
Slotted E-Graphs
Rudi Schneider

r.schneider@tu-berlin.de
Technische Universität Berlin

Germany

Thomas Kœhler
thomas.koehler@inria.fr

Inria
France

Michel Steuwer
michel.steuwer@tu-berlin.de
Technische Universität Berlin

Germany

Abstract
Representing languages with bound variables in e-graphs is
not straightforward. Using plain names results in reduced
sharing, as multiple terms that are equivalent up to renaming
are represented redundantly in the e-graph. De-Bruijn in-
dices suffer from the same problem. Furthermore, rewriting
can trigger the need to rename variables (or shift indices),
such as when performing 𝛽-reduction, which can dramati-
cally increase the size of the e-graph.
In this work, we present a novel approach to represent

bound variables in e-graphs by making them a built-in fea-
ture of the data structure. In our slotted e-graph, e-classes
are parameterized by slots abstracting over all free variables.
Referring to an e-class now requires instantiating it by as-
signing a name from the users context to each slot. Renaming
variables corresponds simply to different instantiations of
an e-class.
Representing variables and 𝛽-reduction efficiently is an

important topic in many applications of equality saturation,
and we hope that this talk will spark interest with the audi-
ence of the EGRAPHS workshop.1

1 Introduction
Egg [5] has sparked a recent resurgence of interest into e-
graphs and equality saturation, which is used for increasingly
more ambitious applications. One currently open question
is how to efficiently encode programs with bound variables
in e-graphs. Glenside [4] avoids representing bound vari-
ables altogether, using a combinator-only style to represent
programs. While this can work well in restricted domains,
it is not a satisfying general solution. Alternatively, bound
variables can be represented by name, as done in the original
egg paper [5] or using de Bruijn indices [1][3].

Before introducing our novel approach, we briefly review
these established options. In particular, we focus on their
sharing characteristics, and how well they allow us to do
fundamental operations like 𝛽 and 𝜂 reductions.

Named Variables. Using named variables is perhaps the
most intuitive approach to representing variables. Yet, prob-
lems arise when variable names start colliding, which often
makes it necessary to rename a bound variable. First, re-
naming a variable in an e-class requires creating an altered
copy of said e-class, resulting in the duplication of poten-
tially large parts of the e-graph and reducing sharing. Second,

1https://pldi24.sigplan.org/home/egraphs-2024#About

picking the new variable name is not an easy choice. If we
pick a globally fresh name, then each new invocation of the
rewrite rule will yield a different variable, constituting for
unacceptable amounts of copies. On the other hand, any
fixed naming scheme is prone to later collisions.
Choosing a new variable name is not only necessary for

naming collisions that come up during 𝛽 reductions. But
additionally, every rewrite rule that creates new binders, like
𝜂 expansion, will face the same conundrum.

De Bruijn Indices. Both, the problem of colliding names,
and the need to generate fresh names, are solved by using
De Bruijn indices. But unfortunately, as both 𝛽 and 𝜂 reduc-
tion will eliminate a binder, the indices of all free variables
need to be shifted by one. Similarly to renaming operations,
shifting operations result in duplication and reduced sharing
in the e-graph.

On top of their individual characteristics, both name and
index approaches lead to duplication due to the inability to
merge e-classes across the boundaries of their names (or in-
dices). The example from Figure 1 illustrates this problem on
a name-based e-graph. Due to the way variables are encoded,
the e-graph cannot abstract over 𝑥 −𝑦 and𝑦−𝑥 , even though
they are equivalent up to renaming. The e-graph would look
the same for De Bruijn indices (e.g. replacing 𝑥 with index 0,
and 𝑦 with index 1).

2 Slotted E-Graphs
The key idea of slotted e-graphs is to parameterize each e-
class by the free variables of the terms they represent. Hence,

*

- -

x y

Figure 1. The term (𝑥 −𝑦) · (𝑦 −𝑥) represented in a conven-
tional name-based e-graph.

https://orcid.org/0009-0008-9151-773X
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5048-0741
https://pldi24.sigplan.org/home/egraphs-2024#About

Conference’17, July 2017, Washington, DC, USA Rudi Schneider, Thomas Kœhler, and Michel Steuwer

(a, b):

*

(x, y):

-

(v):

var(v)

(a,b) (b,a)

(x) (y)

Figure 2. The term (𝑥 −𝑦) · (𝑦 − 𝑥) represented in a slotted
e-graph.

each free variable corresponds to an argument (dubbed slot)
of that e-class. The central property is the following:

Definition 2.1 (Name-independent Congruence Invariant).
If two terms differ only in the names of (bound or free)
variables, the slotted e-graph is guaranteed to represent them
using the same e-class.

To visualize the idea, we revisit the term (𝑥 − 𝑦) · (𝑦 − 𝑥)
from Figure 1, and compare it to its slotted equivalent in
Figure 2.

The e-class at the bottom represents single-variable terms
like 𝑥 and 𝑦, abstracting over the concrete variable through
the slot 𝑣 . The special e-node 𝑣𝑎𝑟 (𝑣) is used to signify that
this e-class represents the variable indicated by the slot 𝑣 .

In the middle, we have the e-class representing terms like
𝑥−𝑦. As this term has two free variables, this e-class requires
two slots 𝑥 and 𝑦. It contains a single subtraction e-node,
which invokes the single-variable e-class once with 𝑥 and
once with 𝑦, representing 𝑥 − 𝑦.

Finally, the upper e-class represents the whole term (𝑥 −
𝑦) · (𝑦 − 𝑥). As we again have two free variables, we require
two slots. In this case, we call them 𝑎 and 𝑏 to avoid confu-
sions with the slots of the previous e-class. Whether a slot
𝑎 in this e-class corresponds to 𝑥 or 𝑦 in the next e-class is
solely decided by the way the e-class is invoked. This final
e-class consists of a multiplication e-node that invokes our
subtraction e-class once with (𝑎, 𝑏) and once with (𝑏, 𝑎) to
obtain 𝑎 − 𝑏 and 𝑏 − 𝑎 respectively.

It is important to stress, that the names we choose for
our slots are only intended to aid readability. The names are
arbitrarily chosen and local to the e-class.

2.1 Bindings
So far, we only worked with free variables, without even
mentioning how to bind them. A typical example for a binder
is the 𝜆-abstraction. We use it to examplify how binders work
in a slotted e-graph.

To visualize how 𝜆-abstraction works, we again consider
an example.

λx

x

():

λx

(v):

var(v)

(x)

Figure 3. The identity function 𝜆𝑥 .𝑥 in both a conventional
e-graph, and a slotted e-graph.

In the conventional name-based e-graph, the mapping be-
tween the variable and its binder happens per name. Instead,
with slotted e-graphs this connection is expressed using slots.
A binder e-node 𝜆𝑥 declares a new slot 𝑥 , that can be used
to invoke other e-classes. The key advantage is that each
binder e-node can directly invoke any e-class with its slot,
independent of the internal slot names. This is a stark con-
trast to named variables, where a binder can only refer to a
variable if their names agree.

A very similar method of expressing the connection be-
tween a binder and its variable is discussed in [2].

2.2 Conflicting sets of free variables
A notable difficulty for slotted e-graphs arises from the fact
that equal terms might not necessarily agree on a set of
free variables. This is critical, as our e-classes are intended
to abstract over these equivalent terms, exposing their free
variables as slots. Consider an e-class containing both 𝑦 · 0
and 0. What set of free variables should it expose?

Our answer is that this e-class should not expose any free
variables, because the variable 𝑦 does not contribute to the
result of the expression. Generally, if two terms are equal,
while one of them does not depend on some variable, then
clearly the other term does neither. Formally, if 𝑓 (𝑥,𝑦) =

Slotted E-Graphs Conference’17, July 2017, Washington, DC, USA

𝑔(𝑥) for all 𝑥,𝑦, then we know that 𝑓 can not depend on 𝑦,
as 𝑓 (𝑥,𝑦) = 𝑔(𝑥) = 𝑓 (𝑥, 𝑐) for any constant 𝑐 . Hence, the set
of free variables exposed by an e-class is the intersection of
the free variables exposed by its terms.

However, this still leaves the question unanswered: What
happens to 𝑦 when we unify 𝑦 · 0with 0. We will again, show
an illustration.

(y):

(v):

var(v)

(y) ()

():

λx

():

0

(x)

*

⇓

(v):

var(v)

():

λx
()

():

(?1) ()
0*

Figure 4. The term 𝜆𝑦.𝑦 · 0 in a slotted e-graph, before and
after unifying 𝑦 · 0 = 0.

After unifying 𝑦 · 0 = 0, the slot 𝑦 became the redundant
slot ?1. Redundant slots represent variables that have no
impact on the resulting expression, but are still referenced
in some (but not all!) of its terms. We do not just replace
redundant slots by any fixed constant 𝑐 as suggested before,
because we still want future lookups of 𝑣 · 0 for any variable
𝑣 to match this e-node.

3 The slotted e-graph data structure
Due to our ambitious extension of e-graphs to encode binders
and variables as first-class citizens in the language, we need
to extend the conventional e-graph data structure at a few
key spots.

3.1 Name-independent E-Node Lookup
A conventional e-graph has the key sharing guarantee that
each e-node is contained in at most one e-class. This can be
ensured by the hashcons, a map that hashes an e-node and
stores in which e-class it is contained.
However, in the slotted e-graph, e-nodes do not simply

refer to ids, but ids equipped with a list of slot names. As
these slot names are arbitrary and do not matter, we need to
eliminate them before hashing. Otherwise, two conceptually
identical e-nodes with different slot names would not be
considered equivalent by our hashcons mechanism. We elim-
inate the slot names, by computing a naming normal-form
of our e-node, called its shape. The shape is obtained by enu-
merating all of its slot names based on the order of their first
occurence in the e-node, and renaming them accordingly to
𝑠1, 𝑠2,

Note that this slot-normalization should not be confused
with the Id-normalization based on the unionfind data struc-
ture!

3.2 Unification of E-Classes with slots
Aunion between two e-classes𝑎 and𝑏 can typically be under-
stood as adding the equation 𝑎 = 𝑏 to your knowledge base.
However, in a slotted e-graph, this becomes more nuanced,
as there are multiple ways to equate two ids, based on how
you connect their slots. So, a union between 𝑎 and 𝑏 would
correspond to an equation like 𝑎(𝑥,𝑦, 𝑧) = 𝑏 (𝑦, 𝑥) where 𝑥,𝑦
and 𝑧 are slot names. This causes multiple challenges.

Extended unionfind. First of all, a simple unionfind data
structure is not enough anymore. In addition to the fact that
we normalize 𝑎 to 𝑏, we also need to store how their slots
need to be permuted. Thus, the original unionfind of type
Id -> Id becomes a mapping of type Id -> (Id, SlotMap).

Redundant Slots. The reader might recall the 𝑥 · 0 = 0
example: In cases where both sides of the equation have
different sets of slots, we introduce redundant slots for their
symmetric difference.

Self-Symmetries. This leaves us with one final challenge.
What happens with unions of the form 𝑎(𝑥,𝑦) = 𝑎(𝑦, 𝑥), i.e.
self symmetries. Typically, when encountering an equation
𝑎(...) = 𝑏 (...), we replace all occurences of 𝑎 with 𝑏, or vice
versa. This is not possible with self-symmetries.

There are multiple approaches to tackle this problem, but
the most promising one seems to store a permutation group
for each e-class. In that case, a union like 𝑎(𝑥,𝑦) = 𝑎(𝑦, 𝑥)
would simply add a permutation to that group. However, it
is worth noting that this makes computing the shape (i.e.
slot normal form) of an e-node harder, due to a new degree
of freedom.

Conference’17, July 2017, Washington, DC, USA Rudi Schneider, Thomas Kœhler, and Michel Steuwer

References
[1] Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with name-

less dummies, a tool for automatic formula manipulation, with appli-
cation to the Church-Rosser theorem. In Indagationes mathematicae
(proceedings), Vol. 75. Elsevier, 381–392.

[2] Dan R Ghica. 2021. Operational semantics with hierarchical abstract
syntax graphs. arXiv preprint arXiv:2102.02363 (2021).

[3] Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil
Trinder, and Michel Steuwer. 2024. Guided Equality Saturation. Proceed-
ings of the ACM on Programming Languages 8, POPL (2024), 1727–1758.

[4] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson,
Joseph McMahan, Michael B. Taylor, Luis Ceze, and Zachary Tatlock.
2021. Pure tensor program rewriting via access patterns (representation
pearl). In MAPS@PLDI 2021: Proceedings of the 5th ACM SIGPLAN Inter-
national Symposium on Machine Programming, Virtual Event, Canada,
21 June, 2021, Roopsha Samanta and Isil Dillig (Eds.). ACM, 21–31.
https://doi.org/10.1145/3460945.3464953

[5] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast and extensible
equality saturation. Proceedings of the ACM on Programming Languages
5, POPL (2021), 1–29.

https://doi.org/10.1145/3460945.3464953

	Abstract
	1 Introduction
	2 Slotted E-Graphs
	2.1 Bindings
	2.2 Conflicting sets of free variables

	3 The slotted e-graph data structure
	3.1 Name-independent E-Node Lookup
	3.2 Unification of E-Classes with slots

	References

