .⟨ℓ\ii : JAiK⟩i

J−K : Derivation → Term

J⟨ℓi = Mi⟩⟨ℓi :Ai ⟩i
i K = (Λ\i)i .⟨ℓi = JMiK⟩

⟨ℓ\ii :JAiK⟩i
i

JM ⟨ℓi :Ai ⟩i .ℓjK = (JMK (Pi)i).ℓj
where Pi = ◦ , i ≠ j Pj = •

JM ⟨ℓi :Ai ⟩i ▷ ⟨ℓ ′j : A′
j ⟩jK = (Λ\ j)j .JMK (@ Pi)i

where Pi = ◦ , ℓi ∉ (ℓ ′j )j Pi = \ j , ℓi = ℓ ′j
The translation preserves typing derivations.

Theorem 4.7 (Type Preservation). Every well-typed _⩽⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _\⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.

Similarly to Section 4.2, we annotate type applications introduced by the translation of upcast

with @, and write{a for the associated reduction rule and⇝a for its compatible closure.

a-PreLam (Λ\ .M)@ P {a M [P/\ ]
We also re-use the ▶-Nested reduction rule defined in Section 4.2. There is a one-to-one correspon-

dence between 𝛽-reductions (modulo⇝𝜏 ), and a correspondence between one upcast reduction

and a sequence of⇝a reductions.

Theorem 4.8 (Operational Correspondence). The translation J−K from _⩽⟨⟩ to _\⟨⟩ has the
following properties:

Simulation If M ⇝𝛽 N, then JMK⇝∗
𝜏⇝𝛽 JN K; if M ⇝▷ N, then JMK⇝∗

a JN K.
Reflection If JMK ⇝∗

𝜏⇝𝛽 JN K, then M ⇝𝛽 N; if JMK ⇝a N ′, then there exists N such that
N ′ ⇝∗

a JN K and M ⇝▷▶ N.

Unlike Theorem 4.4, one step of reduction in _⩽⟨⟩ might be mapped to multiple steps of reduction

in _\⟨⟩ because we might need to reduce the type application of multiple presence types in the

translation results of projection and upcast. Reflection is again basically the reverse of simulation,

requiring at least one step of reduction in _\⟨⟩ . The proofs of type preservation and operational

correspondence can be found in Appendix B.4.

4.5 Swapping Row and Presence Polymorphism
In Section 4.2 and Section 4.4, we encode simple subtyping for variants using row polymorphism,

and simple subtyping for records using presence polymorphism. These encodings enjoy the property

that they only introduce new type abstractions and applications. A natural question is whether we

can swap the polymorphism used by the encodings meanwhile preserve the type-only property.

As we have seen in Section 2.3, an intuitive attempt to encode simple record subtyping with row

polymorphism failed. Specifically, we have the problematic translation

JgetName (alice ▷ ⟨Name : String⟩)K
= JgetNameK (Age : Int) Jalice ▷ ⟨Name : String⟩K
= getName✗ (Age : Int) alice

First, the type information Age : Int is not accessible to a compositional type-only translation of

the function application here. Moreover, the type preservation property is also broken: Jalice ▷
⟨Name : String⟩K should have type J⟨Name : String⟩K, but here it is just translated to alice itself,

which has an extra label Age in its record type. We give a general non-existence theorem.

Theorem 4.9. There exists no global type-only encoding of _⩽⟨⟩ in _
𝜌

⟨⟩ , and no global type-only
encoding of _⩽[ ] in _\[ ] .



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Structural Subtyping as Parametric Polymorphism 19

The extensions for _
𝜌

⟨⟩ and _
\
[ ] are straightforward and can be found in Appendix A. The proofs

of this theorem can be found in Appendix E.1. We will give further non-existence results in Sec-

tion 5. The core idea underlying the proofs of this kind of non-existence result is to construct

counterexamples and use proof by contradiction. One important observation is that in our case a

type-only translation ensures that terms are invariant under the translation modulo type abstrac-

tion and type application. As a consequence, we may characterise the general form of any such

translation by accounting for the possibility of adding type abstractions and type applications in

every possible position. Then we can obtain a contradiction by considering the general form of

type-only translations of carefully selected terms.

To give an example, let us consider the proof of Theorem 4.9. Consider ⟨⟩ and ⟨ℓ = y⟩ ▷ ⟨⟩ which
have the same type under environments Δ = 𝛼0 and Γ = y : 𝛼0. Any type-only translation must

yield J⟨⟩K = Λ𝛼.⟨⟩ and

J⟨ℓ = y⟩ ▷ ⟨⟩K = Λ𝛽.J⟨ℓ = y⟩K B = Λ𝛽.(Λ𝛼 ′ .⟨ℓ = JyK A
′⟩) B = Λ𝛽.(Λ𝛼 ′ .⟨ℓ = (Λ𝛽 ′ .y) A′⟩) B

which can be simplified to Λ𝛾 .⟨ℓ = Λ𝛿.y⟩. Thus, J⟨⟩K has type ∀𝛼.⟨⟩, and J⟨ℓ = y⟩ ▷ ⟨⟩K has

type ∀𝛾 .⟨ℓ : ∀𝛿.𝛼0⟩. By type preservation, they should still have the same type, which implies

∀𝛼.⟨⟩ = ∀𝛾 .⟨ℓ : ∀𝛿.𝛼0⟩. However, this equation obviously does not hold, showing a contradiction.

The above proof relies on the assumption that translations should always satisfy the type

preservation theorem. Sometimes this assumption can be too strong. In order to show the robustness

of our theorem, we provide three proofs of Theorem 4.9 in Appendix E.1, where only one of them

relies on type preservation. The second proof uses the compositionality and a similar argument to

the getName✗ example in Section 2.3, while the third proof does not rely on either of them.

In Section 6, we will show that it is possible to simulate record subtyping with rank-1 row

polymorphism and type inference, at the cost of a weaker type preservation property and some

extra conditions on the source language.

5 FULL SUBTYPING AS POLYMORPHISM
So far we have only considered simple subtyping, which means the subtyping judgement applies

shallowly to a single variant or record constructor (width subtyping). Any notion of simple subtyping

can be mechanically lifted to full subtyping by inductively propagating the subtyping relation to the

components of each type. The direction of the subtyping relation remains the same for covariant

positions, and is reversed for contravariant positions.

In this section, we consider encodings of full subtyping. We first formalise the calculus _⩽full[ ] ⟨⟩
with full subtyping for records and variants, and give its standard term-involved translation to _[ ] ⟨⟩
(Section 5.1). Next we give a type-only encoding of strictly covariant record subtyping (Section 5.2)

and a non-existence result for variants (Section 5.3). Finally, we give a non-existence result for

type-only encodings of full record subtyping as polymorphism (Section 5.4).

5.1 Local Term-Involved Encoding of _⩽full[ ] ⟨⟩ in _[ ] ⟨⟩

We first consider encoding _⩽full[ ] ⟨⟩ , an extension of _⩽[ ] and _⩽⟨⟩ with full subtyping, in _[ ] ⟨⟩ , the

combination of _[ ] and _⟨⟩ . Figure 6 shows the standard full subtyping rules of _⩽full[ ] ⟨⟩ . We induc-

tively propagate the subtyping relation to sub-types, and reverse the subtyping order for function

parameters because of contravariance. The reflexivity and transitivity rules are admissible.

For the dynamic semantics of _⩽full[ ] ⟨⟩ , one option is to give concrete upcast rules for each value

constructor, similar to _⩽[ ] and _⩽⟨⟩ . However, as encoding full subtyping is more intricate than

encoding simple subtyping (especially the encoding in Section 5.2), upcast reduction rules signifi-

cantly complicate the operational correspondence theorems. To avoid such complications we adopt



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

A ⩽ A′

FS-Var

𝛼 ⩽ 𝛼

FS-Fun
A′ ⩽ A B ⩽ B′

A → B ⩽ A′ → B′

FS-Variant
dom(R) ⊆ dom(R′)

[Ai ⩽ A′
i ] (ℓi :Ai ) ∈R,(ℓi :A′

i ) ∈R′

[R] ⩽ [R′]

FS-Record
dom(R′) ⊆ dom(R)

[Ai ⩽ A′
i ] (ℓi :Ai ) ∈R,(ℓi :A′

i ) ∈R′

⟨R⟩ ⩽ ⟨R′⟩

Fig. 6. Full subtyping rules of _⩽full[ ] ⟨⟩ .

an erasure semantics for _⩽full[ ] ⟨⟩ which, following Pierce [2002], interprets upcasts as no-ops. The type

erasure function erase(−) transforms typed terms in _⩽full[ ] ⟨⟩ to untyped terms in _[ ] ⟨⟩ by erasing all

upcasts and type annotations. It is given by the homomorphic extension of the following equations.

erase(M ▷ A) = erase(M) erase(_xA.M) = _x .erase(M) erase((ℓ M)A) = ℓ erase(M)
We show a correspondence between the upcast rules and the erasure semantics in Appendix C.2.

In the following, we always use the erasure semantics for calculi with full subtyping or strictly

covariant subtyping.

The idea of the local term-involved translation from _⩽full[ ] ⟨⟩ to _[ ] ⟨⟩ in Section 2.5 has been well-

studied as the coercion semantics of subtyping [Breazu-Tannen et al. 1991, 1990; Pierce 2002], which

transforms subtyping relations A ⩽ B into coercion functions JA ⩽ BK. Writing translations in the

form of coercion functions ensures compositionality. The translation is standard and shown in

Appendix C.1. For instance, the full subtyping relation in Section 2.5 is translated to

J⟨Name : String;Child : ⟨Name : String;Age : Int⟩⟩ ⩽ ⟨Child : ⟨Name : String⟩⟩K
= (_x .⟨Child = J⟨Name : String;Age : Int⟩ ⩽ ⟨Name : String⟩K x .Child⟩)
= _x .⟨Child = (_x .⟨Name = x .Name⟩) x .Child⟩)
⇝∗

𝛽
_x .⟨Child = ⟨Name = x .Child.Name⟩⟩

We refer the reader to Pierce [2002] and Breazu-Tannen et al. [1990] for the standard type preserva-

tion and operational correspondence theorems and proofs.

5.2 Global Type-Only Encoding of _⩽co⟨⟩ in _\⟨⟩

As a stepping stone towards exploring the possibility of type-only encodings of full subtyping, we

first consider an easier problem: the encoding of _⩽co⟨⟩ , a calculus with strictly covariant structural

subtyping for records. Strictly covariant subtyping lifts simple subtyping through only the covariant

positions of all type constructors. For _⩽co[ ] ⟨⟩ , the only change with respect to _⩽full[ ] ⟨⟩ is to replace the

subtyping rule FS-Fun with the following rule which requires the parameter types to be equal:

B ⩽ B′

A → B ⩽ A → B′

As illustrated by the examples carol✗ and carol′ from Section 2.5, we can extend the idea of

encoding simple record subtyping as presence polymorphism described in Section 4.4 by hoisting

quantifiers to the top-level, yielding a global but type-only encoding of _⩽co⟨⟩ in _\⟨⟩ . The full type

and term translations are spelled out in Figure 7 together with three auxiliary functions.

As in Section 4.4, we rely on a canonical order on labels. The auxiliary function JA, PK instantiates
a polymorphic typeAwith P , simulating the type application in the term level. The auxiliary function

L\,AM takes a presence variable \ and a type A, and generates a sequence of presence variables

based on \ that have the same length as the presence variables bound by JAK. It is used to allocate



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Structural Subtyping as Parametric Polymorphism 21

J−K : Type → Type
JA → BK = ∀\ .JAK → JB, \K

where \ = L\, BM
J⟨ℓi : Ai⟩iK = ∀(\i)i (\ i)i .⟨ℓ\ii : JAi, \ iK⟩i

where \ i = L\i,AiM

J−K : Derivation → Term
J_xA .MBK = Λ\ ._xJAK .JMK \

where \ = L\, BM
JMA NBK = Λ\ .(JMK \ ) JNK

where \ = L\,AM

J⟨ℓi = MAi
i ⟩iK = Λ(\i)i (\ i)i .⟨ℓi = JMiK \ i⟩

⟨ℓ\ii :JAiK⟩i
i

where \ i = L\i,AiM
JM ⟨ℓi :Ai ⟩i .ℓjK = Λ\ .(JMK (Pi)i (P i)i<j \ (P i)j<i) .ℓj

where Pi = ◦ , i ≠ j \ = L\,AjM
Pj = • P i = L◦,AiM

JMA ▷ BK = Λ\ .JMK P
where (\, P) = L\,A ⩽ BM

J−,−K : (Type, Pre) → Type
JA, PK = A′ [P/\ ′]

where ∀\ ′ .A′ = JAK

L−,−M : (Pre, Type) → Pre
LP, 𝛼M = ·

LP,A → BM = LP, BM
LP, ⟨ℓi : Ai⟩iM = (Pi)i LPi,AiMi

where Pi = \i , P is a variable \

Pi = ◦ , P = ◦
Pi = • , P = •

L−,−M : (Pre, Type ⩽ Type) → (Pre, Pre)
L\, 𝛼 ⩽ 𝛼M = (·, ·)

L\,A → B ⩽ A → B′M = L\, B ⩽ B′M
L\, ⟨ℓi : Ai⟩i ⩽ ⟨ℓ′j : A

′
j ⟩jM = ((\j)j (\ j)j, (Pi)i (P i)i)

where (\ j, P
′
j ) = L\j,Ai ⩽ A′

j M, ℓi = ℓ′j
Pi = ◦ , ℓi ∉ (ℓ′j )j P i = L◦,AiM , ℓi ∉ (ℓ′j )j
Pi = \j , ℓi = ℓ′j P i = P

′
j , ℓi = ℓ′j

Fig. 7. A global type-only translation from _⩽co⟨⟩ to _\⟨⟩ .

a fresh presence variable for every label in records on strictly covariant positions. We can also use

it to generate a sequence of • or ◦ for the instantiation of JAK by L•,AM and L◦,AM. The auxiliary
function L\,A ⩽ BM takes a presence variable \ and a subtyping relation A ⩽ B, and returns a pair

(\, P). The sequence of presence variables \ is the same as L\, BM. The sequence of presence types
are used to instantiate JAK to get JBK (as illustrated by the term translation JMA ▷ BK = Λ\ .JMK P
which has type JBK).

The translation on types is straightforward. We not only introduce a presence variable for every

element of record types, but also move the quantifiers of the types of function bodies and record

elements to the top level, as they are on strictly covariant positions. While the translation on terms

(derivations) may appear complicated, it mainly focuses on moving type abstractions to the top

level by type application and re-abstraction using the auxiliary functions. For the projection and

upcast cases, it also instantiates the sub-terms with appropriate presence types. Notice that for

function application M N , we only need to move the type abstractions in JMK, and for projection

M .ℓj , we only need to move the type abstractions in the payload of ℓj .

Strictly speaking, the type translation is actually not compositional because of the type appli-

cation introduced by the term translation. As a consequence, in the type translation, we need to

use the auxiliary function JA, PK which looks into the concrete structure of JAK instead of using it

compositionally. However, we believe that it is totally fine to slightly compromise the composition-

ality of the type translation, which is much less interesting than the compositionality of the term

translation. Moreover, we can still make the type translation compositional by extending the type

syntax with type operators and type-level type application of System F𝜔 .

We have the following type preservation theorem. The proof shown in Appendix C.3 follows

from induction on typing derivations of _⩽co⟨⟩ .

Theorem 5.1 (Type Preservation). Every well-typed _⩽co⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _\⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

In order to state an operational correspondence result, we use the erasure semantics for _\⟨⟩ given

by the standard type erasure function defined as the homomorphic extension of the following

equations.

erase(Λ\ .M) = erase(M) erase(M P) = erase(M) erase(_xA .M) = _x .erase(M)

Since the terms in _⩽co⟨⟩ and _\⟨⟩ are both erased to untyped _⟨⟩ , for the operational correspondence

we need only show that any term in _⩽co⟨⟩ is still erased to the same term after translation.

Theorem 5.2 (Operational Correspondence). The translation J−K from _⩽co⟨⟩ to _\⟨⟩ satisfies the
equation erase(M) = erase(JMK) for any well-typed term M in _⩽co⟨⟩ .

Proof. By straightforward induction on M . □

By using erasure semantics, the operational correspondence becomes concise and obvious for

type-only translations, as all constructs introduced by type-only translations are erased by type

erasure functions. It is also possible to reformulate Theorem 4.4 and Theorem 4.8 to use erasure

semantics, but the current versions are somewhat more informative and not excessively complex.

5.3 Non-Existence of Type-Only Encodings of _⩽co[ ] in _
𝜌\

[ ]

As illustrated by the example parseAge✗ data✗ in Section 2.6, the approach of hoisting quantifiers

to the top-level does not work for variants, because of case splits. Formally, we have the following

general non-existence theorem showing that no other approaches exist.

Theorem 5.3. There exists no global type-only encoding of _⩽co[ ] in _
𝜌\

[ ] .

The idea of the proof is the same as that of Theorem 4.9 which we have shown in Section 4.5:

construct the schemes of type-only translations for certain terms and derive a contradiction. The

terms we choose here are the nested variant M = (ℓ (ℓ y) [ℓ ]) [ℓ :[ℓ ] ] for some free term variable

y in the environment together with its upcast M1 = M ▷ [ℓ : [ℓ ; ℓ ′]] and its case split M2 =

case M {ℓ x ↦→ x ▷ [ℓ ; ℓ ′]}, similar to the counterexamples we give in Section 2.6. To obtain a

contradiction, we show that we cannot give a uniform type-only translation ofM such that bothM1

and M2 can be translated compositionally. The details of the proof can be found in Appendix E.2.

As a corollary, there can be no global type-only encoding of _⩽full[ ] in _
𝜌\

[ ] .

One might worry that Theorem 5.3 contradicts the duality between records and variants, espe-

cially in light of Blume et al. [2006]’s translation from variants with default cases to records with

record extensions. In their translation, a variant is translated to a function which takes a record of

functions. For instance, the translation of variant types is:

J[ℓi : Ai]iK = ∀𝛼.⟨ℓi : Ai → 𝛼⟩i → 𝛼

In fact, there is no contradiction because a variant in a covariant position corresponds to a record

in a contravariant position, which means that the encoding of _⩽co⟨⟩ in Section 5.2 cannot be used.

Moreover, the translation from variants to records is not type-only as it introduces _-abstractions.

5.4 Non-Existence of Type-Only Encodings of _⩽full⟨⟩ in _
𝜌\

⟨⟩

As illustrated by the examples getName′✗ and getUnit✗ in Section 2.7, one attempt to simulate

full record subtyping by both making record types presence-polymorphic and adding row variables

for records in contravariant positions fails. In fact no such encoding exists.

Theorem 5.4. There exists no global type-only encoding of _⩽full⟨⟩ in _
𝜌\

⟨⟩ .



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Structural Subtyping as Parametric Polymorphism 23

Again, the proof idea is to give general forms of type-only translations for certain terms and proof

by contradiction. Our choice of terms here are different from the counterexamples in Section 2.7

this time. Instead, we first consider two functions f1 = _x ⟨⟩ .x and f2 = _x ⟨⟩ .⟨⟩ of the same type

⟨⟩ → ⟨⟩. Any type-only translations of these functions must yield terms of the following forms:

Jf1K= Λ𝛼1._xA1 .Λ𝛽
1
. x B1

Jf2K= Λ𝛼2._xA2 .Λ𝛽
2
.J⟨⟩K B2 = Λ𝛼2 ._xA2 .Λ𝛽

2
.(Λ𝛾 .⟨⟩) B2

By type preservation, they should have the same type, which means x B1 and (Λ𝛾 .⟨⟩) B2 should
also have the same type. As a result, the type A1 of x cannot contain any type variables bound

in 𝛼1 unless they are inside the type of some labels which are instantiated to absent by the type

application x B1. Then, it is problematic when we want to upcast the parameter of f1 to be a wider

record, e.g., f1 ▷ (⟨ℓ : ⟨⟩⟩ → ⟨⟩). Intuitively, because A1 cannot be an open record type with the

row variable bound in 𝛼1, we actually have no way to expand A1, which leads to a contradiction.

The full proof can be found in Appendix E.3.

6 FULL SUBTYPING AS RANK-1 POLYMORPHISM
In Section 4.5, we showed that no type-only encoding of record subtyping as row polymorphism

exists. The main obstacle is a lack of type information for instantiation. By focusing on rank-1

polymorphism in the target language, we need no longer concern ourselves with type abstraction

and application explicitly anymore. Instead we defer to Hindley-Milner type inference [Damas

and Milner 1982] as demonstrated by the examples in Section 2.4. In this section, we formalise the

encodings of full subtyping as rank-1 polymorphism.

Here we focus on the encoding of _⩽full⟨⟩ in _
𝜌1

⟨⟩ , a ML-style calculus with records and rank-1

row polymorphism (the same idea applies to each combination of encoding records or variants as

rank-1 row polymorphism or rank-1 presence polymorphism). The specification of _
𝜌1

⟨⟩ is given in

Appendix A.3, which uses a standard declarative Hindley-Milner style type system and extends

the term syntax with let-binding let x = M inN for polymorphism. We also extend _⩽full⟨⟩ with

let-binding syntax and its standard typing and operational semantics rules.

As demonstrated in Section 2.4, we can use the following (local and type-only) erasure translation

to encode _⩽full⟨⟩2 , the fragment of _⩽full⟨⟩ where types are restricted to have rank-2 records, in _
𝜌1

⟨⟩ .

J−K : Derivation → Term
JM ▷ AK = M

Since the types of translated terms in _
𝜌1

⟨⟩ are given by type inference, we do not need to use a

translation on types in the translation on terms. Moreover, we implicitly allow type annotations on

_-abstractions to be erased as they no longer exist in the target language.

To formalise the definition of rank-n records defined in Section 2.4, we introduce the predicate

℧n (A) defined as follows for any natural number n.

℧n (𝛼) = true

℧n (A → B) = ℧n−1 (A) ∧℧n (B)
℧n (⟨ℓi : Ai⟩i) = ∧i℧

n (Ai)

℧0 (𝛼) = true

℧0 (A → B) = ℧0 (A) ∧℧0 (B)
℧0 (⟨ℓi : Ai⟩i) = false

We define a type A to have rank-n records, if ℧n (A) holds. The predicate ℧n (A) basically means

no record types can appear in the left subtrees of n or more arrows.

The operational correspondence of the erasure translation comes for free. Note that both _⩽full⟨⟩2

and _
𝜌1

⟨⟩ are type erased to untyped _⟨⟩ . The type erasure function of _⩽full⟨⟩2 inherited from _⩽full[ ] ⟨⟩



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

in Section 5.1 is identical to the erasure translation. The type erasure function erase(−) of _𝜌1⟨⟩ is

simply the identity function (as there is no type annotation at all). We have the following theorem.

Theorem 6.1 (Operational Correspondence). The translation J−K from _⩽full⟨⟩2 to _𝜌1⟨⟩ satisfies
the equation erase(M) = erase(JMK) for any well-typed term M in _⩽full⟨⟩2 .

Proof. By definition of erase(−) and J−K. □

Proving type preservation is more of a challenge. To avoid the complexity of reasoning about type

inference, we state the type preservation theorem using the declarative type system of _
𝜌1

⟨⟩ , which

requires us to give translations on types. We define the translations on types and environments in

Figure 8. As in Section 4.4 and Section 5.2, we assume a canonical order on labels and require all

rows and records to conform to this order. The translation on type environments is still the identity

JΔK = Δ. To define the translation on term environments, we need to explicitly distinguish between

variables bound by _ and variables bound by let. We write a, b for the former, and x, y for the latter.

Because the translation on term environments may introduce fresh free type variables which are

not in the original type environments, we define JΔ; ΓK as a shortcut for (JΔK,ftv(JΓK)); JΓK.
The type translation JAK returns a type scheme. It uses the auxiliary translation JAK∗ which

extends all records types appearing strictly covariantly in A with fresh row variables, and binds all

these variables at the top-level. The translation JAK opens up row types in A that appear strictly

covariantly inside the left-hand-side of strictly covariant function types (by applying the auxiliary

translation J−K∗ to function parameter types) and binds all of the freshly generated row variables

at the top-level.

We define four auxiliary functions for the translation. The functions L𝜌,AM and L𝜌,AM∗ are used
to generate fresh row variables. The L𝜌,AM takes a row variable 𝜌 and a type A, and generates

a sequence of row variables based on 𝜌 with the same length of row variables bound by JAK.
The function L𝜌,AM∗ does the same thing for JAK∗. The functions JA, 𝜌K and JA, 𝜌K∗ instantiate
polymorphic types, simulating term-level type application. As we discussed in Section 5.2, these

functions actually break the compositionality of the type translation, because they must inspect

the concrete structure of JAK. However, we only use the type translation in the theorem and proof;

the compositionality of the erasure translation itself remains intact.

After giving the type and environment translation, we aim for a weak type preservation theorem

which allows the translated terms to have subtypes of the original terms, because the erasure

translation ignores all upcasts. As we have row variables in _
𝜌1

⟨⟩ , the types of translated terms may

contain extra row variables in strictly covariant positions. We need to define an auxiliary subtype

relation ≼ which only considers row variables.

𝛼 ≼ 𝛼

[Ai ≼ A′
i ]i

⟨ℓi : Ai⟩i ≼ ⟨ℓi : A′
i ⟩i

[Ai ≼ A′
i ]i

⟨(ℓi : Ai)i ; 𝜌⟩ ≼ ⟨ℓi : A′
i ⟩i

B ≼ B′

A → B ≼ A → B′
𝜏 ≼ 𝜏 ′

∀𝜌K .𝜏 ≼ ∀𝜌K .𝜏 ′

Finally, we have the following weak type preservation theorem.

Theorem 6.2 (Weak Type Preservation). Every well-typed _⩽full⟨⟩2 term Δ; Γ ⊢ M : A is translated

to a well-typed _𝜌1⟨⟩ term JΔ; ΓK ⊢ JMK : 𝜏 for some A′ ⩽ A and 𝜏 ≼ JA′K.

The proof makes use of _⩽afull⟨⟩2 , an algorithmic variant of the type system of _⩽full⟨⟩2 which combines

T-App and T-Upcast into one rule T-AppSub, and removes all explicit upcasts in terms.

T-AppSub
Δ; Γ ⊢ M : A → B Δ; Γ ⊢ N : A′ A′ ⩽ A

Δ; Γ ⊢ M N : B



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Structural Subtyping as Parametric Polymorphism 25

J−K : Type → TypeScheme
JA → BK = ∀𝜌

1
𝜌
2
.JA, 𝜌

1
K∗ → JB, 𝜌

2
K

where 𝜌
1
= L𝜌1,AM∗, 𝜌

2
= L𝜌2, BM

J⟨ℓi : Ai⟩iK = ∀(𝜌 i)i .⟨ℓi : JAi, 𝜌 iK⟩i
where 𝜌 i = L𝜌i,AiM

J−,−K : (Type,RowVar) → Type
JA, 𝜌K = A′ [𝜌/𝜌′] where ∀𝜌′ .A′ = JAK

L−,−M : (RowVar, Type) → RowVar
L𝜌, 𝛼M = ·

L𝜌,A → BM = L𝜌1,AM∗ L𝜌2, BM
L𝜌, ⟨ℓi : Ai⟩iM = L𝜌i,AiMi

J−K : Env → Env
J·K = ·

JΓ, x : AK = JΓK, x : JAK
JΓ, a : AK = JΓK, a : JA, L𝜌 |Γ | ,AM∗K∗

J−K∗ : Type → TypeScheme
JA → BK∗ = ∀𝜌.A → JB, 𝜌K∗

where 𝜌 = L𝜌, BM∗

J⟨ℓi : Ai⟩iK∗ = ∀𝜌 (𝜌 i)i .⟨ℓi : JAi, 𝜌 iK
∗
; 𝜌⟩i

where 𝜌 i = L𝜌i,AiM∗

J−,−K∗ : (Type,RowVar) → Type
JA, 𝜌K∗ = A′ [𝜌/𝜌′] where ∀𝜌′ .A′ = JAK∗

L−,−M∗ : (RowVar, Type) → RowVar
L𝜌, 𝛼M∗ = ·

L𝜌,A → BM∗ = L𝜌, BM∗

L𝜌, ⟨ℓi : Ai⟩iM∗ = 𝜌 L𝜌i,AiM∗i

Fig. 8. The translations of types and environments from _⩽full⟨⟩2 to _𝜌1⟨⟩ .

It is standard that _⩽afull⟨⟩2 is sound and complete with respect to _⩽full⟨⟩2 [Pierce 2002]. Immediately,

we have that Δ; Γ ⊢ M : A in _⩽full⟨⟩2 implies Δ; Γ ⊢ M̂ : A′
in _⩽afull⟨⟩2 for some A′ ⩽ A, where M̂ is

defined asM with all upcasts erased. Thus, we only need to prove that Δ; Γ ⊢ M : A in _⩽afull⟨⟩2 implies

JΔ; ΓK ⊢ JMK : 𝜏 for some 𝜏 ≼ JAK in _
𝜌1

⟨⟩ . The remaining proof can be done by induction on the

typing derivations in _⩽afull⟨⟩2 , where the most non-trivial case is the T-AppSub rule. The core idea is

to use instantiation in _
𝜌1

⟨⟩ to simulate the subtyping relation A′ ⩽ A in the T-AppSub rule. This is

possible because the source language _⩽afull⟨⟩2 is restricted to have rank-2 records, which implies that

A → B is translated to a polymorphic type where the record types in parameters are open and can

be extended to simulate the subtyping relation. The full proof can be found in Appendix D.1.

So far, we have formalised the erasure translation from _⩽full⟨⟩2 to _
𝜌1

⟨⟩ . As shown in Section 2.4,

we have three other results. For records, we have another erasure translation from _⩽full⟨⟩1 , the

fragment of _⩽full⟨⟩ where types are restricted to have rank-1 records, to _\1⟨⟩ with rank-1 presence

polymorphism. Similarly, for variants, we formally define a type A to have rank-n variants, if the

predicate Ωn (A) defined as follows holds.

Ωn (𝛼) = true

Ωn (A → B) = Ωn−1 (A) ∧ Ωn (B)
Ωn ( [ℓi : Ai]i) = ∧iΩ

n (Ai)

Ω0 (𝛼) = true

Ω0 (A → B) = Ω0 (A) ∧ Ω0 (B)
Ω0 ( [ℓi : Ai]i) = false

We also have two erasure translations from _⩽full[ ]1 to _
𝜌1

[ ] and from _⩽full[ ]2 to _\1[ ] . They all use the

same idea that let the type inference infer row/presence-polymorphic types for terms involving

records/variants, and use instantiation to automatically simulate subtyping.We omit the metatheory

of these three results as they are similar to what we have seen for the encoding of _⩽full⟨⟩2 in _
𝜌1

⟨⟩ .

The requirement of rank-1 polymorphism and Hindley-Milner type inference for target languages

is not mandatory; target languages can support higher-rank polymorphism via more powerful

type inference algorithms like FreezeML [Emrich et al. 2020], as long as no type annotation is

needed to infer rank-1 polymorphic types. One might hope to also relax the ℧2 (−) restriction



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

in _⩽full⟨⟩2 by using type inference for higher-rank polymorphism. However, at least the erasure

translation do not work anymore. For instance, consider the functions id = _x ⟨ℓ :Int⟩ .x and const =

_x ⟨ℓ :Int⟩ .⟨ℓ = 1⟩ with the same type ⟨ℓ : Int⟩ → ⟨ℓ : Int⟩. Type inference would give JidK the type
∀𝜌Row{ℓ } .⟨ℓ : Int; 𝜌⟩ → ⟨ℓ : Int; 𝜌⟩, and JconstK the type ∀𝜌Row{ℓ } .⟨ℓ : Int; 𝜌⟩ → ⟨ℓ : Int⟩. For a
second-order function of type (⟨ℓ : Int⟩ → ⟨ℓ : Int⟩) → A, we cannot give a type to the parameter

of the function after translation which can be unified with the types of both JidK and JconstK.
We leave it to future work to explore whether there exist other translations making use of type

inference for higher-rank polymorphism.

7 DISCUSSION
We have now explored a range of encodings of structural subtyping for variants and records as

parametric polymorphism under different conditions. These encodings and non-existence results

capture the extent to which row and presence polymorphism can simulate structural subtyping and

crystallise longstanding folklore and informal intuitions. In the remainder of this section we briefly

discuss record extensions and default cases (Section 7.1), combining subtyping and polymorphism

(Section 7.2), related work (Section 7.3) and conclusions and future work (Section 7.4).

7.1 Record Extensions and Default Cases
Two important extensions to row and presence polymorphism are record extensions [Rémy 1994],

and its dual, default cases [Blume et al. 2006]. These operations provide extra expressiveness beyond

structural subtyping. For example, with default cases, we can give a default age 42 to the function

getAge in Section 2.1, and then apply it to variants with arbitrary constructors.

getAgeD : ∀𝜌Row{Age,Year} .[Age : Int;Year : Int; 𝜌] → Int
getAgeD = _x . case x {Age y ↦→ y;Year y ↦→ 2023 − y; z ↦→ 42}
getAgeD (Name "Carol") ⇝∗

𝛽
42

7.2 Combining Subtyping and Polymorphism
Though row and presence polymorphism can simulate subtyping well and support expressive

extensions like record extension and default cases, it can still be beneficial to allow both subtyping

and polymorphism together in the same language. For example, the OCaml programming language

combines row and presence polymorphism with subtyping. Row and presence variables are hidden

in its core language. It supports both polymorphic variants and polymorphic objects (a variation

on polymorphic records) as well as explicit upcast for closed variants and records. Our results

give a rationalisation for why OCaml supports subtyping in addition to row polymorphism. Row

polymorphism simply is not expressive enough to give a local encoding of unrestricted structural

subtyping, even though OCaml indirectly supports full first-class polymorphism.

Bounded quantification [Cardelli et al. 1994; Cardelli and Wegner 1985] extends system F with

subtyping by introducing subtyping bounds to type variables. There is also much work on the

type inference for both polymorphism and subtyping based on collecting, solving, and simplifying

constraints [Pottier 1998, 2001; Trifonov and Smith 1996]. Algebraic subtyping [Dolan 2016; Dolan

and Mycroft 2017] combines subtyping and parametric polymorphism, offering compact principal

types and decidable subsumption checking. MLstruct [Parreaux and Chau 2022] extends algebraic

subtypingwith intersection and union types, giving rise to another alternative to row polymorphism.

7.3 Related Work
Row types. Wand [1987] first introduced rows and row polymorphism. There are many further

papers on row types, which take a variety of approaches, particularly focusing on extensible records.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Structural Subtyping as Parametric Polymorphism 27

Harper and Pierce [1990] extended System F with constrained quantification, where predicates

𝜌 lacks L and 𝜌 has L are used to indicate the presence and absence of labels in row variables. Gaster

and Jones [1996] and Gaster [1998] explore a calculus with a similar lacks predicate based on

qualified types. Rémy [1989] introduced the concept of presence types and polymorphism, and

Rémy [1994] combines row and presence polymorphism. Leijen [2005] proposed a variation on row

polymorphism with support for scoped labels. Pottier and Rémy [2004] consider type inference

for row and presence polymorphism in HM(X). Morris and McKinna [2019] introduce Rose, an

algebraic foundation for row typing via a rather general language with two predicates representing

the containment and combination of rows. It is parametric over a row theory which enables it to

express different styles of row types (including Wand and Rémy’s style and Leijen’s style).

Row polymorphism vs structural subtyping. Wand [1987] compares his calculus with row poly-

morphism (similar to _
𝜌1

[ ] ⟨⟩) with Cardelli [1984]’s calculus with structural subtyping (similar to

_⩽full[ ] ⟨⟩ ) and shows that they cannot be encoded in each other by examples. Pottier [1998] conveys

the intuition that row polymorphism can lessen the need for subtyping to some extent, but there

are still situations where subtyping are necessary, e.g., the reuse of _-bound variables which cannot

be polymorphic given only rank-1 polymorphism.

Disjoint polymorphism. Disjoint intersection types [d. S. Oliveira et al. 2016] generalise record

types. Record concatenation and restriction [Cardelli and Mitchell 1991] are replaced by a merge

operator [Dunfield 2014] and a type difference operator [Xu et al. 2023], respectively. Parametric

polymorphism of disjoint intersection types is supported via disjoint polymorphism [Alpuim et al.

2017] where type variables are associated with disjointness constraints. Similarly to our work, Xie

et al. [2020] prove that both row polymorphism and bounded quantification of record types can be

encoded in terms of disjoint polymorphism.

7.4 Conclusion and Future Work
We carried out a formal and systematic study of the encoding of structural subtyping as parametric

polymorphism. To better reveal the relative expressive power of these two type system features,

we introduced the notion of type-only translations to avoid the influence of non-trivial term

reconstruction. We gave type-only translations from various calculi with subtyping to calculi

with different kinds of polymorphism and proved their correctness; we also proved a series of

non-existence results. Our results provide a precise characterisation of the long-standing folklore

intuition that row polymorphism can often replace subtyping. Additionally, they offer insight into

the trade-offs between subtyping and polymorphism in the design of programming languages.

In future we would like to explore whether it might be possible to extend our encodings relying

on type inference to systems supporting higher-rank polymorphism such as FreezeML [Emrich et al.

2020]. We would also like to consider other styles of row typing such as those based on scoped labels

[Leijen 2005] and Rose [Morris and McKinna 2019]. In addition to variant and record types, row

types are also the foundation for various effect type systems, e.g. for effect handlers [Hillerström

and Lindley 2016; Leijen 2017]. It would be interesting to investigate to what extent our approach

can be applied to effect typing. Aside from studying the relationship between subtyping and row

and presence polymorphism we would also like to study the ergonomics of row and presence

polymorphism in practice, especially their compatibility with other programming language features

such as algebraic data types.

REFERENCES
João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In Programming Languages and

Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science,
Vol. 10201), Hongseok Yang (Ed.). Springer, 1–28. https://doi.org/10.1007/978-3-662-54434-1_1

Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. 1979. Simula Begin. Studentlitteratur (Lund,

Sweden), Bratt Institut fuer nues Lernen (Goch, FRG), Charwell-Bratt Ltd (Kent, England).

Matthias Blume, Umut A. Acar, and Wonseok Chae. 2006. Extensible programming with first-class cases. In ICFP. ACM,

239–250.

Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. 1991. Inheritance as implicit coercion. Information
and Computation 93, 1 (1991), 172–221. https://doi.org/10.1016/0890-5401(91)90055-7 Selections from 1989 IEEE

Symposium on Logic in Computer Science.

Val Breazu-Tannen, Carl A. Gunter, and Andre Scedrov. 1990. Computing with Coercions. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP 1990, Nice, France, 27-29 June 1990, Gilles Kahn (Ed.). ACM, 44–60.

https://doi.org/10.1145/91556.91590

Luca Cardelli. 1984. A Semantics of Multiple Inheritance. In Semantics of Data Types, International Symposium, Sophia-
Antipolis, France, June 27-29, 1984, Proceedings (Lecture Notes in Computer Science, Vol. 173), Gilles Kahn, David B.

MacQueen, and Gordon D. Plotkin (Eds.). Springer, 51–67. https://doi.org/10.1007/3-540-13346-1_2

Luca Cardelli. 1988. Structural Subtyping and the Notion of Power Type. In POPL. ACM Press, 70–79.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1994. An Extension of System F with Subtyping. Inf.
Comput. 109, 1/2 (1994), 4–56. https://doi.org/10.1006/inco.1994.1013

Luca Cardelli and John C. Mitchell. 1991. Operations on Records. Math. Struct. Comput. Sci. 1, 1 (1991), 3–48. https:

//doi.org/10.1017/S0960129500000049

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comput. Surv.
17, 4 (1985), 471–522. https://doi.org/10.1145/6041.6042

Alonzo Church. 1940. A Formulation of the Simple Theory of Types. J. Symb. Log. 5, 2 (1940), 56–68.
Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint intersection types. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 364–377. https://doi.org/10.1145/2951913.2951945

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, NewMexico) (POPL ’82). Association
for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

Stephen Dolan. 2016. Algebraic Subtyping. Ph. D. Dissertation. Computer Laboratory, University of Cambridge, United

Kingdom.

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type inference in MLsub. In POPL. ACM, 60–72.

Jana Dunfield. 2014. Elaborating intersection and union types. J. Funct. Program. 24, 2-3 (2014), 133–165. https://doi.org/10.

1017/S0956796813000270

Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. 2020. FreezeML: Complete and Easy Type

Inference for First-Class Polymorphism. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,

423–437. https://doi.org/10.1145/3385412.3386003

Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17, 1-3 (1991), 35–75.
Revised version.

Benedict R Gaster. 1998. Records, variants and qualified types. Ph. D. Dissertation. University of Nottingham.

Benedict R Gaster and Mark P Jones. 1996. A polymorphic type system for extensible records and variants. Technical Report.
Technical Report NOTTCS-TR-96-3, Department of Computer Science, University . . . .

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph. D.
Dissertation. Université Paris 7, France.

Robert William Harper and Benjamin C. Pierce. 1990. Extensible records without subsumption. (2 1990). https://doi.org/10.

1184/R1/6605507.v1

Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In TyDe@ICFP. ACM, 15–27.

Daan Leijen. 2005. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on Trends in Functional
Programming (TFP’05), Tallinn, Estonia. https://www.microsoft.com/en-us/research/publication/extensible-records-

with-scoped-labels/

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna
and Andrew D. Gordon (Eds.). ACM, 486–499. https://doi.org/10.1145/3009837.3009872

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proc. ACM
Program. Lang. 3, POPL (2019), 12:1–12:28.

https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1016/0890-5401(91)90055-7
https://doi.org/10.1145/91556.91590
https://doi.org/10.1007/3-540-13346-1_2
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1017/S0960129500000049
https://doi.org/10.1017/S0960129500000049
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/582153.582176
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.1145/3385412.3386003
https://doi.org/10.1184/R1/6605507.v1
https://doi.org/10.1184/R1/6605507.v1
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://doi.org/10.1145/3009837.3009872


1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Structural Subtyping as Parametric Polymorphism 29

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: principal type inference in a Boolean algebra of structural types. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 449–478. https://doi.org/10.1145/3563304

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

François Pottier. 1998. Type Inference in the Presence of Subtyping: from Theory to Practice. Research Report RR-3483. INRIA.

https://hal.inria.fr/inria-00073205

François Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Inf. Comput. 170, 2 (2001), 153–183. https://doi.org/10.

1006/inco.2001.2963

François Pottier and Didier Rémy. 2004. The Essence of ML Type Inference. In Advanced Topics in Types and Programming
Languages, Benjamin C. Pierce (Ed.). The MIT Press, Chapter 10, 460–489. https://doi.org/10.7551/mitpress/1104.003.0016

Didier Rémy. 1989. Typechecking Records and Variants in a Natural Extension of ML. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13, 1989. ACM Press,

77–88. https://doi.org/10.1145/75277.75284

Didier Rémy. 1994. Type Inference for Records in Natural Extension of ML. MIT Press, Cambridge, MA, USA, 67–95.

John C. Reynolds. 1974. Towards a theory of type structure. In Symposium on Programming (LNCS, Vol. 19). Springer,
408–423.

John C. Reynolds. 1980. Using category theory to design implicit conversions and generic operators. In Semantics-Directed
Compiler Generation (Lecture Notes in Computer Science, Vol. 94). Springer, 211–258.

Valery Trifonov and Scott F. Smith. 1996. Subtyping Constrained Types. In Static Analysis, Third International Symposium,
SAS’96, Aachen, Germany, September 24-26, 1996, Proceedings (Lecture Notes in Computer Science, Vol. 1145), Radhia Cousot
and David A. Schmidt (Eds.). Springer, 349–365. https://doi.org/10.1007/3-540-61739-6_52

Mitchell Wand. 1987. Complete Type Inference for Simple Objects. In LICS. IEEE Computer Society, 37–44.

Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers. 2020. Row and Bounded Polymorphism via Disjoint

Polymorphism. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin,
Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 27:1–27:30. https://doi.org/10.4230/LIPIcs.ECOOP.2020.27

Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2023. Making a Type Difference: Subtraction on Intersection Types as

Generalized Record Operations. Proc. ACM Program. Lang. 7, POPL (2023), 893–920. https://doi.org/10.1145/3571224

https://doi.org/10.1145/3563304
https://hal.inria.fr/inria-00073205
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.7551/mitpress/1104.003.0016
https://doi.org/10.1145/75277.75284
https://doi.org/10.1007/3-540-61739-6_52
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.1145/3571224


1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

A MORE CALCULI
In this section, we show the specifications of some calculi appearing in the paper.

A.1 A Calculus with Row Polymorphic Records _𝜌⟨⟩
The extensions to the syntax, static semantics, and dynamic semantics of _⟨⟩ for a calculus with row

polymorphic records are shown in Figure 9. Actually, they are exactly the same as the extensions

to _[ ] for _
𝜌

[ ] in Figure 4.

Syntax Type ∋ A ::= . . . | ∀𝜌K .A
Row ∋ R ::= . . . | 𝜌

Term ∋ M ::= . . . | Λ𝜌K .M | M R
TyEnv ∋ Δ ::= . . . | Δ, 𝜌 : K

Static Semantics

Δ ⊢ A : K

K-RowVar

Δ, 𝜌 : RowL ⊢ 𝜌 : RowL

K-RowAll
Δ, 𝜌 : RowL ⊢ A : Type

Δ ⊢ ∀𝜌RowL .A : Type

Δ; Γ ⊢ M : A

T-RowLam
Δ, 𝜌 : K ; Γ ⊢ M : A 𝜌 ∉ ftv(Γ)

Δ; Γ ⊢ Λ𝜌K .M : ∀𝜌K .A
T-RowApp
Δ; Γ ⊢ M : ∀𝜌K .B Δ ⊢ A : K

Δ; Γ ⊢ M A : B[A/𝜌]
Dynamic Semantics

𝜏-RowLam (Λ𝜌K .M) R{𝜏 M [R/𝜌]

Fig. 9. Extensions of _⟨⟩ with row polymorphism _
𝜌
⟨⟩

A.2 A Calculus with Presence Polymorphic Variants _\[ ]
The extensions and modifications to the syntax, static semantics, and dynamic semantics of _[ ] for

a calculus with presence polymorphic variants _\[ ] are shown in Figure 10.

One thing worth noting is that in T-Case, we do not require all labels in the type of M to be

present, which is dual to the T-Record rule in Figure 5. It does not loss any generality as our

equivalence relation between rows only considers present labels.

A.3 A Calculus with Rank-1 Row Polymorphic Records _𝜌1⟨⟩
The extensions to the syntax, static semantics, and dynamic semantics for _

𝜌1

⟨⟩ , a calculus with

records and rank-1 row polymorphism are shown in Figure 11. For the type syntax, we introduce

row variables and type schemes. For the term syntax, we drop the type annotation on _ abstractions,

and add the let syntax for polymorphism. We only give the declarative typing rules, as the syntax-

directed typing rules and type inference are just standard [Damas and Milner 1982]. Notice that

we do not introduce type variables for values in type schemes for simplicity. The lack of principal

types is fine here as we are working with declarative typing rules. It is easy to regain principal

types by adding value type variables.

B PROOFS OF ENCODINGS IN SECTION 4
In this section, we show the proofs of type preservation and operational correspondence for all the

four translations in Section 4.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Structural Subtyping as Parametric Polymorphism 31

Syntax
Kind ∋ K ::= . . . | Pre
Type ∋ A ::= . . . | ∀\ .A
Row ∋ R ::= . . . | ℓP : A; R

Presence ∋ P ::= ◦ | • | \
Term ∋ M ::= . . . | Λ\ .M | M P
TyEnv ∋ Δ ::= . . . | Δ, \

Static Semantics

Δ ⊢ A : K

K-Absent

Δ ⊢ ◦ : Pre

K-Present

Δ ⊢ • : Pre

K-PreVar

Δ, \ ⊢ \ : Pre

K-PreAll
Δ, \ ⊢ A : Type

Δ ⊢ ∀\ .A : Type

K-ExtendRow
Δ ⊢ P : Pre
Δ ⊢ A : Type

Δ ⊢ R : RowL⊎{ℓ }

Δ ⊢ ℓP : A; R : RowL

Δ; Γ ⊢ M : A

T-PreLam
Δ, \ ; Γ ⊢ M : A \ ∉ ftv(Γ)

Δ; Γ ⊢ Λ\ .M : ∀\ .A

T-PreApp
Δ; Γ ⊢ M : ∀\ .A Δ ⊢ P : Pre

Δ; Γ ⊢ M P : A[P/\ ]

T-Inject
(ℓ• : A) ∈ R Δ; Γ ⊢ M : A

Δ; Γ ⊢ (ℓ M) [R] : [R]

T-Case
Δ; Γ ⊢ M : [ℓPii : Ai]i [Δ; Γ, xi : Ai ⊢ Ni : B]i

Δ; Γ ⊢ case M {ℓi xi ↦→ Ni}i : B

Dynamic Semantics
𝜏-PreLam (Λ\ .M) P {𝜏 M [P/\ ]

Fig. 10. Extensions and modifications to _[ ] with presence polymorphism _\[ ] . Highlighted parts replace the
old ones in _[ ] , rather than extensions.

B.1 Proof of the Encoding of _⩽[ ] in _[ ]

Lemma B.1 (Translation commutes with substitution). If Δ; Γ, x : A ⊢ M : B and Δ; Γ ⊢ N :

A, then JM [N/x]K = JMK[JN K/x].

Proof. By straightforward induction on M .

x Jx [N/x]K = JN K = JxK[JN K/x].
y(y ≠ x) Jy [N/x]K = y = JyK[JN K/x]
M1 M2 Our goal follows from IH and definition of substitution.

(ℓ M′)A Our goal follows from IH and definition of substitution.

caseM′ {ℓi xi ↦→ Ni}i
Our goal follows from IH and definition of substitution.

M′ ▷ A By IH and definition of substitution, we have J(M [ℓi :Ai ]i ▷ [R]) [N/x]K = JM [ℓi :Ai ]i [N/x] ▷
[R]K = case JM [N/x]K {ℓi xi ↦→ (ℓi xi) [R]}i = case JMK[JN K/x] {ℓi xi ↦→ (ℓi xi) [R]}i =
(case JMK {ℓi xi ↦→ (ℓi xi) [R]}i) [JN K/x] = JM [ℓi :Ai ]i ▷ [R]K[JN K/x].

□

Theorem 4.1 (Type Preservation). Every well-typed _⩽[ ] term Δ; Γ ⊢ M : A is translated to a
well-typed _[ ] term JΔK; JΓK ⊢ JMK : JAK.

Proof. By straightforward induction on typing derivations.

T-Var Our goal follows from JxK = x and T-Var.
T-Lam Our goal follows from IH and T-Lam.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

Syntax
TypeScheme ∋ 𝜏 ::= A | ∀𝜌K .𝜏

Row ∋ R ::= . . . | 𝜌
Term ∋ M,N ::= . . . | _x .M | let x = M inN
TyEnv ∋ Δ ::= . . . | Δ, 𝜌 : K

Env ∋ Γ ::= · | Γ, x : 𝜏

Static Semantics

Δ ⊢ A : K

K-RowVar

Δ, 𝜌 : RowL ⊢ 𝜌 : RowL

K-RowAll
Δ, 𝜌 : RowL ⊢ A : Type

Δ ⊢ ∀𝜌RowL .A : Type

Δ; Γ ⊢ M : A

T-Lam
Δ; Γ, x : A ⊢ M : B

Δ; Γ ⊢ _x .M : A → B

T-Let
Δ; Γ ⊢ M : 𝜏 Δ; Γ, x : 𝜏 ⊢ N : A

Δ; Γ ⊢ let x = M inN : A

T-Inst
Δ; Γ ⊢ M : ∀𝜌RowL .𝜏 Δ ⊢ R : RowL

Δ; Γ ⊢ M : 𝜏 [R/𝜌]

T-Gen
Δ, 𝜌 : RowL ; Γ ⊢ M : 𝜏 𝜌 ∉ ftv(Γ,Δ)

Δ; Γ ⊢ M : ∀𝜌RowL .𝜏

Dynamic Semantics
𝛽-Let let x = M inN {𝛽 N [M/x]

Fig. 11. Extensions and modifications to _⟨⟩ for a calculus with rank-1 row polymorphism _
𝜌1
⟨⟩ . Highlighted

parts replace the old ones in _⟨⟩ , rather than extensions.

T-App Our goal follows from IH and T-App.
T-Inject Our goal follows from IH and T-Inject.
T-Case Our goal follows from IH and T-Case.
T-Upcast The only subtyping relation in _⩽[ ] is for variant types. Given Δ; Γ ⊢ M [R] ▷ [R′] : [R′],

by Δ; Γ ⊢ M : [R] and IH we have JΔK; JΓK ⊢ JMK : [R]. Then, supposing R = (ℓi : Ai)i , by
definition of translation, [R] ⩽ [R′] and T-Case we have JΔK; JΓK ⊢ case JMK {ℓi xi ↦→
(ℓi xi) [R

′ ]}i : [R′].
□

Theorem 4.2 (Operational Correspondence). For the translation J−K from _⩽[ ] to _[ ] , we have

Simulation If M ⇝𝛽▷ N, then JMK⇝𝛽 JN K.
Reflection If JMK⇝𝛽 JN K, then M ⇝𝛽▷ N.
Proof.

Simulation: First, we prove the base case that the whole term M is reduced, i.e. M {𝛽▷ N implies

JMK {𝛽 JN K. The proof proceeds by case analysis on the reduction relation:

𝛽-Lam We have (_xA.M1)M2 {𝛽 M1 [M2/x]. Then, (1)J(_xA.M1)M2K = (_xA.JM1K) JM2K {𝛽

JM1K[JM2K/x] = JM1 [M2/x]K, where the last equation follows from Lemma B.1.

𝛽-Case We have case M′ {ℓi xi ↦→ Ni}i {𝛽 Nj [Mj/xj]. Similar to the 𝛽-Lam case.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Structural Subtyping as Parametric Polymorphism 33

▷-Upcast We have (ℓM1) [R] ▷ A {▷ (ℓM1)A. Supposing R = (ℓi : Ai)i, we have (2)J(ℓM1) [R] ▷
AK = case (ℓ JM1K) [R] {ℓi xi ↦→ (ℓi xi)A}i {𝛽 (ℓ JM1K)A = J(ℓ M1)AK.

Then, we prove the full theorem by induction on M . We only need to prove the case where

reduction happens in sub-terms of M .

x No reduction.

_xA.M′
The reduction can only happen inM′

. Supposing _xA.M′ ⇝𝛽▷ _xA.N ′
, by IH onM′

, we

have JM′K⇝𝛽 JN ′K, which then gives J_xA .M′K = _xA.JM′K⇝𝛽 _xA.JN ′K = J_xA .N ′K.
M1 M2 Similar to the _xA.M′

case as reduction can only happen either in M1 or M2.

(ℓ M′)A Similar to the _xA.M′
case as reduction can only happen in M′

.

case M′ {ℓi xi ↦→ Ni}i
Similar to the _xA.M′

case as reduction can only happen in M′
or one of (Ni)i.

M′ ▷ A Similar to the _xA.M′
case as reduction can only happen in M′

.

Reflection: First, we prove the base case that the whole term JMK is reduced, i.e. JMK {𝛽 JN K
implies M {𝛽▷ N . The proof proceeds by case analysis on the reduction relation:

𝛽-Lam By definition of translation, there exists M1 and M2 such that M = (_xA.M1) M2. Our

goal follows from (1) and M = (_xA.M1) M2 {𝛽 M1 [M2/x].
𝛽-Case By definition of translation, the top-level syntax construct of M can either be case or

upcast. Proceed by a case analysis:

• M = case (ℓj Mj) [R] {ℓi xi ↦→ Ni}i where R = (ℓi : Ai)i. Similar to the 𝛽-Lam case.

• M = (ℓ M1) [R] ▷ A where R = (ℓi : Ai)i. Our goal follows from (2) and (ℓ M1) [R] ▷
A {▷ (ℓ M1)A.

Then, we prove the full theorem by induction on M . We only need to prove the case where

reduction happens in sub-terms of JMK.
x No reduction.

_xA.M′
By definition of translation, there exists N ′

such that N = _xA .N ′
and JM′K⇝𝛽 JN ′K.

By IH, we have M′ ⇝𝛽▷ N ′
, which then implies _xA .M′ ⇝𝛽▷ _xA .N ′

.

M1 M2 Similar to the _xA.M′
case as reduction can only happen either in JM1K or JM2K.

(ℓ M′)A Similar to the _xA.M′
case as reduction can only happen in JM′K.

case M′ {ℓi xi ↦→ Ni}i
Similar to the _xA.M′

case as reduction can only happen in JM′K or one of (JNiK)i.
M′ ▷ A Similar to the _xA.M′

case as reduction can only happen in JM′K.
□

B.2 Proof of the Encoding of _⩽[ ] in _
𝜌

[ ]

Lemma B.2 (Translation commutes with substitution). If Δ; Γ, x : A ⊢ M : B and Δ; Γ ⊢ N :

A, then JM [N/x]K = JMK[JN K/x].

Proof. By straightforward induction onM . Only consider cases that are different from the proof

of Lemma B.1.

(ℓ M′) [R] By IH and definition of substitution, we have J(ℓM) [R] [N/x]K = J(ℓM [N/x]) [R]K =

Λ𝜌RowR .(ℓ JM [N/x]K) [JRK;𝜌 ] = Λ𝜌RowR .(ℓ JMK[JN K/x]) [JRK;𝜌 ] = (Λ𝜌RowR .(ℓ JMK) [JRK;𝜌 ]) [JN K/x] =
J(ℓ M) [R]K[JN K/x]

caseM′ {ℓi xi ↦→ Ni}i
By an equational reasoning similar to the case of (ℓ M′) [R] .

M′ ▷ A By an equational reasoning similar to the case of (ℓ M′) [R] .
□



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

Theorem 4.3 (Type Preservation). Every well-typed _⩽[ ] term Δ; Γ ⊢ M : A is translated to a
well-typed _𝜌[ ] term JΔK; JΓK ⊢ JMK : JAK.

Proof. By induction on typing derivations.

T-Var Our goal follows from JxK = x.
T-Lam Our goal follows from IH and T-Lam.

T-App Our goal follows from IH and T-App.
T-Inject By definition we have (l : A) ∈ R implies (l : JAK) ∈ JRK𝜌 for any 𝜌 . Then our goal

follows from IH, T-Inject and T-RowLam.

T-Case Our goal follows from IH and T-Case.
T-Upcast The only subtyping relation in _⩽[ ] is for variant types. Given Δ; Γ ⊢ M [R] ▷ [R′] : [R′],

by Δ; Γ ⊢ M : [R] and IH we have JΔK; JΓK ⊢ JMK : J[R]K. Then, by definition of

translation and T-RowApp we have JΔK; JΓK ⊢ JM [R] ▷ [R′]K : J[R′]K.
□

Theorem 4.4 (Operational Correspondence). For the translation J−K from _⩽[ ] to _
𝜌

[ ] , we have

Simulation If M ⇝𝛽 N, then JMK⇝?

𝜏⇝𝛽 JN K; if M ⇝▷ N, then JMK⇝a JN K.
Reflection If JMK⇝?

𝜏⇝𝛽 JN K, then M ⇝𝛽 N; if JMK⇝a JN K, then M ⇝▷▶ N.
Proof.

Simulation: First, we prove the base case where the whole termM is reduced, i.e.M {𝛽 N implies

JMK⇝?

𝜏⇝𝛽 JN K, and M {▷ N implies JMK⇝a JN K. The proof proceeds by case analysis on the

reduction relation:

𝛽-Lam We have (_xA.M1)M2 {𝛽 M1 [M2/x]. Then, (1)J(_xA.M1)M2K = (_xA.JM1K) JM2K {𝛽

JM1K[JM2K/x] = JM1 [M2/x]K, where the last equation follows from Lemma B.2.

𝛽-Case We have case (ℓj Mj) [R] {ℓi xi ↦→ Ni} {𝛽 Nj [Mj/xj]. Supposing R = (ℓi : Ai)i, we
have (2)Jcase (ℓj Mj) [R] {ℓi xi ↦→ Ni}K = case (J(ℓj Mj) [R]K ·) {ℓi xi ↦→ JNiK} ⇝𝜏

case ((ℓj JMjK) [JRK]) {ℓi xi ↦→ JNiK} {𝛽 JNjK[JMjK/xj] = JNj [Mj/xj]K, where the last
equation follows from Lemma B.2.

▷-Upcast We have (ℓ M1) [R] ▷ [R′] {▷ (ℓ M1) [R
′ ]
. We have (3)J(ℓ M1) [R] ▷ [R′]K =

Λ𝜌RowR′ .J(ℓ M1) [R]K@ (JR′\RK; 𝜌) ⇝a Λ𝜌RowR′ .(ℓ M1) [JR
′K;𝜌 ] = J(ℓ M1) [R

′ ]K.

Then, we prove the full theorem by induction on M . We only need to prove the case where

reduction happens in sub-terms of M .

x No reduction.

_xA.M′
The reduction can only happen in M′

. Supposing _xA.M′ ⇝𝛽 _xA.N ′
, by IH on M′

, we

have JM′K⇝?

𝜏⇝𝛽 JN ′K, which then gives J_xA.M′K = _xA .JM′K⇝?

𝜏⇝𝛽 _xA .JN ′K =

J_xA.N ′K. The same applies to the second case of the theorem.

(ℓ M′) [R] Similar to the _xA.M′
case as reduction can only happen in M′

.

M1 M2 Similar to the _xA.M′
case as reduction can only happen either in M1 or M2.

case M′ {ℓi xi ↦→ Ni}i
Similar to the _xA.M′

case as reduction can only happen in M′
or one of (Ni)i.

M′ ▷ A Similar to the _xA.M′
case as reduction can only happen in M′

.

Reflection: We proceed by induction on M .

x No reduction.

_xA.M′
We have JMK = _xJAK .JM′K. The reduction can only happen in JM′K. By definition of

translation, there exists N ′
such that N = _xA.N ′

and JM′K ⇝?

𝜏⇝𝛽 JN ′K. By IH, we



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Structural Subtyping as Parametric Polymorphism 35

have M′ ⇝𝛽 N ′
, which then implies M ⇝𝛽 N . The same applies to the second case of

the theorem.

M1 M2 We have JMK = JM1K JM2K. Proceed by case analysis where the first step of reduction

happens.

• Reduction happens in either JM1K or JM2K. Similar to the _xA .M′
case.

• The application is reduced by 𝛽-Lam. By definition of translation, we have M1 =

_xA.M′
. By (1), we have JMK {𝛽 JM′ [M2/x]K, which then gives N = M′ [M2/x].

Our goal follows from M {𝛽 N .

(ℓ M′) [R] We have JMK = Λ𝜌RowR .(ℓ JM′K) [JRK;𝜌 ]
. Similar to the _xA .M′

case as the reduction can

only happen in JM′K.
case M′ {ℓi xi ↦→ Ni}i

We have JMK = case (JM′K ·) {ℓi xi ↦→ JNiK}i. Proceed by case analysis where the first

step of reduction happens.

• Reduction happens in JM′K or one of JNiK. Similar to the _xA .M′
case.

• The row type application JM′K · is reduced by 𝜏-RowLam. Supposing JMK⇝𝜏 N ′
, by

the definition of translation, because JN Kmust be in the codomain of the translation,

we can only have N ′ {𝛽 JN K by applying 𝛽-Case, which implies M′ = (ℓj Mj) [R] .
By (2), we have JMK⇝𝜏{𝛽 JNj [Mj/xj]K, which then gives us N = Nj [Mj/xj]. Our
goal follows from M {𝛽 N .

M′[R] ▷ [R′]
We have JMK = Λ𝜌RowR′ .JM′K (JR′\RK; 𝜌). Proceed by case analysis where the first step

of reduction happens.

• Reduction happens in JM′K. Similar to the _xA.M′
case.

• The row type application JM′K (JR′\RK; 𝜌) is reduced by 𝜏-RowLam. Because JM′K
should be a type abstraction, there are only two cases. Proceed by case analysis on

M′
.

– M′ = (ℓM1) [R] . By (3), we have JMK⇝𝛽 J(ℓM1) [R
′ ]K, which then gives us

N = (ℓ M1) [R
′ ]
. Our goal follows from M ⇝𝛽 N .

– M′ = M [R1 ]
1
▷ [R]. We have JMK = Λ𝜌RowR′ .JM [R1 ]

1
▷ [R]K (JR′\RK; 𝜌) =

Λ𝜌RowR′ .(Λ𝜌RowR .JM1K@ (JR\R1K; 𝜌))@ (JR′\RK; 𝜌) ⇝a

Λ𝜌RowR′ .JM1K@ (JR\R1K; JR′\RK; 𝜌) = Λ𝜌RowR′ .JM1K@ (JR′\R1K; 𝜌) = JM [R1 ]
1
▷

[R′]K. By the definition of translation, we know that N = M [R1 ]
1
▷ [R′]. Our

goal follows from M ⇝▶ N .

□

B.3 Proof of the Encoding _⩽⟨⟩ in _⟨⟩

Lemma B.3 (Translation commutes with substitution). If Δ; Γ, x : A ⊢ M : B and Δ; Γ ⊢ N :

A, then JM [N/x]K = JMK[JN K/x].

Proof. By straightforward induction on M .

x Jx [N/x]K = JN K = JxK[JN K/x].
y(y ≠ x) Jy [N/x]K = y = JyK[JN K/x]
M1 M2 Our goal follows from IH and definition of substitution.

⟨ℓi = Mi⟩i Our goal follows from IH and definition of substitution.

M′ .ℓ Our goal follows from IH and definition of substitution.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

M′ ▷ A By IH and definition of substitution, we have J(M′ ▷ ⟨ℓi : Ai⟩i) [N/x]K = JM′ [N/x] ▷
⟨ℓi : Ai⟩iK = ⟨ℓi = JM′ [N/x]K.ℓi⟩i = ⟨ℓi = JM′K[JN K/x] .ℓi⟩i = (⟨ℓi = JM′K.ℓi⟩i) [JN K/x] =
JM′ ▷ ⟨ℓi : Ai⟩iK[JN K/x].

□

Theorem 4.5 (Type Preservation). Every well-typed _⩽⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.

Proof. By straightforward induction on typing derivations.

T-Var Our goal follows from JxK = x and T-Var.
T-Lam Our goal follows from IH and T-Lam.

T-App Our goal follows from IH and T-App.
T-Record Our goal follows from IH and T-Record.
T-Project Our goal follows from IH and T-Project.
T-Upcast The only subtyping relation in _⩽⟨⟩ is for record types. Given Δ; Γ ⊢ M ▷ ⟨R′⟩ : ⟨R′⟩ and

Δ; Γ ⊢ M : ⟨R⟩, by IH we have JΔK; JΓK ⊢ JMK : ⟨R⟩. Then, supposing M = ⟨ℓi = Mℓi ⟩i
and R′ = (ℓ ′j : Aj)j , by definition of translation, ⟨R⟩ ⩽ ⟨R′⟩ and T-Record we have

JΔK; JΓK ⊢ ⟨ℓ ′j = Mℓ ′j
⟩j : ⟨R′⟩.

□

Theorem 4.6 (Operational Correspondence). For the translation J−K from _⩽⟨⟩ to _⟨⟩ , we have

Simulation If M ⇝𝛽▷ N, then JMK⇝∗
𝛽

JN K.
Reflection If JMK⇝𝛽 N ′, then there exists N such that N ′ ⇝∗

𝛽
JN K and M ⇝𝛽▷ N.

Proof.

Simulation:

First, we prove the base case that thewhole termM is reduced, i.e.M {𝛽▷ N implies JMK {∗
𝛽

JN K.
The proof proceeds by case analysis on the reduction relation.

𝛽-Lam We have (_xA.M1)M2 {𝛽 M1 [M2/x]. Then, (1)J(_xA.M1)M2K = (_xA.JM1K) JM2K {𝛽

JM1K[JM2K/x] = JM1 [M2/x]K, where the last equation follows from Lemma B.3.

𝛽-Project We have ⟨(ℓi = Mi)i⟩.ℓj {𝛽 Mj . Our goal follows from (2)J⟨(ℓi = Mi)i⟩.ℓjK = ⟨(ℓi =
JMiK)i⟩.ℓj {𝛽 JMjK.

▷-Upcast We have ⟨ℓi = Mℓi ⟩i ▷ ⟨ℓ ′j : Aj⟩j {▷ ⟨ℓ ′j = Mℓ ′j
⟩j . Our goal follows from J⟨ℓi = Mℓi ⟩i ▷

⟨ℓ ′j : Aj⟩jK = ⟨ℓ ′j = J⟨ℓi = Mℓi ⟩iK.ℓ ′j ⟩j = ⟨ℓ ′j = ⟨ℓi = JMℓiK⟩i .ℓ ′j ⟩j ⇝∗
𝛽
⟨ℓ ′j = JMℓ ′j

K⟩j .
Then, we prove the full theorem by induction on M . We only need to prove the case where

reduction happens in sub-terms of M .

x No reduction.

_xA.M′
The reduction can only happen inM′

. Supposing _xA.M′ ⇝𝛽▷ _xA.N ′
, by IH onM′

, we

have JM′K⇝∗
𝛽

JN ′K, which then gives J_xA .M′K = _xA.JM′K⇝∗
𝛽
_xA.JN ′K = J_xA .N ′K.

M1 M2 Similar to the _xA.M′
case as reduction can only happen either in M1 or M2.

⟨ℓi = Mi⟩i Similar to the _xA.M′
case as reduction can only happen in one of (Mi)i.

M′ .ℓ Similar to the _xA.M′
case as reduction can only happen in M′

.

M′ ▷ A Similar to the _xA.M′
case as reduction can only happen in M′

.

Reflection: We proceed by induction on M .

x No reduction.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Structural Subtyping as Parametric Polymorphism 37

_xA.M′
We have JMK = _xJAK .JM′K. The reduction can only happen in JM′K. Suppose JMK⇝𝛽

_xJAK .N1. By IH on JM′K, there exists N ′
such that N1 ⇝

∗
𝛽

JN ′K and M′ ⇝𝛽▷ N ′
. Our

goal follows from setting N to _xA .N ′
.

M1 M2 We have JMK = JM1K JM2K. Proceed by case analysis where the reduction happens.

• Reduction happens in either JM1K or JM2K. Similar to the _xA.M′
case.

• The application is reduced by 𝛽-Lam. By definition of translation, we have M1 =

_xA.M′
. By (1), we have JMK {𝛽 JM′ [M2/x]K. Our goal follows from setting setting

N to M′ [M2/x].
⟨ℓi = Mi⟩i We have JMK = ⟨ℓi = JMiK⟩i . Similar to the _xA.M′

case as the reduction can only happen

in one of JMiK.
M′ .ℓj We have JMK = JM′K.ℓj . Proceed by case analysis where the reduction happens.

• Reduction happens in JM′K. Similar to the _xA .M′
case.

• The projection is reduced by 𝛽-Project. By definition of translation, we have M′ =
⟨ℓi = Mi⟩i. By (2), we have JMK {𝛽 JMjK. Our goal follows from setting setting N
to Mj .

M′ ▷ ⟨ℓi : Ai⟩i
We have JM′ ▷ ⟨ℓi : Ai⟩iK = ⟨ℓi = JM′K.ℓi⟩i . Proceed by case analysis where the reduction
happens.

• Reduction happens in one of JM′K in the result record. Supposing JMK ⇝𝛽 M1,

and in M1 one of JM′K is reduced to N1. By IH on JM′K, there exists N ′
such that

N1 ⇝
∗
𝛽

JN ′K and M′ ⇝𝛽▷ N ′
. Thus, we can apply the reduction JM′K⇝𝛽 N1 ⇝

∗
𝛽

JN ′K to all JM′K in the result record, which gives us JMK⇝𝛽 M1 ⇝
∗
𝛽

JN ′ ▷ ⟨ℓi :
Ai⟩iK. Our goal follows from setting N to N ′ ▷ ⟨ℓi : Ai⟩i and M′ ▷ ⟨ℓi : Ai⟩i ⇝𝛽▷

N ′ ▷ ⟨ℓi : Ai⟩i.
• One of JM′K.ℓi is reduced by 𝛽-Project. By the definition of translation, we know

that M′ = ⟨ℓ ′j = Mℓ ′j
⟩j . Supposing JMK⇝𝛽 M1, we can reduce all projection in JMK,

which gives us M1 ⇝
∗
𝛽
⟨ℓi = JMℓiK⟩i = J⟨ℓi = Mℓi ⟩iK. Our goal follows from setting

N to ⟨ℓi = Mℓi ⟩i and M′ ▷ ⟨ℓi : Ai⟩i {▷ N .

□

B.4 Proof of the Encoding _⩽⟨⟩ in _\⟨⟩

Lemma B.4 (Translation commutes with substitution). If Δ; Γ, x : A ⊢ M : B and Δ; Γ ⊢ N :

A, then JM [N/x]K = JMK[JN K/x].

Proof. By straightforward induction on M . We only need to consider cases that are different

from the proof of Lemma B.3.

⟨ℓi = Mi⟩i By IH and definition of substitution, we have J⟨ℓi = Mi⟩⟨ℓi :Ai ⟩i
i [N/x]K = J⟨ℓi = Mi [N/x]⟩⟨ℓi :Ai ⟩i

i K =

(Λ\i)i .⟨ℓi = JMi [N/x]K⟩⟨ℓ
\i
i :JAiK⟩i

i = (Λ\i)i .⟨ℓi = JMiK[JN K/x]⟩⟨ℓ
\i
i :JAiK⟩i

i = ((Λ\i)i .⟨ℓi =

JMiK⟩
⟨ℓ\ii :JAiK⟩i
i ) [JN K/x] = J⟨ℓi = Mi⟩⟨ℓi :Ai ⟩i

i K[JN K/x].
M′ .ℓ By an equational reasoning similar to the case of ⟨ℓi = Mi⟩i.
M′ ▷ A By an equational reasoning similar to the case of ⟨ℓi = Mi⟩i.

□

Theorem 4.7 (Type Preservation). Every well-typed _⩽⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _\⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.

Proof. By induction on typing derivations.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

T-Var Our goal follows from JxK = x.
T-Lam Our goal follows from IH and T-Lam.

T-App Our goal follows from IH and T-App.
T-Record Our goal follows from IH, T-Record and T-PreLam.

T-Project Supposing M = M′ .ℓj and Δ; Γ ⊢ M′
: ⟨ℓi : Ai⟩i, by definition of translation we have

JM′ .ℓjK = (JM′K(Pi)i).ℓj where Pj = •. IH on M′
implies JΔK; JΓK ⊢ JM′K : (∀\i)i .⟨ℓ\ii :

JAiK⟩i. Our goal follows from T-PreApp and T-Project.
T-Upcast The only subtyping relation in _⩽⟨⟩ is for record types. Given Δ; Γ ⊢ M ⟨R⟩ ▷ [R′] : [R′], by

Δ; Γ ⊢ M : ⟨R⟩ and IH we have JΔK; JΓK ⊢ JMK : J⟨R⟩K. Then, by definition of translation

and T-RowApp we have JΔK; JΓK ⊢ JM ⟨R⟩ ▷ ⟨R′⟩K : J⟨R′⟩K.
□

Theorem 4.8 (Operational Correspondence). The translation J−K from _⩽⟨⟩ to _\⟨⟩ has the
following properties:

Simulation If M ⇝𝛽 N, then JMK⇝∗
𝜏⇝𝛽 JN K; if M ⇝▷ N, then JMK⇝∗

a JN K.
Reflection If JMK ⇝∗

𝜏⇝𝛽 JN K, then M ⇝𝛽 N; if JMK ⇝a N ′, then there exists N such that
N ′ ⇝∗

a JN K and M ⇝▷▶ N.
Proof.

Simulation: First, we prove the base case that the whole term M is reduced, i.e. M {𝛽 N implies

JMK⇝∗
𝜏{𝛽 JN K, and M {▷ N implies JMK⇝∗

a JN K. The proof proceeds by case analysis on the

reduction relation:

𝛽-Lam We have (_xA.M1)M2 {𝛽 M1 [M2/x]. Then, (1)J(_xA.M1)M2K = (_xA.JM1K) JM2K {𝛽

JM1K[JM2K/x] = JM1 [M2/x]K, where the last equation follows from Lemma B.4.

𝛽-Project We have ⟨(ℓi = Mi)i⟩.ℓj {𝛽 Mj . By definition of translation, we have J⟨(ℓi = Mi)i⟩.ℓjK =
(J⟨ℓi = Mi⟩iK(Pi)i).ℓj = (((Λ\i)i .⟨ℓ\ii = JMiK⟩i) (Pi)i).ℓj , where Pj = • and Pi = ◦(i ≠ j).
Applying 𝛽-PreLam, we have (2)J⟨(ℓi = Mi)i⟩.ℓjK⇝∗

𝜏 (⟨ℓPii = JMiK⟩i).ℓj {𝛽 JMjK.
▷-Upcast We have ⟨(ℓi = Mℓi )i⟩⟨R⟩ ▷ ⟨R′⟩ {▷ ⟨ℓ ′j = Mℓ ′j

⟩j , where R = (ℓi : Aℓi )i and R′ = (ℓ ′j :

Aℓ ′j
)j . By definition, (3)J⟨(ℓi = Mℓi )i⟩⟨R⟩ ▷ ⟨R′⟩K = (Λ\ ′j )j .J⟨(ℓi = Mℓi )i⟩⟨R⟩K (@ Pi)i =

(Λ\ ′j )j .((Λ\i)i .⟨ℓi = JMℓiK⟩
⟨ℓ\ii :Aℓi ⟩i
i ) (@ Pi)i ⇝∗

a (Λ\ ′j )j .⟨ℓi = JMℓiK⟩
⟨ℓPii :Aℓi ⟩i
i , where Pi = ◦

when ℓi ∉ (ℓ ′j )j , and Pi = \ ′j when ℓi = ℓ ′j . By the fact that we ignore absent labels

when comparing records in _\⟨⟩ , we have (4)(Λ\ ′j )j .⟨ℓi = JMℓiK⟩
⟨ℓPii :Aℓi ⟩i
i = (Λ\ ′j )j .⟨ℓ ′j =

JMℓ ′j
K⟩⟨ℓ

′\ ′j
j :Aℓ ′j

⟩j
= J⟨ℓ ′j = Mℓ ′j

⟩jK.
Then, we prove the full theorem by induction on M . We only need to prove the case where

reduction happens in sub-terms of M .

x No reduction.

_xA.M′
The reduction can only happen in M′

. Supposing _xA.M′ ⇝𝛽 _xA.N ′
, by IH on M′

, we

have JM′K⇝∗
𝜏⇝𝛽 JN ′K, which then gives J_xA.M′K = _xA.JM′K {∗

𝜏⇝𝛽 _xA.JN ′K =

J_xA.N ′K. The same applies to the second part of the theorem.

M1 M2 Similar to the _xA.M′
case as reduction can only happen either in M1 or M2.

⟨ℓi = Mi⟩i Similar to the _xA.M′
case as reduction can only happen in one of (Mi)i.

M′ .ℓ Similar to the _xA.M′
case as reduction can only happen in M′

.

M′ ▷ A Similar to the _xA.M′
case as reduction can only happen in M′

.

Reflection: We proceed by induction on M .



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Structural Subtyping as Parametric Polymorphism 39

x No reduction.

_xA.M′
Wehave JMK = _xJAK .JM′K. The reduction can only happen in JM′K. Suppose JMK⇝∗

𝜏⇝𝛽

_xJAK.JN ′K. By IH on JM′K, M′ ⇝∗
𝜏⇝𝛽 N ′

. Our goal follows from _xA .M′ ⇝∗
𝜏⇝𝛽

_xA .N ′
. Suppose JMK⇝a _xJAK.N1. By IH on JM′K, there exists N ′

such that N1 ⇝
∗
a

JN ′K and M′ ⇝▷▶ N ′
. Our goal follows from setting N to _xA .N ′

.

M1 M2 We have JMK = JM1K JM2K. Proceed by case analysis where the reduction happens.

• Reduction happens in either JM1K or JM2K. Similar to the _xA.M′
case.

• The application is reduced by 𝛽-Lam. By definition of translation, we have M1 =

_xA.M′
. By (1), we have JMK {𝛽 JM′ [M2/x]K. Our goal follows from setting setting

N to M′ [M2/x].
⟨ℓi = Mi⟩i We have JMK = (Λ\i)i .⟨ℓi = JMiK⟩

⟨ℓ\ii :JAiK⟩i
i . Similar to the _xA.M′

case as the reduction

can only happen in one of JMiK.
M′ .ℓj We have JMK = (JM′K (Pi)i).ℓj , where Pi = ◦ for i ≠ j and Pj = •. Proceed by case

analysis where the 𝛽-reduction happens.

• Reduction happens in JM′K. Similar to the _xA .M′
case.

• The projection is reduced by 𝛽-Project★. Supposing JMK⇝∗
𝜏⇝𝛽 JN K, because JN K

is in the codomain of the translation, the⇝∗
𝜏 can only be the type applications of

(Pi)i and M′ = ⟨ℓi = Mi⟩i. By (2), we have JM′ .ℓjK⇝∗
𝜏{𝛽 JMjK. Our goal follows

from M′ .ℓj {𝛽 Mj .

M′⟨ℓi :Ai ⟩i ▷ ⟨ℓ ′j : A′
j ⟩j

We have JMK = (Λ\ j)j .JM′K (@ Pi)i, where Pi = ◦ for ℓi ∉ (ℓ ′j )j , and Pi = \ j for ℓi = ℓ ′j .
Proceed by case analysis where the reduction happens.

• Reduction happens in JM′K. Similar to the _xA.M′
case.

• The presence type application JM′K@ P1 is reduced by a-PreLam. Because the top-

level constructor of JM′K should be type abstraction, there are two cases. Proceed

by case analysis on M′
.

– M′ = ⟨ℓi = Mℓi ⟩i. We can reduce all presence type application of Pi. By (3)

and (4), we have JMK⇝∗
a J⟨ℓ ′j = Mℓ ′j

⟩jK. Our goal follows from setting N to

⟨ℓ ′j = Mℓ ′j
⟩j and M {▷ N .

– M′ = M
⟨ℓ ′′k :Bk ⟩k
1

▷ ⟨ℓi : Ai⟩i. We can reduce all presence type application of Pi.
We have JMK = (Λ\ j)j .JM1 ▷ ⟨ℓi : Ai⟩iK (@ Pi)i =
(Λ\ j)j .((Λ\i)i .JM1K (@ P ′k)k) (@ Pi)i ⇝∗

a (Λ\ j)j .JM1K (@Qk)k , where P ′k = ◦
for ℓ ′′k ∉ (ℓi)i , and P ′k = \i for ℓ

′′
k = ℓi . Thus, we have Qk = ◦ for ℓ ′′k ∉ (ℓ ′j )j , and

Qk = \ j for ℓ
′′
k = ℓ ′j , which implies JM1 ▷ ⟨ℓ ′j : A′

j ⟩jK = (Λ\ j)j .JM1K (@Q′
k)k .

Our goal follows from setting N to M1 ▷ ⟨ℓ ′j : A′
j ⟩j and M {▶ N .

□

C ENCODINGS, PROOFS AND DEFINITIONS IN SECTION 5
In this section, we provide the missing encodings, proofs and definitions in Section 5.

C.1 Local Term-Involved Encoding of _⩽full[ ] ⟨⟩ in _[ ] ⟨⟩

The local term-involved encoding of _⩽full[ ] ⟨⟩ in _[ ] ⟨⟩ [Breazu-Tannen et al. 1991; Pierce 2002] is

formalised as follows.



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

J−K : Derivation → Term
JMA ▷ BK = JA ⩽ BK JMK

J−K : Subtyping → Term
J𝛼 ⩽ 𝛼K = _x𝛼 .x

JA → B ⩽ A′ → B′K = _f A→B ._xA
′
.JB ⩽ B′K (f (JA′ ⩽ AK x))

rdom(R) ⊆ dom(R′) [Ai ⩽ A′
i ] (ℓi :Ai ) ∈R,(ℓi :A′

i ) ∈R′

[R] ⩽ [R′]

z
= _x [R] .case x {ℓi y ↦→ (ℓi (JAi ≤ A′

iK y)) [R
′ ]}

rdom(R′) ⊆ dom(R) [Ai ⩽ A′
i ] (ℓi :Ai ) ∈R,(ℓi :A′

i ) ∈R′

⟨R⟩ ⩽ ⟨R′⟩

z
= _x ⟨R⟩ .⟨ℓi = JAi ≤ A′

iK x .ℓi⟩

C.2 Dynamic Semantics of _⩽full[ ] ⟨⟩

In addition to the erasure semantics, the other style of dynamic semantics of _⩽full[ ] ⟨⟩ is given by

extending the operational semantics rules with the following four upcast rules.

▷-Var M ▷ 𝛼 {▷ M
▷-Lam (_xA .M) ▷ A′ → B′ {▷ _yA

′
.(M [(y ▷ A)/x] ▷ B′)

▷-Variant (ℓj M)A ▷ [ℓi : Ai]i {▷ (ℓj (M ▷ Aj)) [ℓi :Ai ]i

▷-Record ⟨ℓi = Mℓi ⟩i ▷ ⟨ℓ ′j : Aj⟩j {▷ ⟨ℓ ′j = Mℓ ′j
▷ Aj⟩j

We show that there is a correspondence between these two styles of dynamic semantics of _⩽full[ ] ⟨⟩ .

We first give a preorder M ⊑ N on terms of the untyped _[ ] ⟨⟩ which allows records in M to contain

more elements than those in N , because the erasure semantics does not truly perform upcasts. The

full definition is shown in Figure 12.

{ℓ ′j }j ⊆ {ℓi}i [Mi ⊑ Nj]ℓi=ℓ ′j
⟨ℓi = Mi⟩i ⊑ ⟨ℓ ′j = Nj⟩j

x ⊑ x
M ⊑ M′

_x .M ⊑ _x .M′
M ⊑ M′ N ⊑ N ′

M N ⊑ M′ N ′

M ⊑ M′

ℓ M ⊑ ℓ M′
M ⊑ M′ [Ni ⊑ N ′

i ]i
caseM {ℓi xi ↦→ Ni}i ⊑ caseM′ {ℓi xi ↦→ N ′

i }i
M ⊑ M′

M .ℓ ⊑ M′ .ℓ

Fig. 12. The preorder ⊑ of untyped _[ ] ⟨⟩ .

The correspondence is given by the following theorem.

Theorem C.1 (Operational Correspondence). Given a well-typed term M in _⩽full[ ] ⟨⟩ and a term
M′ in untyped _[ ] ⟨⟩ with M′ ⊑ erase(M), we have:
Simulation If M ⇝𝛽 N, then there exists N ′ such that N ′ ⊑ erase(N ) and M′ ⇝𝛽 N ′; if M ⇝▷ N,

then M′ ⊑ erase(N ).
Reflection If M′ ⇝𝛽 N ′, then there exists N such that N ′ ⊑ erase(N ) and M ⇝∗

▷⇝𝛽 N.

To prove it, we need two lemmas.

Lemma C.2 (Erasure commutes with substitution). If Δ; Γ, x : A ⊢ M : B and Δ; Γ ⊢ N : A,
then for M′ ⊑ erase(M) and N ′ ⊑ erase(N ), we have M′ [N ′/x] ⊑ erase(M [N/x]).

Proof. By straightforward induction on M . □

Lemma C.3 (Upcasts shrink terms). For any M ▷ A ⇝▷ N in _⩽full[ ] ⟨⟩ , we have erase(M) ⊑
erase(N ).



1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Structural Subtyping as Parametric Polymorphism 41

Proof. By definition of erase(−) and⇝▷. □

Then, we give the proof of Theorem C.1.

Proof.

Simulation: We proceed by induction on M .

x No reduction.

_xA.M1 Supposing M′ = _x .M′
1
, by M′ ⊑ erase(M) we have M′

1
⊑ erase(M1). The reduction

must happen in M1. Our goal follows from the IH on M1.

M1 M2 Supposing M′ = M′
1
M′

2
, by M′ ⊑ erase(M) we have M′

1
⊑ erase(M1) and M′

2
⊑

erase(M2). We proceed by case analysis where the reduction happens.

• The reduction happens in either M1 or M2. Our goal follows from the IH.

• The reduction reduces the top-level function application. Supposing M1 = _xA .M3

and M′
1
= _x .M′

3
with M′

3
⊑ erase(M3), we have (_xA .M3) M2 ⇝𝛽 M3 [M2/x] and

(_xA.M′
3
) M′

2
⇝𝛽 M′

3
[M′

2
/x]. Our goal follows from Lemma C.2.

N .ℓk SupposingM′ = N ′ .ℓk , byM′ ⊑ erase(M) we have N ′ ⊑ erase(N ′). We proceed by case

analysis where the reduction happens.

• The reduction happens in N . Our goal follows from the IH on N .

• The reduction reduces the top-level projection. Supposing N = ⟨ℓi = Mi⟩i and
N ′ = ⟨ℓ ′j = M′

j ⟩j with {ℓ ′j }j ⊆ {ℓi}i and (M′
j ⊑ erase(Mi))ℓi=ℓ ′j , we have N .ℓk ⇝𝛽 Mk

and N ′ .ℓk ⇝𝛽 M′
n where ℓk = ℓ ′n. Our goal follows from M′

n ⊑ erase(Mk).
⟨ℓi = Mi⟩i The reduction must happen in one of the Mi. Our goal follows from the IH.

M1 ▷ A For the 𝛽-reduction, it must happen in M1. Our goal follows from the IH. For the upcast

reduction, by M′ ⊑ erase(M) we have M′ ⊑ erase(M1). By Lemma C.3, we have

M′ ⊑ erase(M1) ⊑ erase(N ).
Reflection: We proceed by induction on M′

.

x No reduction.

_x .M′
1

By M′ ⊑ erase(M), we know that there exists _xA .M1 such that M ⇝∗
▷ _xA .M1. By

Lemma C.3, erase(M) ⊑ erase(_xA.M1). Then, by M′ ⊑ erase(M) and transitivity, we

have M′
1
⊑ erase(M1). The 𝛽-reduction must happen in M′

1
. Our goal follows from the

IH on M′
1
.

M′
1
M′

2
By M′ ⊑ erase(M), we know that there exists M1 M2 such that M ⇝∗

▷ M1 M2. By

Lemma C.3 and M′ ⊑ erase(M), we have M′
1
⊑ erase(M1) and M′

2
⊑ erase(M2). We

proceed by case analysis where the reduction happens.

• The reduction happens in either M′
1
or M′

2
. Our goal follows from the IH.

• The reduction reduces the top-level function application. Supposing M′
1
= _x .M′

3
,

by M′
1
⊑ erase(M1), we know that there exists _xA.M3 such that M1 ⇝

∗
▷ _x

A.M3.

Thus, M1 M2 ⇝
∗
▷⇝𝛽 M3 [M2/x] and M′

1
M′

2
⇝𝛽 M′

3
[M′

2
/x]. By Lemma C.3, we

have M′
1
⊑ erase(M1) ⊑ erase(_xA.M3), which implies M′

3
⊑ erase(M3). Our goal

follows from Lemma C.2.

N ′ .ℓk ByM′ ⊑ erase(M), we know that there exists N .ℓk such thatM ⇝∗
▷ N .ℓk . By Lemma C.3

and M′ ⊑ erase(M), we have N ′ ⊑ erase(N ). We proceed by case analysis where the

reduction happens.

• The reduction happens in N ′
. Our goal follows from the IH on N .

• The reduction reduces the top-level projection. Supposing N ′ = ⟨ℓ ′j = M′
j ⟩j , by

N ′ ⊑ erase(N ), we know that there exists ⟨ℓi = Mi⟩i such that N ⇝∗
▷ ⟨ℓi = Mi⟩i.

Thus, N .ℓk ⇝
∗
▷⇝𝛽 Mk and N ′ .ℓk ⇝𝛽 M′

n where ℓ
′
n = ℓk . By Lemma C.3, we have



2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

erase(N ) ⊑ erase(⟨ℓi = Mi⟩i). We can further conclude that M′
n ⊑ erase(Mk) from

N ′ ⊑ erase(N ).
□

C.3 Proof of the Encoding of _⩽co⟨⟩ in _\⟨⟩

Lemma C.4 (Upcast Translation). If A ⩽ B, then ∀\ .JA, PK = JBK for (\, P) = L\,A ⩽ BM.

Proof. By a straightforward induction on the definition of L\,A ⩽ BM. □

Theorem 5.1 (Type Preservation). Every well-typed _⩽co⟨⟩ term Δ; Γ ⊢ M : A is translated to a
well-typed _\⟨⟩ term JΔK; JΓK ⊢ JMK : JAK.

Proof. By induction on typing derivations.

T-Var Our goal follows from JxK = x.
T-Lam By the IH on Δ; Γ, x : A ⊢ M : B, we have

Δ; JΓK, x : JAK ⊢ JMK : JBK

Let \ = L\, BM. By T-PreApp and context weakening, we have

Δ, \ ; JΓK, x : JAK ⊢ JMK\ : JB, \K

Notice that we always assume variable names in the same context are unique, so we do

not need to worry that \ conflicts with Δ. Then, by T-Lam, we have

Δ, \ ; JΓK ⊢ _xJAK .JMK\ : JAK → JB, \K

Finally, by T-PreLam, we have

Δ; JΓK ⊢ Λ\ ._xJAK .JMK\ : ∀\ .JAK → JB, \K

Our goal follows from JA → BK = ∀\ .JAK → JB, \K.
T-App Similar to the T-Lam case. Our goal follows from IH, T-App, T-PreApp and T-PreLam.

T-Record Similar to the T-Lam case. Our goal follows from IH, T-Record, T-PreApp and T-PreLam.

T-Project Given the derivation of Δ; Γ ⊢ M .ℓjAj , by the IH on Δ; Γ ⊢ M : ⟨ℓi : Ai⟩i, we have
Δ; JΓK ⊢ JMK : J⟨ℓi : Ai⟩iK

Let Pi = ◦(i ≠ j), Pj = •, \ = L\,AjM, P i = L◦,AiM. By T-PreApp and context weakening,

we have

Δ, \ ; JΓK ⊢ JMK (Pi)i (P i)i<j \ (P i)j<i : ⟨R⟩
where ℓj : JAj, \K ∈ R by the definition of translations and the canonical order. Then, by

T-Proj, we have

Δ, \ ; JΓK ⊢ (JMK (Pi)i (P i)i<j \ (P i)j<i).ℓj : JAj, \K

Finally, by T-PreLam, we have

Δ; JΓK ⊢ (JMK (Pi)i (P i)i<j \ (P i)j<i).ℓj : ∀\ .JAj, \K

Our goal follows from JAjK = ∀\ .JAj, \K where \ = L\,AjM.
T-Upcast Given the derivation of Δ; Γ ⊢ M ▷ B : B, by the IH on Δ; Γ ⊢ M : A, we have

Δ; JΓK ⊢ JMK : JAK

Let (\, P) = L\,A ⩽ BM. By T-PreApp and context weakening, we have

Δ, \ ; JΓK ⊢ JMK P : JA, PK



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Structural Subtyping as Parametric Polymorphism 43

Then, by T-PreLam, we have

Δ; JΓK ⊢ Λ\ .JMK P : ∀\ .JA, PK

By Lemma C.4, we have JBK = ∀\ .JA, PK.
□

D THE PROOF IN SECTION 6
In this section, we provide the missing proof in Section 6.

D.1 Proof of encoding _⩽full⟨⟩2 using _
𝜌1

⟨⟩

Theorem 6.2 (Weak Type Preservation). Every well-typed _⩽full⟨⟩2 term Δ; Γ ⊢ M : A is translated

to a well-typed _𝜌1⟨⟩ term JΔ; ΓK ⊢ JMK : 𝜏 for some A′ ⩽ A and 𝜏 ≼ JA′K.

Proof. As shown in Section 6, we only need to prove that Δ; Γ ⊢ M : A in _⩽afull⟨⟩ implies

JΔ; ΓK ⊢ JMK : 𝜏 for some 𝜏 ≼ JAK in _
𝜌1

⟨⟩ . We proceed by induction on the typing derivations in

_⩽afull⟨⟩ .

T-Var Our goal follows directly from the definition of translations.

T-Lam Given the derivation of Δ; Γ ⊢ _aA.M : A → B, by the IH on Δ; Γ, a : A ⊢ M : B, we
have

Δ,ftv(JΓK), L𝜌 |Γ | ,AM∗; Γ, a : JA, L𝜌 |Γ | ,AM∗K∗ ⊢ JMK : 𝜏B

for some 𝜏B ≼ JBK. Supposing 𝜏B = ∀𝜌B .B′, by T-Inst and environment weakening, we

have
3

Δ,ftv(JΓK), L𝜌 |Γ | ,AM∗, 𝜌B; Γ, a : JA, L𝜌 |Γ | ,AM∗K∗ ⊢ JMK : B′

Then, by T-Lam, we have

Δ,ftv(JΓK), L𝜌 |Γ | ,AM∗, 𝜌B; Γ ⊢ _a.JMK : JA, L𝜌 |Γ | ,AM∗K∗ → B′

Finally, by T-Gen, we have

Δ,ftv(JΓK); Γ ⊢ _a.JMK : ∀L𝜌 |Γ | ,AM∗ 𝜌B .JA, L𝜌 |Γ | ,AM∗K∗ → B′

By definition, we have JA → BK = ∀𝜌
1
𝜌
2
.JA, 𝜌

1
K∗ → JB, 𝜌

2
K, where 𝜌

1
= L𝜌1,AM∗, 𝜌

2
=

L𝜌2, BM. It is easy to check that ∀L𝜌 |Γ | ,AM∗ 𝜌B .JA, L𝜌 |Γ | ,AM∗K∗ → B′ ≼ JA → BK under
𝛼-renaming.

T-AppSub Given the derivation of Δ; Γ ⊢ M N : B, by the IH on Δ; Γ ⊢ M : A → B, we have

JΔ; ΓK ⊢ JMK : 𝜏1

for some 𝜏1 ≼ JA → BK. By the IH on Δ; Γ ⊢ B : A2, we have

JΔ; ΓK ⊢ JN K : 𝜏2

for some 𝜏2 ≼ JA2K. We have ℧2 (A → B), which implies ℧1 (A). Then, A2 ⩽ A gives

us ℧1 (A2), which further implies that JA2K = A2 and 𝜏2 is not polymorphic. Thus, we

3
We always assume type variables in type environments have different names, and we omit kinds when they are easy to

reconstruct from the context.



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

have 𝜏2 ≼ JA2K = A2 ⩽ A. Notice that given A ≼ _ ⩽ B with ℧1 (B), we can always

construct R with JB, RK∗ = A, by LA ≼⩽ BM defined as follows.

L−M : (Type ≼⩽ Type) → (Row)
L𝛼 ≼⩽ 𝛼M = (·, ·)

LA → B ≼⩽ A → B′M = LB ≼⩽ B′M
L⟨(ℓi : Ai)i⟩ ≼⩽ ⟨(ℓ ′j : A′

j )⟩M = (ℓk : Ak)k∈{ℓi }i\{ℓ ′j }j LAi ≼⩽ A′
j Mℓi=ℓ ′j

L⟨(ℓi : Ai)i; 𝜌⟩ ≼⩽ ⟨(ℓ ′j : A′
j )⟩M = ((ℓk : Ak)k∈{ℓi }i\{ℓ ′j }j ; 𝜌) LAi ≼⩽ A′

j Mℓi=ℓ ′j

Let R = L𝜏2 ≼⩽ AM. We have JA, RK∗ = 𝜏2. Suppose 𝜏1 = ∀𝜌.A′ → B′. By definition,

we have JA → BK = ∀𝜌
1
𝜌
2
.JA, 𝜌

1
K∗ → JB, 𝜌

2
K, where 𝜌

1
= L𝜌1,AM∗, 𝜌

2
= L𝜌2, BM. By

𝜏1 ≼ JA → BK, we have A′ = JA, 𝜌
1
K∗, B′ ≼ JB, 𝜌

2
K and 𝜌 = 𝜌

1
𝜌
2
after 𝛼-renaming. By

T-Inst and environment weakening, we have

Δ,ftv(JΓK), 𝜌
2
; JΓK ⊢ JMK : JA, RK∗ → B′

Notice that JA, RK∗ = 𝜏2. We can then apply T-App and environment weakening, which

gives us

Δ,ftv(JΓK), 𝜌
2
; JΓK ⊢ JMK JN K : B′

Finally, by T-Gen, we have

Δ,ftv(JΓK); JΓK ⊢ JMK JN K : ∀𝜌
2
.B′

The condition ∀𝜌
2
.B′ ≼ JBK holds obviously.

T-Record Our goal follows from the IH and a sequence of applications of T-Inst, T-Record, and
T-Gen similar to the previous cases.

T-Project Our goal follows from the IH and a sequence of applications of T-Inst, T-Project, and
T-Gen similar to the previous cases.

T-Let Given the derivation of Δ; Γ ⊢ let x = M inN , by the IH on Δ; Γ ⊢ M : A, we have

Δ,ftv(JΓK); JΓK ⊢ JMK : 𝜏1

for some 𝜏1 ≼ JAK. By the IH on Δ; Γ, x : A ⊢ N : B, we have

Δ,ftv(JΓK); JΓK, x : JAK ⊢ JN K : 𝜏2

for some 𝜏2 ≼ JBK. By another straightforward induction on the typing derivations, we

can show that Δ; Γ, x : 𝜏1 ⊢ M : 𝜏2 implies Δ; Γ, x : 𝜏 ′
1
⊢ M : 𝜏 ′

2
for 𝜏 ′

1
≼ 𝜏1 and 𝜏

′
2
≼ 𝜏2.

Thus, we have

Δ,ftv(JΓK); JΓK, x : 𝜏1 ⊢ JN K : 𝜏 ′
2

for some 𝜏 ′
2
≼ 𝜏2 ≼ JBK. Then, by T-Let, we have

Δ,ftv(JΓK); JΓK ⊢ let x = JMK in JN K : 𝜏 ′
2

with 𝜏 ′
2
≼ JBK.

□

E PROOFS OF NON-EXISTENCE RESULTS
In this section, we give the proofs of non-existence results in Section 4 and Section 5.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Structural Subtyping as Parametric Polymorphism 45

E.1 Non-Existence of Type-Only Encodings of _⩽⟨⟩ in _
𝜌

⟨⟩ and _⩽[ ] in _\[ ]

Theorem 4.9. There exists no global type-only encoding of _⩽⟨⟩ in _
𝜌

⟨⟩ , and no global type-only
encoding of _⩽[ ] in _\[ ] .

Proof. We provide three proofs of this theorem, the first one is based on the type preservation

property, the second one is based on the compositionality of translations, and the third one carefully

avoids using the type preservation and compositionality. The point of multiple proofs is to show

that the non-existence of the encoding of _⩽⟨⟩ in _
𝜌

⟨⟩ is still true even if we relax the condition of type

preservation and compositionality, which emphasises the necessity of the restrictions in Section 6.

Proof 1:

We assume that Δ = 𝛼0 and Γ = y : 𝛼0 when environments are omitted.

Consider ⟨⟩ and ⟨ℓ = y⟩ ▷ ⟨⟩. By the fact that J−K is type-only, we have J⟨⟩K = Λ𝛼.⟨⟩ and
J⟨ℓ = y⟩ ▷ ⟨⟩K = Λ𝛽.J⟨ℓ = y⟩K B = Λ𝛽.(Λ𝛾 .⟨ℓ = Λ𝛾 ′ .y⟩) B. Thus, J⟨ℓ = y⟩ ▷ ⟨⟩K has type

∀𝛼 ′ .⟨ℓ : ∀𝛾 ′ .𝛼0⟩ for some 𝛼 ′
.

By type preservation, the translated results should have the same type, which implies ∀𝛼.⟨⟩ =
∀𝛼 ′ .⟨ℓ : ∀𝛾 ′ .𝛼0⟩. Thus, we have the equation ⟨⟩ = ⟨ℓ : ∀𝛾 ′ .𝛼0⟩, which leads to a contradiction as the

right-hand side has an extra label ℓ and we do not have presence types to remove labels.

Similarly, we can prove the theorem for variants by considering (ℓ1 y) [ℓ1:𝛼0;ℓ2:𝛼0 ]
and (ℓ1 y) [ℓ1:𝛼0 ] ▷

[ℓ1 : 𝛼0; ℓ2 : 𝛼0]. The key point is that ℓ2 is arbitrarily chosen, so for the translation of (ℓ1 y) [ℓ1:𝛼0 ]

we cannot guarantee that ℓ2 appears in its type, and presence polymorphism does not give us the

ability to add new labels to row types.

Proof 2:

We assume that Δ = 𝛼0 and Γ = y : 𝛼0 when environments are omitted.

Consider the function application M N where M = _x ⟨⟩ .⟨⟩ and N = ⟨ℓ = y⟩ ▷ ⟨⟩. By the

type-only property, we have

J_x ⟨⟩ .⟨⟩K = Λ𝛼1._xA1 .Λ𝛽
1
.⟨⟩ B1

for some 𝛼1, 𝛽1,A1 and B1. By Proof 1, we have

J⟨ℓ = y⟩ ▷ ⟨⟩K = Λ𝛼2 .⟨ℓ = Λ𝛽
2
.y⟩

for some 𝛼2 and 𝛽
2
. Then, by the type-only property, we have

J(_x ⟨⟩ .⟨⟩) (⟨ℓ = y⟩ ▷ ⟨⟩)K = Λ𝛼.(J_x ⟨⟩ .⟨⟩K A) (Λ𝛽.J⟨ℓ = y⟩ ▷ ⟨⟩K B) C

for some 𝛼, 𝛽,A, B and C. As we only have row polymorphism, the type application of B cannot

remove the label ℓ from the type of JN K. Since ℓ is arbitrarily chosen, it can neither be already in

the type of JMK. By definition, a compositional translation can only use the type information of

M and N , which contains nothing about the label ℓ . Thus, the label ℓ can neither be in A, which
further implies that the JM N K is not well-typed as the T-App must fail. Contradiction.

Proof 3:

Consider three functions f1 = _x ⟨⟩ .x, f2 = _x ⟨⟩ .⟨⟩, and g = _f ⟨⟩→⟨⟩ .⟨⟩. By the type-only property,
we have

Jf1K = Λ𝛼1._xA1 .Λ𝛽
1
.x B1 : ∀𝛼1 .A1 → ∀𝛽

1
.A′

1

Jf2K = Λ𝛼2._xA2 .Λ𝛽
2
.⟨⟩ : ∀𝛼2 .A2 → ∀𝛽

2
.⟨⟩

JgK = Λ𝛼3._f A3 .Λ𝛽
3
.⟨⟩ : ∀𝛼3 .A3 → ∀𝛽

3
.⟨⟩

where A′
1
= A′′

1
[B1/𝛼 ′

1
] and A1 = ∀𝛼 ′

1
.A′′

1
.

If there is some variable 𝛼 ′
1
∈ 𝛼1 appears in A1, then it must also appear in A′

1
as we have no

way to remove it by the substitution [B1/𝛼 ′]. Thus, A3 should be of shape ∀𝛼.A → ∀𝛽.A′
where A′



2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley

contains some variable 𝛼 ′ ∈ 𝛼 . However, this contradicts with the fact that g can be applied to f2,
because the type ⟨⟩ in the type of Jf2K cannot contain any variable in 𝛼2. Hence, we can conclude

that A1 cannot contain any variable in 𝛼1, which will lead to contradiction when we consider the

translation of f1 (⟨ℓ = 1⟩ ▷ ⟨⟩) because we can neither add the label ℓ in the type A1, nor remove it

in the type of J⟨ℓ = 1⟩ ▷ ⟨⟩K.
□

E.2 Non-Existence of Type-Only Encodings of _⩽co[ ] in _
𝜌\

[ ]

Theorem 5.3. There exists no global type-only encoding of _⩽co[ ] in _
𝜌\

[ ] .

Proof. We assume that Δ = 𝛼0 and Γ = y : 𝛼0 when environments are omitted. For simplicity,

we omit the type of labels in variant types if it is 𝛼0.

By the fact that J−K is type-only, we have:

• (ℓ y) [ℓ ] is translated to Λ𝛼.(ℓ (Λ𝛽.y)) [R] where (ℓ : ∀𝛽.𝛼0) ∈ R. By type preservation, we

have J[ℓ]K = ∀𝛼.[R].
• (ℓ y) [ℓ ] ▷ [ℓ ; ℓ ′] is translated to Λ𝜏 .J(ℓ y) [ℓ ]K T = Λ𝜏 .(Λ𝛼.(ℓ (Λ𝛽.y)) [R]) T where (ℓ :

∀𝛽.𝛼0) ∈ R. By type preservation, we have J[ℓ ; ℓ ′]K = (1)∀𝜏 𝛼 ′
2
.[R] [T/𝛼 ′

1
] where 𝛼 = 𝛼 ′

1
𝛼 ′
2
.

• (ℓ ′ y) [ℓ ;ℓ ′ ] is translated to Λ𝛼 ′′ .(ℓ ′ (Λ𝛽 ′′ .y)) [R′′ ] where ℓ ′ ∈ R′′. By symmetry, we also have

ℓ ∈ R′′. By type preservation, we have J[ℓ ; ℓ ′]K = (2)∀𝛼 ′′ .[R′′].
By the fact that (1) = (2) and ℓ ′ can be an arbitrary label, we can conclude that R has a row

variable 𝜌R bound in 𝛼 ′
1
which is instantiated to the ℓ ′ label in R′ by the substitution [A/𝛼 ′

1
]. Thus,

we have (3)R = (ℓ : ∀𝛽.𝛼0); . . . ; 𝜌R where 𝜌R ∈ 𝛼 .

Then, consider a nested variant M = (ℓ (ℓ y) [ℓ ]) [ℓ :[ℓ ] ] . Because J−K is type-only, we have

JMK = Λ𝛼 ′ .(ℓ (Λ𝛽 ′ .(Λ𝛼.(ℓ (Λ𝛽.y)) [R]) A)) [R′ ]

By (3), JMK has type ∀𝛼 ′ .[R′] = ∀𝛼 ′ .[(ℓ : ∀𝛽 ′ 𝛼2.[R] [A/𝛼1]); . . .], where 𝛼 = 𝛼1 𝛼2 and 𝜌R ∈ 𝛼 .

We proceed by showing the contradiction that 𝜌R can neither be in 𝛼1 nor 𝛼2.

𝜌R ∈ 𝛼2 Consider M′ = (ℓ (ℓ y) [ℓ ;ℓ ′ ]) [ℓ :[ℓ ;ℓ ′ ] ] of type [ℓ : [ℓ ; ℓ ′]]. By an analysis similar to M , it is

easy to show that JM′K has type ∀`.[(ℓ : ∀a.[R1]); . . .] where ℓ ∈ R1 and ℓ ′ ∈ R1.
Then, consider M ▷ [ℓ : [ℓ ; ℓ ′]] of the same type [ℓ : [ℓ ; ℓ ′]] as M′

which is translated to

Λ𝛾 .JMK B. By type preservation, the translation of M′
and M ▷ [ℓ : [ℓ ; ℓ ′]] should have the

same type, which means R should contain label ℓ ′ after the type application of B. However,
because 𝜌R ∈ 𝛼2, we cannot instantiate 𝜌R to contain ℓ ′. Besides, because ℓ ′ is arbitrarily
chosen, it cannot already exist in R. Hence, 𝜌R ∉ 𝛼2.

𝜌R ∈ 𝛼1 Consider case M {ℓ x ↦→ x ▷ [ℓ ; ℓ ′]} of type [ℓ ; ℓ ′]. By the type-only condition, it is

translated to (4)Λ𝛾 .case (JMK C){ℓ x ↦→ Λ𝛿.x D}. By (2) we have J[ℓ ; ℓ ′]K = ∀𝛼 ′′ .[R′′]
where ℓ ∈ R′′ and ℓ ′ ∈ R′′. However, for (4), by the fact that 𝜌R ∈ 𝛼1 and 𝛼1 are substituted

by A, the new row variable of the inner variant of M can only be bound in 𝛼 ′
. Thus, in the

case clause of ℓ , we cannot extend the variant type to contain ℓ ′ by type application of D.
Besides, because ℓ ′ is arbitrarily chosen and the translation is compositional, it can neither

be already in the variant type or be introduced by the type application of C. Hence, 𝜌R ∉ 𝛼1.

Finally, by contradiction, the translation J−K does not exist.
□

E.3 Non-Existence of Type-Only Encodings of Full Subtyping

Theorem 5.4. There exists no global type-only encoding of _⩽full⟨⟩ in _
𝜌\

⟨⟩ .



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Structural Subtyping as Parametric Polymorphism 47

Proof. Consider two functions f1 = _x ⟨⟩ .x and f2 = _x ⟨⟩ .⟨⟩ of the same type ⟨⟩ → ⟨⟩. By the

type-only property, we have

Jf1K = Λ𝛼1._xA1 .Λ𝛽
1
.x B1

Jf2K = Λ𝛼2._xA2 .Λ𝛽
2
.J⟨⟩K B2 = Λ𝛼2._xA2 .Λ𝛽

2
.(Λ𝛾 .⟨⟩) B2

By type preservation, they have the same type, which implies x B1 and (Λ𝛾 .⟨⟩) B2 have the same

type. We can further conclude that A1 must be able to be instantiated to the empty record type ⟨⟩.
Thus, the only way to have type variables bound by Λ𝛼1 in A1 is to put them in the types of labels

which are instantiated to be absent by the type application x B1.
Then, consider another two functions g1 = f1 ▷ (⟨ℓ : ⟨⟩⟩ → ⟨⟩) and g2 = _x ⟨ℓ :⟨⟩⟩ .(x .ℓ) of the

same type ⟨ℓ : ⟨⟩⟩ → ⟨⟩. By the type-only property, we have

Jg1K = Λ𝛼.Jf1K A = Λ𝛼.(Λ𝛼1 ._xA1 .Λ𝛽
1
.x B1) A

Jg2K = Λ𝛼 ′ ._xA
′
.Λ𝛽

′
.Jx .ℓK B

′
= Λ𝛼 ′ ._xA

′
.Λ𝛽

′
.(Λ𝛾 ′ .(x C).ℓ D) B′

By type preservation, Jg1K and Jg2K have the same type. The (x C).l in Jg2K implies that x has a

polymorphic record type with label ℓ . Because ℓ is arbitrarily chosen, the only way to introduce

ℓ in the parameter type of Jg1K is by the type application of A. However, we also have that type

variables in 𝛼1 can only appear in the types of labels in A1, which means we cannot instantiate A1

to be a polymorphic record type with the label ℓ by the type application of A. Contradiction.
□


	Abstract
	1 Introduction
	2 Examples
	2.1 Simple Variant Subtyping as Row Polymorphism
	2.2 Simple Record Subtyping as Presence Polymorphism
	2.3 Exploiting Contravariance
	2.4 Full Subtyping as Rank-1 Polymorphism
	2.5 Strictly Covariant Record Subtyping as Presence Polymorphism
	2.6 No Type-Only Encoding of Strictly Covariant Variant Subtyping as Polymorphism
	2.7 No Type-Only Encoding of Full Record Subtyping as Polymorphism

	3 Calculi
	3.1 A Simply-Typed Base Calculus
	3.2 A Calculus with Variants
	3.3 A Calculus with Variants and Structural Subtyping
	3.4 A Calculus with Row Polymorphic Variants
	3.5 A Calculus with Records
	3.6 A Calculus with Records and Structural Subtyping
	3.7 A Calculus with Presence Polymorphic Records

	4 Simple Subtyping as Polymorphism
	4.1 Local Term-Involved Encoding of 1[.8][] in 1[.8][]
	4.2 Local Type-Only Encoding of 1[.8][] in 1[.8][]
	4.3 Local Term-Involved Encoding of 1[.8] in 1[.8]
	4.4 Local Type-Only Encoding of 1[.8] in 1[.8]
	4.5 Swapping Row and Presence Polymorphism

	5 Full Subtyping as Polymorphism
	5.1 Local Term-Involved Encoding of 1[.8][]1[.8]full in 1[.8][]1[.8]
	5.2 Global Type-Only Encoding of 1[.8]co in 1[.8]
	5.3 Non-Existence of Type-Only Encodings of 1[.8][]co in 1[.8][]
	5.4 Non-Existence of Type-Only Encodings of 1[.8]full in 1[.8]

	6 Full Subtyping as Rank-1 Polymorphism
	7 Discussion
	7.1 Record Extensions and Default Cases
	7.2 Combining Subtyping and Polymorphism
	7.3 Related Work
	7.4 Conclusion and Future Work

	References
	A More Calculi
	A.1 A Calculus with Row Polymorphic Records 1[.8]
	A.2 A Calculus with Presence Polymorphic Variants 1[.8][]
	A.3 A Calculus with Rank-1 Row Polymorphic Records 1[.8]1

	B Proofs of Encodings in Section 4
	B.1 Proof of the Encoding of 1[.8][] in 1[.8][]
	B.2 Proof of the Encoding of 1[.8][] in 1[.8][]
	B.3 Proof of the Encoding 1[.8] in 1[.8]
	B.4 Proof of the Encoding 1[.8] in 1[.8]

	C Encodings, Proofs and Definitions in Section 5
	C.1 Local Term-Involved Encoding of 1[.8][]1[.8]full in 1[.8][]1[.8]
	C.2 Dynamic Semantics of 1[.8][]1[.8]full
	C.3 Proof of the Encoding of 1[.8]co in 1[.8]

	D The Proof in Section 6
	D.1 Proof of encoding 1[.8]2full using 1[.8]1

	E Proofs of Non-existence Results
	E.1 Non-Existence of Type-Only Encodings of 1[.8] in 1[.8] and 1[.8][] in 1[.8][]
	E.2 Non-Existence of Type-Only Encodings of 1[.8][]co in 1[.8][]
	E.3 Non-Existence of Type-Only Encodings of Full Subtyping


