
xDSL: Sidekick Compilation for SSA-Based Compilers
Mathieu Fehr

University of Edinburgh
Edinburgh, United Kingdom
mathieu.fehr@ed.ac.uk

Michel Weber
ETH Zurich

Zurich, Switzerland
michel.weber@inf.ethz.ch

Christian Ulmann∗
ETH Zurich

Zurich, Switzerland
christian.ulmann@inf.ethz.ch

Alexandre Lopoukhine
University of Cambridge

Cambridge, United Kingdom
sasha.lopoukhine@cl.cam.ac.uk

Martin Paul Lücke
University of Edinburgh

Edinburgh, United Kingdom
martin.luecke@ed.ac.uk

Théo Degioanni†
ENS Rennes

Rennes, France
theo.degioanni@ens-rennes.fr

Christos Vasiladiotis
University of Edinburgh

Edinburgh, United Kingdom
c.vasiladiotis@ed.ac.uk

Michel Steuwer
Technische Universität Berlin

Berlin, Germany
michel.steuwer@tu-berlin.de

Tobias Grosser
University of Cambridge

Cambridge, United Kingdom
tobias.grosser@cst.cam.ac.uk

Abstract
Traditionally, compiler researchers either conduct experi-
ments within an existing production compiler or develop
their own prototype compiler; both options come with trade-
offs. On one hand, prototyping in a production compiler can
be cumbersome, as they are often optimized for program
compilation speed at the expense of software simplicity and
development speed. On the other hand, the transition from
a prototype compiler to production requires significant engi-
neering work. To bridge this gap, we introduce the concept
of sidekick compiler frameworks, an approach that uses
multiple frameworks that interoperate with each other by
leveraging textual interchange formats and declarative de-
scriptions of abstractions. Each such compiler framework
is specialized for specific use cases, such as performance
or prototyping. Abstractions are by design shared across
frameworks, simplifying the transition from prototyping to
production. We demonstrate this idea with xDSL, a side-
kick for MLIR focused on prototyping and teaching. xDSL
interoperates with MLIR through a shared textual IR and
the exchange of IRs through an IR Definition Language. The
benefits of sidekick compiler frameworks are evaluated by
showing on three use cases how xDSL impacts their devel-
opment: teaching, DSL compilation, and rewrite system pro-
totyping. We also investigate the trade-offs that xDSL offers,
and demonstrate how we simplify the transition between

∗Now at NextSilicon.
†Now at Nvidia.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CGO ’25, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708945

frameworks using the IRDL dialect. With sidekick compila-
tion, we envision a future in which engineers minimize the
cost of development by choosing a framework built for their
immediate needs, and later transitioning to production with
minimal overhead.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: compilation frameworks, intermediate represen-
tations, interchange formats

ACM Reference Format:
Mathieu Fehr, Michel Weber, Christian Ulmann, Alexandre Lopou-
khine, Martin Paul Lücke, Théo Degioanni, Christos Vasiladiotis,
Michel Steuwer, and Tobias Grosser. 2025. xDSL: Sidekick Compila-
tion for SSA-Based Compilers. In Proceedings of the 23rd ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’25), March 01–05, 2025, Las Vegas, NV, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3696443.3708945

1 Introduction
When conducting compiler research, one can either embed
a new idea in a preexisting compiler or develop an entirely
new prototype compiler intended to show a speedup or other
benefits. While writing a prototype may be more flexible
in the short term, it comes with several drawbacks. First,
a new prototype requires the reimplementation of many
features, such as IR data structures, a parser and printer for
the IR textual format, or generic passes such as dead code
elimination. Later on, if the prototype is promising, porting
it to a production compiler requires significant work, often
a complete rewrite, and cannot always be done iteratively.

On the other hand, compiler frameworks reduce the cost
of working in a production compiler by providing modu-
lar infrastructure that can easily be reused. For instance,
MLIR [23] allows users to define their own abstractions, or

179

https://orcid.org/0000-0002-4100-3190
https://orcid.org/0000-0002-7688-707X
https://orcid.org/0009-0007-9496-7843
https://orcid.org/0009-0007-9190-0301
https://orcid.org/0000-0001-8865-9886
https://orcid.org/0009-0008-8922-0195
https://orcid.org/0000-0001-7936-2183
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0003-3874-6003
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696443.3708945
https://doi.org/10.1145/3696443.3708945
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

xDSLMLIR

SSA Region
Multi-Level Rewriting

IRDL

IR syntax

Interpreted

Fast Prototyping
Interactive Use

Integration with Python

Fast Compilation

Industry Maintained

LLVM Backends

LLVM Monorepo

Core
Compilation Concepts

Figure 1. Compiler frameworks that share the same core
compilation concepts can offer tailored projections of these
concepts for specific use cases while being still compatible
through IRs and declarative IR definitions.

to reuse abstractions from the ecosystem, which covers ma-
chine learning kernels [39], stencil computations [14], quan-
tum computing [33], hardware design [5], and more. Due to
the uniform representation that MLIR offers, abstractions
can be freely combined, enabling compilation flows that com-
bine domains, e.g., running ML inference in a database-style
query [17]. Consequently, compiler frameworks facilitate
compiler design and reduce prototyping costs.
However, while MLIR allows compiler experts to extend

the compiler, it requires users to work in a setting that is
designed for compile-time and runtime performance. As an
industry-funded project that targets performance-focused
production use cases, MLIR matches LLVM [22] in its choice
of C++ as its implementation language, benefiting from a
fast implementation, deployable across many target systems.
Furthermore,MLIR’s integrationwith LLVMgoes beyond the
implementation language since IRs are defined using LLVM’s
in-house TableGen language, LLVM’s abstract data types are
preferred over standard C++, and MLIR implements several
low-level performance optimizations, e.g., to enable fast type
equivalence checks via pointer comparison. While all these
choices are justified, they mean that working with MLIR
requires expertise in C++ and LLVM, costly development
recompilation cycles, and complex build systemmaintenance
– constraints that are hard to justify in some circumstances,
in particular in teaching and research.

To facilitate other use cases such as prototyping, not only
abstractions need to be connected in a modular way, but
frameworks themselves. To that end, we propose the idea
of sidekick compiler frameworks, which are frameworks
loosely coupled through the use of shared core compilation
concepts (Figure 1) and aligned exchange formats for IRs
and IR definitions. In particular, a sidekick framework can
be interleaved at any point in the compilation pipeline with
its base framework. By deliberately reusing the same core

compilation concepts, like SSA and multi-level rewriting,
and exchanging IR definitions between frameworks through
a common format, a sidekick framework eases the transition
between frameworks.

In this paper, we present xDSL, a sidekick compiler frame-
work for MLIR written in Python. xDSL is standalone, but
interacts with MLIR through a shared textual IR format, and
the IRDL dialect, an MLIR-based meta-IR that expresses IR
definitions as programs. To evaluate the benefits of xDSL
as a sidekick compiler framework, we explore three com-
piler use cases that benefit from xDSL’s Python-native im-
plementation and show several statistics to compare xDSL
and MLIR. Our analysis shows that bringing state-of-the-art
MLIR concepts to new use cases results in a broader and
better-connected compiler ecosystem that can cater to vari-
ous novel workflows.

Our contributions are:
• The concept of a sidekick compiler framework coupled to
a base framework via deliberately sharing compilation
concepts (e.g., SSA-based IRs, nested regions, attributes)
and compatible textual IRs (Sections 2 and 4).

• Three case studies that characterize workflows that benefit
from sidekick compilation (Section 3).

• An encoding of IR definitions as SSA-based compiler IR
(the IRDL dialect) for the exchange of IR definitions be-
tween our sidekick and base framework (Section 5).

• A comparison of several user-relevant metrics between
xDSL and MLIR (Section 6).

2 Sidekick Compilation
A sidekick compiler framework can be used in a completely
standalone way yet can be connected to a base compiler
framework through a common IR exchange format. To achieve
this, sidekick frameworks use the same core compilation con-
cepts as the base framework, such as SSA-based IRs, or nested
regions. A fundamental advantage of sidekick frameworks
is that their implementation can be tailored to the needs of
their target audience, e.g., by providing a simple implemen-
tation of the core IR to ease prototyping, or by providing a
verified implementation to enable formal verification of the
compiler. Finally, sidekick frameworks can share IR defini-
tions through an additional exchange format, simplifying
the port of code between the two frameworks.

We demonstrate the concept of sidekick compilation with
xDSL, a Python-native compiler framework that interoper-
ates with MLIR. xDSL offers a standalone compiler frame-
work that targets developers who use Python for their main
workflows, or want to quickly prototype new compiler ideas
or abstractions. The dynamic nature of Python also allows
the use of xDSL in new environments such as Jupyter Note-
books [19]. The core novelty of xDSL is its coupling with
the base compiler MLIR (Figure 2). xDSL couples to MLIR by
mirroring its core IR structure and its textual IR.

180

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

MLIR

!
"

#

$
% &

'

!
"
#

$
%

xDSL

(

)

Hardware Targets

* +,

DCBA

Figure 2.Dialect definitions (gray shapes in xDSL andMLIR)
can be shared between xDSL and MLIR (dark gray shapes
exist in both). While the manipulation of IRs is done with
internal data structures inside both projects (solid lines), the
sharing of IRs and IR definitions across frameworks is done
through a shared textual representation (dashed lines). This
enables the exploration of new workflows in the compiler
space: A python-native development of end-to-end compil-
ers, B pairing high-level DSLs with low-level compilers, and
C extending low-level compilers to explore new compiler
design ideas.

A sidekick compiler’s ability to exchange IR definitions
and programs with its base compiler enables several new
workflows, some of which we highlight briefly. The most
straightforward workflow A uses xDSL as a standalone
compiler framework to implement a self-contained compiler.
The core property of such a workflow is that it stays entirely
within Python, enabling developers to run the compiler on
any Python-supported platform, iterate quickly by extend-
ing the compiler at runtime, or integrate Python libraries
with ease into the compilation flow. Interestingly, even an
independently used sidekick still can leverage IR definitions
that were initially developed in the base compiler. xDSL also
enables workflows B that yield a full DSL compiler by com-
bining a domain-specific front-end implemented in Python
with the hardware targets available in MLIR. The use of
MLIR and LLVM offers additional low-level optimizations,
powerful register allocation and instruction selection, as well
as infrastructure for targeting the latest hardware accelera-
tors. Furthermore, xDSL allows workflows C where xDSL
is placed into a pre-existing compilation flow of the baseline
compiler. Such workflows make it possible to prototype new
compilation approaches and ideas from Python, for example,
new rewriting systems. By porting IR from MLIR to xDSL,
using the xDSL-based prototype, and then going back to
MLIR, one can show the potential of new approaches using

an early Python-based prototype. While these examples cor-
respond to the use cases shown later (Section 3), they are
not exhaustive, and we expect other future uses.
One of the core novelties that enables sidekick compila-

tion in xDSL is its ability to share IR definitions with MLIR.
Expanding on MLIR’s declarative IR definition language
IRDL [12], we made it possible to share IR definitions be-
tween xDSL and MLIR by encoding IR definitions with a
novel SSA-based meta-IR, the IRDL dialect, that can be ex-
changed between compilers like any other program. xDSL
and MLIR can both translate their IR definitions into the
IRDL dialect and import IRDL dialect definitions to instanti-
ate externally provided IRs. Implementing this is relatively
easy. Both xDSL and MLIR share the same definition of the
IRDL dialect meta IR. As we can translate programs between
the two frameworks, we can also translate IR definitions and,
therefore, use IRs defined in MLIR from xDSL and vice versa.
This gives access to the existing ecosystem of MLIR dialects
and also makes importing IRs from xDSL into MLIR possible.
While a sidekick compiler such as xDSL does not share

transformationswithMLIR, there is ongoingwork to connect
xDSL with MLIR’s PDL dialect, a dialect to define and reason
about IR rewrites. Using PDL, we expect to eventually be
able to port rewrites from one compiler to the other, making
the rewrites themselves less implementation-dependent and
potentially allowing the transfer of increasingly complete
compilation flows across compiler boundaries.

3 Use Cases for SideKick Compilation
We demonstrate three use cases by discussing the users and
their respective needs, how existing workflows address, or
fail to address, those needs, and how xDSL facilitates the uses
case or even enables them in the first place. We used xDSL
to teach compilation at DoubleBlind University, and proto-
typed a new rewriting engine for the multi-level rewriting
approach. We also present its usage in an HPC DSL com-
piler that leverages MLIR’s low-level optimizations to reach
state-of-the-art performance.

3.1 Use Case 1: Teaching Compilation with ChocoPy
While most compilers are written by professionals and for
production use, implementing a compiler is also a great way
to teach compilation concepts. However, writing an SSA-
based compiler from scratch is a complex task, and using
frameworks helps focus on the compilation concepts rather
than the implementation details of the data structures in
typical SSA compilers. We used xDSL for two years in the
compilation class of DoubleBlind University to teach around
200 students. We tasked students with implementing a com-
piler for ChocoPy [31], a subset of Python designed to teach
compilation to students. Students must implement a parser,
a type checker, optimizations at multiple abstraction levels,
and a lowering to RISC-V.

181

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

User. While typical compiler engineers often have high-
end computers capable of quickly building and running
production-quality compilers, students may have slower
computers with diverse architectures and operating systems.
Students often have less programming experience and less
experience with package managers and build systems. Fi-
nally, most students, especially in introductory classes, may
not pursue compiler work in the future, and thus investing
much time in a framework may not be valuable for them.
Needs. Students have different needs than typical com-

piler engineers. Because of consumer hardware, compiling
large frameworks is often impractical, and long incremental
building times are a big source of frustration. The installa-
tion needs to be simple and quick since many students are
unfamiliar with build systems. Optimally, students should
be able to install and start trying out the framework during
a single lab session (2 hours). Finally, frameworks that are
not portable across architectures and operating systems are
known sources of problems. A compiler implemented as a
lecture project is not required to be as fast as industry com-
pilers. Thus, frameworks with longer compilation times than
state-of-the-art compilers are not an issue.

ExistingWorkflows. One existing workflow would be to
not provide any framework to the compiler class and, instead,
ask students to implement their own data structures. This
is, for instance, the approach taken by the original ChocoPy
compiler class. We argue that this solution is not optimal for
the students, since they have to implement a lot of boilerplate
code that is unrelated to the compilation techniques they
are learning. Thus, the time required to set up an end-to-end
compilation flow already consumes most of the available
time in a lecture project setting. Also, most of these compiler
classes usually do not teach the important SSA representa-
tion because it is hard to write SSA compiler infrastructure.
Another possibility is using an existing compiler infras-

tructure. Some compiler classes use LLVM, but LLVM can
only be used as a mid-level IR and cannot be used for high-
level or low-level IRs. While MLIR has the core compilation
concepts that interest us, it is both complex and slow to in-
stall. Also, iterating on a compiler is expensive with MLIR,
especially with low-end machines. Finally, MLIR has a steep
learning curve due to its low-level nature, and thus students
may lose significant time understanding the framework.
The xDSL Approach. We argue that using xDSL is the

best solution for the students. Students are able to install the
framework and start using it in a single lab, which means
that we can directly help them with the core part of the
coursework. Also, since the framework is not optimized for
compile-time performance, it is significantly easier for stu-
dents to express what they want, especially for students with
less programming experience. Finally, since xDSL is written
in Python, which does not need to be compiled, there is no
time spent waiting for recompilation after a single change,
and thus students can iterate on their compiler much faster.

3.2 Use Case 2: Designing a DSL Compiler
Many domain-specific compilers reimplement a lot of com-
mon infrastructure for parsing/printing, optimizations and,
more importantly, domain abstractions. This redundant de-
velopment leads to isolation between different projects, which
negates many of the benefits gained in usability and pro-
ductivity. To address this issue, projects such as CVM [29]
for databases, CIRCT for hardware and MLIR [23] for deep
learning libraries and general compilation have emerged,
providing extensible and composable IRs. These approaches
aim to reduce reimplementation and promote shared infras-
tructure. However, optimizing the architecture for such a
unified compilation stack poses significant challenges, often
requiring multiple iterative design cycles to achieve optimal
performance and functionality across diverse domains.
xDSL was used by another research group to develop a

compilation stack for the HPC domain, specifically focusing
on providing stencil abstractions. This served as a substantial
shared foundation for two HPC stencil-DSL compilers and
a state-of-the-art research DSL compiler for climate mod-
elling [1, 14, 28]. The project implemented a stencil dialect,
extending concepts found in the Open Earth Compiler [14],
and complementary dialects that express the parallel and dis-
tributed computation and memory concepts of typical HPC
compute environments. During machine code generation,
xDSL leverages MLIR to lower and optimize for the intended
hardware architecture, generating high-performance exe-
cutables. Our tool allowed fast prototyping over the design
of these concepts, which, apart from enabling infrastructure
sharing and competitive performance, also culminated in
contributing a mature dialect back to the MLIR ecosystem.1
User. The user is an HPC scientist, though the concepts

apply to many similar domains. Such users can be slowed
down by complex build systems and frameworks that require
significant time to get started. Thus, they gravitate towards
frameworks that minimize cognitive resources expended on
low-level implementation intricacies, thereby maximizing
focus on domain-specific problem-solving and innovation.

For this use case, the most crucial need is a low engineer-
ing effort for defining and modifying dialects, as it allows
efficient understanding and exploration of the design space
for domain-specific abstractions. When working within their
domain, experts prefer to avoid concerns with low-level de-
tails like memory allocation, as operating at a higher level of
abstraction facilitates the translation of thoughts into code.

This preference is reinforced by the ability to rapidly proto-
type, which is enabled by the absence of complicated compila-
tion systems and the use of interpreted languages. Addition-
ally, demonstrating the performance potential of generated
machine code plays a crucial role in the scientific validation
and assessment of these domain frameworks. In this context,
Python has already emerged as a particularly suitable tool,

1commit: b334664f9f3a098b6f3fd9cfd17b856a9edfe446

182

https://github.com/llvm/llvm-project/commit/b334664f9f3a098b6f3fd9cfd17b856a9edfe446

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

offering a combination of simple, high-level code and free-
dom from complex build systems. This makes xDSL more
appropriate for domain experts than low-level languages like
C++, as it aligns with their need for rapid iteration, high-
level abstraction, and focus on domain-specific logic while
still providing a path to high-performance implementations.
Existing Workflows. While there is a need to unify do-

main-specific compilers, they usually remain secluded in
their own domain and generate source code leveraging gen-
eral-purpose compilers to produce binaries. Separate infras-
tructures make cross-domain compilation hard, leading to
replicated optimizations and abstractions (e.g., stencil IRs).

MLIR enables the fusion of domain-specific with general-
purpose compilers, removing the aforementioned code du-
plication. However, while working with MLIR, a developer
needs to be mindful of low-level details. This complexity in-
curs a cost when refactoring code with new design decisions,
rectifying errors, and even during initial setup. The overhead
appears both at the implementation level (e.g., creating a new
dialect requires non-trivial changes in at least two or three
files) and conceptually, presenting a steep learning curve to
understand the ecosystem’s architecture.

The xDSL Approach. Although xDSL does not eliminate
the need to understand MLIR concepts, its distribution via
PyPi simplifies the process of getting started and facilitates
experimentation. Moreover, being implemented in native
Python makes it more easily usable by other Python DSL-
based projects, which have established a strong presence in
the HPC ecosystem [4, 28]. Therefore, users can write in a
high-level language without having to think about low-level
implementation details when implementing domain-specific
optimizations. The choice of Python also makes iterating on
design decisions much faster than a C++-based flow.

xDSL has leveraged MLIR’s, and hence LLVM’s, low-level
optimizations and code generation to produce optimized
binaries. It has been used to merge the backends of three
HPC DSLs – Devito [28], the Open-Earth Compiler [14],
and Psyclone [2] – by providing a set of common abstrac-
tions for them to target within xDSL [4]. The evaluation of
this prototype over representative stencil workloads, exhib-
ited comparable and even improved performance over the
original individual DSLs, while simultaneously broadening
the hardware targets. This work has contributed back to
MLIR, a mature and evolved dialect design of a standardized
message-passing communication protocol used widely in the
HPC ecosystem. The MPI use case validates our sidekick ap-
proach, demonstrating ecosystem consolidation rather than
fragmentation. By prototyping in xDSL and porting to MLIR,
compiler writers can seamlessly integrate both ecosystems,
promoting interoperability in the compiler landscape.

3.3 Use Case 3: Prototyping New MLIR Features
While most changes to compilers are incremental, such as
adding new transformations, compiler researchers are also

concerned with re-imagining the core design of compilers.
We used xDSL to prototype a new approach to a rewriting
system for MLIR, enabling declarative, composable and con-
trollable rewrites inspired by Elevate [15]. This approach al-
lows for expressing optimizations using simple abstractions
that are composed to form complex rewrites. The rewriting
system leverages an immutable IR, which forbids arbitrary
mutations and enables backtracking with low memory cost.
Making a mutable IR, the de facto standard, into immutable
requires invasive changes in modern compilers.

User. The users are compiler researchers who aim to de-
sign the next-generation compilers by extending or mod-
ifying core design aspects. They are familiar with LLVM
and MLIR and understand the codebases well and work in-
dividually or in a small research group using a wide range
of hardware, from company-provided laptops and high-end
desktops up to super-computing hardware. They want to
prototype and evaluate new ideas quickly and, if beneficial,
publish and contribute them back to industry compilers (e.g.,
via LLVM and MLIR).

Needs. The number one priority of the users is to proto-
type ideas quickly and evaluate their feasibility. Researchers
do not want to waste time engineering low-level details for
an idea that is not beneficial. Furthermore, it is essential
for them to iterate quickly and benchmark multiple designs
against each other. Thus, a framework with quick build times
is preferred. While observing the performance and memory
trade-offs of different prototypes is important, it is rarely the
aim to achieve production performance with the prototype.
Finally, it is crucial to test a prototype with real-world pro-
grams and observe its results in an end-to-end compilation
pipeline. Accordingly, it is imperative that a tight integration
with MLIR is possible, such as integrating a prototype into
an MLIR pass pipeline.

Existing Workflows. The existing approach is to experi-
ment with the prototype design directly in MLIR using C++.
This forces the user to split their effort between making
design decisions for a prototype and managing low-level
implementation details, such as maintaining existing storage
layouts. These details often have to be revisited later while
tweaking the prototype design and arguably put a strain
on productivity, making it unsuitable for fast iteration. The
burden of long build times on local consumer hardware is
amplified when multiple prototypes have to be designed and
compared. The focus of the MLIR framework leans heavily
towards production performance rather than a clear struc-
ture for easy understanding and extensibility of its core con-
cepts. This aggressive optimization for performance has to
be considered constantly and leads to a rigid system with
hard-to-understand design decisions and poor modifiability.
We implemented the envisioned rewriting system by in-

vesting four months and managed to design a working pro-
totype with limited support for composing rewrites. How-
ever, it lacked the foundation of an immutable IR and thus

183

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

10 100 300

1 s

10 s

naive cloning immutable (ours) destructive rewriting

Stencil BERTStencil BERT

Runtime

Stencil BERT

Runtime

Mean operation use dependencies

Figure 3. Our immutable approach has a runtime between
naive cloning and destructive rewrites. For code such as
climate stencils and BERT, we predict only a 4x cost for the
benefit of immutability.

could not prevent arbitrary IR modifications or support back-
tracking. For this reason, it also exhibited several unsolved
problems when rewriting complex programs. While the re-
searcher is very familiar with the C++ programming lan-
guage and the details of the MLIR implementation, a large
portion of the time was spent on getting the template-based
C++ typing correct with all required features to achieve a
composable API interface. Furthermore, a lot of time was
spent implementing features and tweaking the MLIR frame-
work and making it usable for this use case, instead of the
prototype. This includes multiple DSLs to ease access to
complex MLIR APIs and combat the verbose nature of C++.

The xDSL Approach. xDSL exposes the main MLIR con-
cepts and high-level design decisions in a Python interface.
Thus, it enables the implementation and modification of core
MLIR constructs while leveraging the productivity of Python.
This makes experimentation with drastically different de-
sign approaches in the context of MLIR practical in the first
place. For instance, modifying the core IR infrastructure to
support dependent typing can be implemented following a
number of approaches. Instead of modifying numerous C++
files per approach, with little opportunity for reuse between
completely different approaches and handling a complicated
build system, in xDSL, the core IR can be flexibly switched
by extending or replacing one Python file. xDSL empowers
the researcher to switch between different core IR designs
using a flag to flexibly benchmark them.
In about eight weeks, we designed a first working proto-

type with xDSL offering equal capabilities to the C++ pro-
totype. After four months, the time required with C++ for
a basic prototype, the new prototype had significantly ad-
vanced, now backed by an immutable IR infrastructure with
full backtracking support. The similarity in structure to the
MLIR framework made the adoption of xDSL straightfor-
ward without prior experience. The API interface was easily
adjustable to the current needs. With fewer requirements
for managing low-level implementation details, it became

possible to focus solely on the design of the prototype and it-
erate quickly. The close interaction of xDSL and MLIR made
benchmarking the rewriting of real-world machine learning
models practical. Our prototype shows the advantages of
leveraging an immutable IR for a backtracking rewriting sys-
tem and allows us to evaluate the trade-off in memory and
processing speed when using a representation of IR that can
efficiently recover a previous state in the compilation process.
Figure 3 evaluates the approaches’ rewriting time and mem-
ory consumption by varying the IR structure to be optimized,
i.e., the number of uses of the mean operation. A mutable
rewrite system that performs a naive cloning of the IR to
support the backtracking pays a high overhead independent
of the IR structure. In contrast, the performance of our im-
mutable rewriting system heavily depends on the structure of
the IR. Themore uses themean operation has, the less reused;
hence, rewriting time and memory consumption increase.
However, for the structure of real-world use cases, such as
weathermodelling stencil computations from the Open Earth
Compiler [14] (left vertical line) or the BERT-small [9] (right
vertical line) transformer model, our approach requires less
rewriting time and consumes much less memory.

4 Sharing Core Compilation Concepts
One major property of a sidekick compiler framework is
its ability to share core compilation concepts, and IR rep-
resentation, with another framework. xDSL shares these
concepts with MLIR, pairing SSA with block arguments and
nested regions, which MLIR demonstrated to be an effective
set of core abstractions. While the implementation and in-
memory representation of these concepts differ, as we tailor
our implementation to be simple and Python-native, differ-
ing from MLIR’s performance-focused C++ implementation,
our IR textual representation is compatible with MLIR’s. This
compatibility purely comes from sharing the same textual
representation, and allows us to exchange IRs during the
compilation of a program, which is essential to enable the
workflows we discussed in Section 3. We now describe the
core compilation concepts we share with MLIR.

4.1 Operations and Values
Operations are the core structure of the IR and represent
both computations and control flow structures (e.g., loops).
An operation consists of a name, a list of operands, a list of
results, a dictionary of attributes (Section 4.2), and lists of
regions and successors (Section 4.3). Each operation name
defines a set of invariants over these structures, called the
verifier, to ensure that the operation is well-formed. For
instance, the arith.addi operation expects two operands
and one result, all with matching integer types. Operations
have a generic textual format (upper line in the following
example) but can also be extended with a custom format
(lower line) for conciseness and readability:

184

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

%res1 = "arith.addi"(%v1, %v2)
: (i32, i32) -> i32

%res2 = arith.muli %v1, %v2 : i32

Operations are connected through SSA values, which rep-
resent runtime values, prefixed by % in the textual IR. Each
SSA value has a single statically known definition, either as
a result of an operation or as a block argument. Values are
only used as operands to operations.

4.2 Attributes and Types
Attributes encode compile-time information (e.g., constants
or types) and are used to parametrize both SSA values and op-
erations. Types are special attributes that provide static con-
straints over SSA values. For instance, the i32 type on a value
encodes a signless 32-bit integer. Attributes attached to op-
erations through their attribute dictionary encode operation
parameters. For instance, the operation arith.constant
with the named attribute value = 42 : i32 encodes that the
resulting SSA value is the integer 42 encoded in 32 bits:

%cst = "arith.constant"() {value = 42 : i32}
: () -> i32

As with operations, attributes and types are not a fixed set
but can be extended with user-defined attributes and types.
However, attributes may be parametrized by arbitrary data
(for example 42 : i32 being parametrized by an integer
value and an integer type), and thus their textual representa-
tion is not generic.

This definition of attributes and types differs slightly from
their original MLIR meaning. In MLIR, attributes and types
are entirely disjoint, though there exists a TypeAttr attribute
that encodes a type as an attribute. We made types a special
case of attributes to simplify the design of the core language.
Without the constraint of wanting to support MLIR syntax,
we would not have defined types at all and allowed the use
of any attribute as a type annotation.

4.3 Regions and Blocks
While operations represent computation and structures, they
are insufficient to represent control flow graphs. Instead,
structures that reason about control flow in a larger sense
are needed. In xDSL, these correspond to blocks and regions.

A block is a sequence of operations that execute in order.
Blocks are connected through their last operation (called the
terminator), which specifies which block to jump to next.
This forms a directed graph of blocks, called a Control Flow
Graph (CFG). Blocks may have block arguments, which in-
troduce SSA values, giving the IR a functional structure that
has been shown to be equivalent to phi-nodes [36].

^b0(%c: i1):
scf.cond_br %c, ^b1, ^b2

^b1: ...
^b2: ...

A region is wrapping a CFG, and is nested in an opera-
tion. In contrast to IRs like LLVM’s, which require analysis
passes [6], regions model nested control flow as first-class
constructs to represent structures such as loops or condi-
tionals. For instance, a scf.if operation, representing a
conditional, contains two regions, and execute the region
depending on the runtime value of its only operand. Once a
region finish executing, control flow is returned to the opera-
tion, which may give control to another region it contains, or
terminate. For instance, an scf.for (a for loop) may execute
its region multiple times.

scf.if %cond {
// True region

} else {
// False region

}

4.4 Dialects
Operations and attributes that represent similar concepts
are grouped in dialects, allowing separation of concerns. For
instance, the arith dialect contains operations for simple
arithmetic, and the scf dialect for operations with structured
control flow, such as loops and conditionals. This separation
of concerns allows multi-level compilation pipelines, which
interleave domain-specific optimizations of dialects with pro-
gressive lowerings to lower-level dialects. Hence, multiple
dialects can be used in the same program, allowing lowerings
to only target parts of a program.

4.5 Different Implementations
Despite having compatible textual representations, the in-
memory representation and API that both xDSL and MLIR
provide differ. This choice is deliberate, as we aim to provide
a simple Python implementation that makes development
and experimentation easy. In contrast, MLIR aims to provide
a high-performance C++ implementation that is optimized
for production use. For example, MLIR data structures are
heavily optimized so that a single operation fits in a cache
line, and attributes are instantiated uniquely in memory to
reduce their footprint.

MLIR’s optimizations result in havingmultiple C++ classes
to represent operations and attributes, spanning multiple
large C++ files. While these optimizations are key to MLIR
performance, they heavily complicate its core implemen-
tation, hindering experimentation and making it hard to
understand the core concepts of its IR. In contrast, xDSL’s im-
plementation of operations and attributes is a single Python
class each, making it easy to understand and experiment
with the core concepts of the IR, enabling most of the use
cases we discussed in Section 3.

185

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

Dialect cmath {
Type complex {
Parameters (elem: !AnyOf<f32, f64>) } }

↓
irdl.dialect @cmath {

irdl.type @complex {
%is_f32 = irdl.is f32
%is_f64 = irdl.is f64
%is_float = irdl.any_of(%is_f32, %is_f64)
irdl.parameters(%is_float)

} }

Figure 4. Our new IRDL dialect exposes the IRDL language
definitions (top) as an IR program (bottom), which can be
easily shared across compilers.

5 Defining and Sharing Dialect Definitions
While both xDSL and MLIR define dialects using their re-
spective programming languages, efforts have been made in
the MLIR project to make these abstractions more declara-
tive through the IRDL language [12]. We leverage this work
with the IRDL dialect, which uses an SSA representation to
define MLIR abstractions as programs, allowing us to share
one abstraction definition between xDSL and MLIR. We also
provide a frontend for IRDL in Python to provide a better
interface for defining abstractions in xDSL.

5.1 The IRDL Dialect: An IR for IR Definitions
The IRDL dialect is defined in MLIR and xDSL, allowing
both frameworks to share dialect definitions the same way
they share programs. IRDL programs define dialects, types,
attributes, and operations using a small but expressive con-
straint engine derived from IRDL. Making IRDL a dialect
allows one to easily embed it in any compiler framework
offering SSA dialect infrastructure, such as MLIR or xDSL.
As dialects are now input data for compiler infrastructures,
IRDL-defined dialects inherit the introspectable, portable
and transformable nature of any other IR program.
Dialects, operations, types, and attributes are defined us-

ing the irdl.dialect, irdl.operation, irdl.type, and
irdl.attribute operations (Figure 4). Attributes are de-
fined by constraining their parameters, and operations are
definedwith constraints on their operands, results, attributes,
successors, and regions. In the IRDL dialect, each SSA value
represents an attribute (or a type), and constraints over these
attributes are expressed through IRDL dialect operations. For
instance, irdl.is, constrains an attribute to be equal to the
given attribute, and irdl.any_of, constrains an attribute to
be one of the given attributes.

We worked with the MLIR maintainers to bring the IRDL
dialect to the main MLIR repository. The current implemen-
tation can register new IRDL dialects at MLIR runtime, but
does not yet support generating C++ definitions. Also, while

the IRDL dialect already provides a way to register opera-
tions and attributes that can be defined purely declaratively,
it does not yet provide escape hatches to the framework
language for more complex constraints.

An implementation-agnostic concept. The sidekick com-
piler approach is challenging to put into practice when di-
alect definitions are deeply embedded within one compiler.
Instead, the IRDL dialect represents dialect definitions in
a compiler-agnostic manner. All sidekick compilers imple-
menting an IRDL dialect-like registration endpoint can easily
share dialect definitions, as long as they can translate their
dialect definitions to the IRDL dialect. This approach allows
sharing of the core concepts of the modeled dialects without
having to reimplement them in each compiler.

5.2 PyRDL: Connecting IRDL to xDSL
xDSL dialects are registered using PyRDL, a Python-em-

bedded DSL implementation of IRDL (Figure 6). PyRDL de-
fines accessors, verifiers, and parser/printer functions for
types, attributes, and operations. The EDSL is also type-safe,
so Python type-checking tools will correctly understand the
types of operand or attribute definitions. For instance, the
Python type ComplexType[f32] is the attribute instantiated
by !cmath.complex<f32>.
Operation and parametrized attribute definitions can be

automatically translated back and forth to the IRDL dialect.
The translation to the IRDL dialect is done using Python
introspection, while the translation from the IRDL dialect
to PyRDL is implemented as a Python script. In particular,
Data attributes cannot be translated to the IRDL dialect,
as they rely on user-defined Python data structures that
cannot be understood by the declarative nature of the IRDL
dialect. Similarly, C++ constraints and attributes with C++
parameters can be translated to PyRDL, but with a generic
of any value.

5.3 A Shared Dialect Ecosystem
Using the translation from the IRDL dialect to PyRDL, we
can use the entire MLIR ecosystem in xDSL. Combining the
projects using MLIR, such as MLIR, Flang, or CIRCT, with
several xDSL-based projects, leads to an ecosystem with
a plethora of dialects and operations (Figure 5). While the
number and name of operands, results, attributes, successors,
and regions are always translated, the constraints defined in
C++ rather than in IRDL are not. Instead, they are replaced
by a generic constraint that accepts any value.
While operations can be translated from one framework

to the other using the operation generic format, attributes
(and thus also types) do not have generic format. MLIR does
provide a declarative specification for attribute custom for-
mat, but it is not used by every type and attribute, and may
embed arbitrary C++. Thus, to convert attributes used in
programs, we need to manually implement a printer and a
parser for each attribute definition. To quantify the number

186

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

llvmrocdl
arith

shape
vector

pdl_interp

gpu
math

memref

nvvm
complex

async
arm_sve

spirv
tensor

sparse_tensor

transform

x86vector

pdl
amx

affine
ml_program

scf irdl
emitc

func
amdgpu

bufferization

nvgpu
cf arm_neon

quant
tosa

builtin
linalg

firrtl
sv calyx

handshake

hw llhdesi comb
systemc

msft
fsmpipeline

hwarith

moore
sspchirrtl

seq fir fircg
stencil

riscv
snrt

riscv_snitch

riscv_cf

snitch
memref_stream

riscv_scf

riscv_func

riscv_debug

snitch_stream

qref
qssa

stimquantum

riscv
riscv_ssa

choco_flat

choco_ast

ibisrel_impl

rel_ssa
rel_alg

iterators

ir_utils
elevate

match

10

100
Number of operations mlir circt flang oec snitch quantum chocopy sql composable_rewriting

Figure 5. xDSL combines its 25 SSA dialects (521 ops) (green) with the 54 SSA dialects (1198 ops) defined in the Flang, CIRCT,
and MLIR Core community repositories (blue).

T = TypeVar("T", bound=Union[f32, f64])
@irdl_attr_definition
class ComplexType(Generic[T], ParametrizedAttribute):

name = "cmath.complex"
elem: ParameterDef[T]

Figure 6. Defining dialects using a Python EDSL allows us
to translate them back and forth to IRDL.

M
LProgram

Arm
SVE

DLTI
Builtin
Arm

Neon
ControlFlow
X86Vector
Em

itC
AM

DGPU
OpenACC
Com

plex
Func
Quant
AM

X
PDL
PDLInterp
NVGPU
Transform
M

ath
Shape
OpenM

P
Tensor
Tosa
Async
Arith
SparseTensor
Vector
M

em
Ref

SCF
LLVM

IR
GPU
Linalg
Affine
Bufferization
SPIRV

1
3

10
30

Required attributes (log)

Figure 7. The full use of a dialect in xDSL requires few
attributes.

of attributes that need to be ported to use a dialect fully, we
count the number of distinct attributes used in the dialect
test folder in the MLIR test suite (Figure 7). We find that most
dialects only use a few distinct attributes and most dialects
require less than 10 attributes to be fully usable in xDSL.
Additionally, all dialects, except SPIRV, require less than 30
attribute definitions.

6 Compiler Design Space Characterization
To better understand the design-space trade-offs between
xDSL and more traditional production frameworks, we com-
pare against MLIR on multiple metrics relevant during com-
piler development. To that end, we not only compare both
compilers based on their runtime, but also on the time taken
to compile and install the compilers themselves. While xDSL
is slower than MLIR for larger files, it performs similarly
for smaller ones, like those used in testing. Furthermore, we
show that xDSL uses significantly fewer resources to install
and run after a change in the compiler. This comparison
demonstrates that xDSL offers users a point in the compiler
design space that prioritizes developer productivity over the
performance of the compiler executable.

MLIR
(history)

MLIR
(no-history)

xDSL
1MB

10MB

100MB

1GB
Download size

MLIR
Debug

MLIR
Release

xDSL
1MB

10MB
100MB

1GB
10GB

Install size

MLIR
Debug

MLIR
Release

xDSL
1s

10s
1m

10m
1h

Install time | Desktop (Ryzen 16 Core)

MLIR
Debug

MLIR
Release

xDSL
1s

10s
1m

10m
1h

Install time | Laptop (i5 U 4-Core)

Figure 8. xDSL installation is lightweight, making it usable
on low-end machines.

6.1 Startup and Build Times
Two important metrics that are often overlooked in a com-
piler framework are the costs of installing and running it for
the first time, and running it after an incremental change.
While these features rarely matter for end users, they do
for compiler developers. We compare these metrics between
xDSL and MLIR, both compiled in release mode, which en-
ables compiler optimizations, and in debug mode, which
does not enable optimizations and allows the use of debug-
gers. Both versions are compiled with Clang version 14.0.
We compare these metrics on two devices that correspond
to two potential users: A desktop using an AMD Ryzen 9
5950X 16-Core CPU, which is a relatively high-end CPU that
could typically be used by a compiler engineer and a laptop
with an Intel i5 10210U 4-Core CPU, which was given two
years ago to PhD students at DoubleBlind University.

Startup time. First, we compare the startup time, i.e. the
time necessary to run the test suites for the first time after
downloading the repository. This is representative of the
use of MLIR and xDSL since it is the only way to modify
the abstractions and passes included in the projects. While
installing xDSL is done by a local install with pip, installing
MLIR is done by compiling it with CMake. On both machines,
compiling MLIR requires two orders of magnitude more time
than xDSL (Figure 8), taking almost 1 hour on the laptop

187

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

arm_sve
index
cf emitc
mlprogram
irdl
mesh
arm_neon
arm_sme
x86_vector
pdl_interp
async
amx
amdgpu
nvgpu
shape
transform
omp
quant
openacc
tosa
sparse
pdl
complex
gpu
math
ub bufferization
integer set
spirv
vector
dlti
scf
memref
llvm
linalg
affine
tensor
func
arith
operation
type interface

affine expr
dialect

0.1s
1s

10s
1m

10m
Recompilation time (log) | Desktop (Ryzen 16 Core)

MLIR dialects - compile
MLIR core data structures - compile

xDSL - launch

Figure 9. Recompiling MLIR after a single change is up
to two orders of magnitude slower than launching xDSL,
impacting prototyping and development efficiency.

and 10 minutes on the desktop, compared to the few seconds
the xDSL setup needs on both machines. We observe that
the compilation on the laptop is significantly slower than
on the desktop as the laptop only has a few cores, and the
compilation of MLIR can be heavily parallelized.

Download and installation size. Most users will install
the projects manually on their machines, requiring to install
around 2MB for xDSL, and 1GB for MLIR (which can be low-
ered to 100MB by not downloading the entire git history).
However, some users will instead opt for a pre-compiled
version of MLIR, for instance, compiled in a docker con-
tainer. While this reduces the cost of compiling MLIR, it still
requires significant disk space. While the entire folder of
xDSL, including a virtual environment for Python, requires
less than 50MB, the installation folder of MLIR is more than
4GB in release mode and 26GB in debug mode (Figure 8),
resulting in long download times for MLIR binaries. Note
that the installation size of MLIR is lower for users that only
need a subset of the dialects or executables. xDSL’ smaller
installation size simplifies its distribution for many users and
enables its use in cloud or web environments.
Incremental builds. Another interesting metric is the

time taken to launch the compiler after a single change in its
definition. This metric represents the daily use of the frame-
works, as having a lower recompilation time is essential for
rapid iteration of changes in the compiler. To measure this,
we add a single space character at the end of a file containing
a dialect or core data structure implementation and measure
the time to launch. While MLIR requires a costly partial re-
compilation after a change, xDSL startup does not change,
being the cost of loading the Python source files. On the desk-
top, the majority of dialects require over than 14 seconds of
recompilation, up to 2 minutes, and some core data struc-
tures require more than 5 minutes of recompilation after a
change (Figure 9). On the laptop, these can take more than 10
minutes. When iterating on dialects on low-to-middle-end
hardware, MLIR recompilation times are significant, slowing
down developers substantially. On the other hand, xDSL is
removing that friction on both high and low-end hardware.

5 10 20 50
Number of lines (MLIR test suite)

1ms

10ms

100ms

Parse & print time (log)
MLIR Release
MLIR Debug

xDSL
xDSL pre-loaded

Figure 10. A pre-loaded xDSL parses and prints production
test cases at a similar speed asMLIR compiled in Debugmode,
making it a suitable alternative for testing a prototype.

6.2 Runtime Performance of xDSL
We measure the compile-time performance of xDSL and
MLIR by comparing the parsing and printing time of the
MLIR test suite, as well as the runtime of a simple constant
folding pass on large synthetic files. We compare the run-
time performance of MLIR compiled in release and debug
mode against the runtime of xDSL, both from a new Python
subprocess and a tool that already preloaded all available
dialects. The reason for this is that the Python decorators
used in PyRDL (Section 5.2) have a fixed cost when running
multiple files from the same Python script, and this cost is
currently the bottleneck when running small tests, compared
to MLIR, which is optimized to have a fast loading time.
Parsing and printing. We compare the parsing and

printing time between xDSL and MLIR by parsing and print-
ing all files in the MLIR test suite, as well as large synthetic
files. We parse and print 96.2% of the 4868 programs in the
MLIR test suite (Figure 10), where failing tests are due to
our partial implementation of the builtin attribute parsers
and printers. Overall, we observe that MLIR compiled in De-
bug mode, which is the standard way of using MLIR during
prototyping, takes 28 seconds to parse and print all tests.
When compiled in Release mode, the same benchmark takes
6 seconds. xDSL is more than an order of magnitude slower
to parse the same files, and takes 266 seconds. This is due to
the cost of launching the interpreter and importing xDSL for
every test. If all the files are processed in the same interpreter
context, xDSL takes 17 seconds, which is roughly similar to
MLIR compiled in Debug mode. When parsing and printing
large files (Figure 11), we observe that the same trend holds,
besides that Python overhead is not significant anymore, and
thus removing it does not provide any benefits. Note that
xDSL does not define all dialects used in the MLIR test suite,
and that some attributes and types are parsed with a default
parser, which only checks for balanced sets of brackets.

Runtime. We evaluate the runtime performance of both
compilers by defining a constant folding pass, which sim-
plifies additions of constants. Most of the runtime is spent
in the compiler framework code for introspecting the IR or
modifying it. The pass is ran on large test cases, such that

188

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Program size
1ms

10ms
100ms

1s
10s

Parse & print time (log)
MLIR Release
MLIR Debug

xDSL
xDSL pre-loaded

60 200 600 2000 6000 20000
Program size

1ms
10ms

100ms
1s

Constant folding time (log)

Figure 11. While parsing and printing large files in xDSL is
an order of magnitude slower, the introspection and modifi-
cation of IR is comparable to MLIR compiled in Debug mode.

the rewrite is applied on each possible operation, to show
how the performance of xDSL scales compared to MLIR (Fig-
ure 11). Overall, the runtime of the pass is around twice as
fast as the same pass in MLIR compiled in debug mode and
is around an order of magnitude slower than MLIR compiled
in release mode. While MLIR compiled in release mode is
clearly preferable when runtime speed is a concern, xDSL has
comparable speed to MLIR when compiled for development
and debugging.

7 Features Enabling SideKick Compilation
While working on xDSL, we identified several features en-
abling the sidekick compiler approach. These features are
not unique to xDSL or MLIR, and we believe that they are
fundamental for building a sidekick compiler framework.
A small shared IR representation. The key essential

feature for a sidekick compiler framework is a shared textual
IR. Although the MLIR textual representation is designed to
be human-readable, this is not necessary, but proves very
helpful for debugging. Moreover, having a small IR greatly
helps in sharing it among projects. Despite the seemingly
straightforward MLIR IR, developing its parser and printer
was predominantly consumed by implementing the complex
syntax of builtin attributes and types, which deviate from
the standard format.
Stability of core concepts and IR. Stability of the core

concepts and IR of a compiler project is another essential ele-
ment for enabling sidekick compilation. If the core concepts
or IR are frequently changing, it is hard to stay up-to-date
across projects, and incurs a significant maintenance cost.

Declarative abstraction definitions. In the case of com-
piler frameworks, having a declarative abstraction definition
drastically simplifies the porting of dialects among projects.

8 Related Work
With sidekick frameworks, we explore new ways of mak-
ing compilers and compiler frameworks from different com-
munities interact. This section describes other approaches
compilers have used to connect with compilers from other
communities. We also look at other compilers implemented
in Python, which shares common design goals with xDSL.

Textual interoperation with LLVM. As LLVM defines a
stable textual IR, multiple tools have been developed using it.
For instance, Alive [27] is a popular tool that uses LLVM IR
textual format to do translation validation for LLVM. Simi-
larly, Vellvm [40] uses the LLVM IR textual format to provide
mechanized formal semantics for LLVM IR. In particular, Vel-
lvm implements a verified version of LLVM mem2reg [41]
pass that can be used at any point during a compilation
pipeline through the use of LLVM IR textual format. While
Vellvm connects loosely with LLVM using the textual format,
this connection is not extensible, and not as automatic as in
the sidekick approach we propose.

Language bindings. Popular compiler frameworks pro-
vide APIs for other languages, such as Python, showing the
need to interact with compilers through a high-level script-
ing language. For instance, llvmlite provides Python bindings
for LLVM [26], and MLIR has Python bindings [7] in its main
repository, which is notably used by Nelli [24] to define an
eDSL for writing MLIR programs. MLIR’s Python bindings
expose IR constructs like dialects, operations, regions, and
attributes, but also a pass manager, enabling an entire compi-
lation flow through Python. However, the Python bindings
are still bindings to a C++ framework. So, if one intends to
modify or create a new dialect, or to change the behavior of
MLIR, say by adding a new rewriting infrastructure, one still
has to work on the C++ code. Furthermore, to interact with
MLIR dialects that are not exposed yet, such as the LLVM IR
dialect, the corresponding Python bindings must be added
manually. In contrast, xDSL allows extending its dialects di-
rectly in Python while also allowing to export MLIR dialects.
Also, xDSL is completely written in Python, so changing the
framework does not require any other language.
Lowerings to other compilers. Similar to how xDSL

can be used on top of MLIR and LLVM, many compilers
generate an intermediate representation and hand it to a
middle-end compiler to generate machine code. For instance,
Clang [21], the Rust [18] compiler, and the Julia [3] compiler
uses LLVM to generate machine code, allowing them to tar-
get a wide range of architectures. CVM [30], a framework
for multi-level rewriting in the database domain uses Python
infrastructure to define its high-level IRs, and then generates
data structures of state-of-the-art execution layers like Mon-
etDB [16] to execute the code. While these pipelines have
interactions between compilers and different languages, they
lack the bidirectional capability of xDSL and MLIR, enabling
seamless transitions between compilation pipeline stages.

189

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

Compilers in Python. Other compilers have been im-
plemented in Python, though these are often only target-
ing Python itself. For instance, Nuitka [8], an ahead-of-time
Python compiler targeting C, Numba [20], a just-in-time com-
piler for Python targeting LLVM IR, and Scalpel [25], a static
analysis framework for Python. Recently, the PyTorch [32]
community introduced torch.fx [34], a framework to de-
fine transformations for PyTorch kernel directly in Python.
While these compilers are written in Python to make them
accessible to their user communities, they are restricted to
their domain and are not as extensible as xDSL and MLIR.

Extensible compilers. Other compiler frameworks have
similar concepts of extensibility as the heavy linking of xDSL
with MLIR. For instance, JastAdd [11], Graal IR [10], both in
Java, and Delite [38], built on top of Lightweight modular
staging [35] in Scala, are compilers that allow to extend the
IR with new abstractions. While we could have built xDSL
as a sidekick of these compilers, we decided on MLIR as the
base framework due to the range of abstractions it supports,
compared to the IRs of these frameworks that often lack
concepts such as regions, block arguments, or attributes. On
the other hand, nanopass [37], an extensible compiler frame-
work written in Scheme, is a good example of a framework
exploring a design space of quick prototyping and ease of use.
Compared to our work, it does not connect to an industry-
ready compiler, and cannot easily be used to prototype for
an existing compiler.

9 Conclusion
We introduced the concept of a sidekick compiler frame-
work, a compiler framework that is loosely coupled to a base
framework through shared core concepts while offering a
community-tailored implementation that instantiates these
concepts. We implemented our idea by developing xDSL,
a Python-native sidekick to MLIR and demonstrated how
xDSL instantiates the concepts of SSA, regions, and multi-
level rewriting. Subsequently, we showed how representing
IR definitions using the IRDL dialect enables the exchange
of both IR definitions and programs across compiler frame-
works. Our evaluation demonstrated our fast prototyping
capabilities with speedups in recompilations and low installa-
tion time, making xDSL a great tool for exploratory compiler
development. We leveraged this advantage in three case stud-
ies and showed that sidekick compilers can benefit various
developer communities outside the classical user base of the
base compiler. We also demonstrated that by expanding the
MLIR ecosystem to a different design space, we can inter-
connect communities such that both frameworks can form a
single shared compiler ecosystem.
While xDSL is tailored to the Python ecosystem where

interactive development is a focus, we believe that sidekicks
can be built for other communities or needs. For instance,

one could imagine a sidekick focused on parallelism or dis-
tributed computing in Rust, or a sidekick focused on provid-
ing correctness guarantees in Lean or Coq. While a change in
programming language can guide the choice of a new focus,
this change is not fundamentally required to explore a new
design space. Similarly, sidekicks implemented in different
languages but with similar technical decisions can be used to
connect different programming language communities. We
envision that the translation approach of xDSL, i.e. exposing
data structure definitions as programs that can be ported
across frameworks, will be a cornerstone of a new generation
of compilers that heavily leverages sidekick frameworks.

Acknowledgments
This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) grants EP/W007789/1
and EP/W007940/1 and has also received funding from the
European Union’s Horizon EUROPE research and innova-
tion program under grant agreement no. 101070375 (CON-
VOLVE). We thank the xDSL community for their useful
comments and discussions along the way.

A Artifact Appendix
A.1 Abstract
This is the supporting artifact for the paper titled “xDSL:
Sidekick Compilation for SSA-Based compilers” as published
in CGO 2025. It contains the source code of xDSL and can be
used to reproduce all results presented in the final version
of this paper.

A.2 Artifact Check-List
• Program: xDSL compiler frameworks along with their in-
cluded dialects, available in this artifact and also as open-
source software. Additional scripts are available to repro-
duce the results of the paper. A detailed description of the
artifact is documented in the README.md file included in
the artifact.

• Compilation: Publicly available and included in this arti-
fact: xDSL 0.23.0 2, LLVM and MLIR 19.1.33. The aforemen-
tioned LLVM and MLIR 19.1.3 are built with the LLVM Clang
toolchain of the Docker container.

• Binary:The Linux ELF binaries of the aforementioned LLVM
and MLIR compilers are included in the Docker container
image.

• Run-time environment: The Docker container image
platform is linux/amd64.

• Metrics:Timemeasurements for installation, (re)compilation,
printing/parsing and constant folding. File size for down-
load and installation of compiler frameworks. Number of IR
features (dialect operations and attributes).

• Output: Figures 5 and 9 to 11 can be reproduced, as well as
the values for Figure 8.

2commit: c6c4093bca740318870a32642856f7b5a8c75bdf
3commit: 98e674c9f16d677d95c67bc130e267fae331e43c

190

https://github.com/xdslproject/xdsl/tree/c6c4093bca740318870a32642856f7b5a8c75bdf
https://github.com/llvm/llvm-project/tree/98e674c9f16d677d95c67bc130e267fae331e43c

xDSL: Sidekick Compilation for SSA-Based Compilers CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

• How much disk space required (approximately)?: All
assets require a total of 95GB of disk space.

• How much time is needed to complete experiments
(approximately)?: Highly dependent on CPU and clocked
frequency. The execution of all experiments requires 2 hours
and 30 minutes on an AMD Ryzen 9 5950X 16-core CPU at
4.9GHz with 62GiB RAM.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.14263271.
• Code licenses (if publicly available)?: Apache License
version 2.0 with LLVM Exceptions.

A.3 Description

A.3.1 HowDelivered. The artifact [13] is available at 10.5281/zen-
odo.14263271.

A.3.2 Hardware Dependencies. An x86-64 machine with at
least 16GB of RAM and 200GB of free disk space is required to run
the artifact. At least 8 CPU cores are recommended to reproduce
the results in a reasonable amount of time.

A.3.3 Software Dependencies. Working Docker installation.
This has been tested on a Linux x86 host machine with Docker
27.3.1. The artifact should work on MacOS with Apple Silicon,
but it will have noticeable performance differences due to the x86
architecture simulation.

A.4 Installation

A.4.1 Experiments Repository. Download the experiments
repository tarball, navigate to the directory containing the down-
load and extract it:

$ tar xvfz xdsl-paper-experiments.tar.gz

A.4.2 Setting up the Docker Container. Download the Docker
image containing the MLIR and pre-installed xDSL toolchains, nav-
igate to the directory containing the download, load and start it:

$ docker load --input xdsl-toolchain-artifact.tar.gz

A.4.3 Building the Project. Run the container from the direc-
tory containing our experiments repository and build the project
(this requires only a few minutes):

$ docker run -ti \
--volume ${PWD}/xdsl-paper-experiments/:/workbench/experiments \
xdsl-toolchain-artifact

$ cd experiments
$ make build

A.5 Experiment Workflow

A.5.1 Execution of all Benchmarks. In the docker container,
navigate to the experiments directory (if not already there):

$ cd experiments/

Run all the experiments:

$ make artifact

Produce the figures (generated in the plots/ directory):

$ make plots

A.6 Evaluation and Expected Result
On a similar environment, all results should closely follow the
trends presented in this paper.

A.7 Notes
• Depending on the host machine configuration, docker com-
mands might require elevated privileges (e.g., sudo).

References
[1] S. V. Adams, R. W. Ford, M. Hambley, J. M. Hobson, I. Kavčič, C. M.

Maynard, T. Melvin, E. H. Müller, S. Mullerworth, A. R. Porter, M.
Rezny, B. J. Shipway, and R.Wong. 2019. LFRic: Meeting the Challenges
of Scalability and Performance Portability in Weather and Climate
Models. J. Parallel and Distrib. Comput. 132 (Oct. 2019), 383–396.
doi:10.1016/j.jpdc.2019.02.007

[2] S. V. Adams, R. W. Ford, M. Hambley, J. M. Hobson, I. Kavčič, C. M.
Maynard, T. Melvin, E. H. Müller, S. Mullerworth, A. R. Porter, M.
Rezny, B. J. Shipway, and R. Wong. 2019. LFRic: Meeting the challenges
of scalability and performance portability in Weather and Climate
models. J. Parallel and Distrib. Comput. 132 (2019), 383–396. doi:10.
1016/j.jpdc.2019.02.007

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.
Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (Jan.
2017), 65–98. doi:10.1137/141000671

[4] George Bisbas, Anton Lydike, Emilien Bauer, Nick Brown, Mathieu
Fehr, Lawrence Mitchell, Gabriel Rodriguez-Canal, Maurice Jamieson,
Paul H. J. Kelly, Michel Steuwer, and Tobias Grosser. 2024. A shared
compilation stack for distributed-memory parallelism in stencil DSLs.
In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3
(La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machin-
ery, New York, NY, USA, 38–56. doi:10.1145/3620666.3651344

[5] The CIRCT Community. 2022. “CIRCT” / Circuit IR Compilers and
Tools. https://circt.llvm.org. Accessed: 2022-11-06.

[6] The LLVM Community. 2022. LLVM Loop Terminology. https://llvm.
org/docs/LoopTerminology.html. Accessed: 2022-10-12.

[7] The MLIR Community. 2022. MLIR Python Bindings. https://mlir.llvm.
org/docs/Bindings/Python/. Accessed: 2022-10-12.

[8] The Nuitka Community. 2022. Nuitka the Python Compiler. https:
//nuitka.net. Accessed: 2022-10-12.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[10] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
extensible declarative intermediate representation. In Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop.

[11] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd Extensible Java
Compiler. In Companion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion
(Montreal, Quebec, Canada) (OOPSLA ’07). Association for Computing
Machinery, New York, NY, USA, 773–774. doi:10.1145/1297846.1297881

[12] Mathieu Fehr, Jeff Niu, River Riddle, Mehdi Amini, Zhendong Su,
and Tobias Grosser. 2022. IRDL: an IR definition language for SSA
compilers. 199–212. doi:10.1145/3519939.3523700

[13] Mathieu Fehr, Michel Weber, Christian Ulmann, Alexandre Lopou-
khine, Martin Paul Lücke, Théo Degioanni, Christos Vasiladiotis,
Michel Steuwer, and Tobias Grosser. 2024. Artifact of "xDSL: Sidekick
Compilation for SSA-based Compilers". Zenodo. doi:10.5281/zenodo.
14263271

[14] Tobias Gysi, Christoph Müller, Oleksandr Zinenko, Stephan Herhut,
Eddie Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoefler, and Tobias

191

https://doi.org/10.5281/zenodo.14263271
https://doi.org/10.5281/zenodo.14263271
https://doi.org/10.5281/zenodo.14263271
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1137/141000671
https://doi.org/10.1145/3620666.3651344
https://circt.llvm.org
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LoopTerminology.html
https://mlir.llvm.org/docs/Bindings/Python/
https://mlir.llvm.org/docs/Bindings/Python/
https://nuitka.net
https://nuitka.net
https://doi.org/10.1145/1297846.1297881
https://doi.org/10.1145/3519939.3523700
https://doi.org/10.5281/zenodo.14263271
https://doi.org/10.5281/zenodo.14263271

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Fehr, et al.

Grosser. 2021. Domain-Specific Multi-Level IR Rewriting for GPU: The
Open Earth Compiler for GPU-accelerated Climate Simulation. ACM
Transactions on Architecture and Code Optimization 18, 4 (Sept. 2021),
51:1–51:23. doi:10.1145/3469030

[15] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying
Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving High-
Performance the Functional Way: A Functional Pearl on Expressing
High-Performance Optimizations as Rewrite Strategies. Proc. ACM
Program. Lang. 4, ICFP, Article 92 (aug 2020), 29 pages. doi:10.1145/
3408974

[16] Stratos Idreos, F. Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullen-
der, and Martin Kersten. 2012. MonetDB: Two Decades of Research in
Column-oriented Database Architectures. IEEE Data Eng. Bull. 35 (01
2012).

[17] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an
Open Framework for QueryOptimization and Compilation. Proc. VLDB
Endow. 15, 11 (jul 2022), 2389–2401. doi:10.14778/3551793.3551801

[18] Steve Klabnik and Carol Nichols. 2019. The Rust Programming Lan-
guage (Covers Rust 2018). No Starch Press.

[19] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a
publishing format for reproducible computational workflows. Vol. 2016.

[20] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. 1–6.

[21] Chris Lattner. 2008. LLVM and Clang: Next generation compiler
technology. In The BSD conference, Vol. 5. 1–20.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Interna-
tional Symposium on Code Generation and Optimization, 2004. CGO
2004. (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.
doi:10.1109/CGO.2004.1281665

[23] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 2–14.
doi:10.1109/CGO51591.2021.9370308

[24] Maksim Levental, Alok Kamatar, Ryan Chard, Nicolas Vasilache, Kyle
Chard, and Ian Foster. 2023. nelli: a lightweight frontend for MLIR.
arXiv:2307.16080 [cs.PL]

[25] Li Li, Jiawei Wang, and Haowei Quan. 2022. Scalpel: The Python Static
Analysis Framework. arXiv:2202.11840 [cs.SE]

[26] The llvmlite Community. 2022. llvmlite Python Bindings. https://
github.com/numba/llvmlite. Accessed: 2022-11-06.

[27] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15).
Association for Computing Machinery, New York, NY, USA, 22–32.
doi:10.1145/2737924.2737965

[28] Fabio Luporini, Mathias Louboutin, Michael Lange, Navjot Kukreja,
Philipp Witte, Jan Hückelheim, Charles Yount, Paul H. J. Kelly, Felix J.
Herrmann, and Gerard J. Gorman. 2020. Architecture and Performance
of Devito, a System for Automated Stencil Computation. ACM Trans.
Math. Softw. 46, 1, Article 6 (apr 2020), 28 pages. doi:10.1145/3374916

[29] Ingo Müller, Renato Marroquín, Dimitrios Koutsoukos, Mike Wawr-
zoniak, Sabir Akhadov, and Gustavo Alonso. 2020. The Collection
Virtual Machine: An Abstraction for Multi-Frontend Multi-Backend
Data Analysis. In Proceedings of the 16th International Workshop on
Data Management on New Hardware (Portland, Oregon) (DaMoN ’20).
Association for Computing Machinery, New York, NY, USA, Article 7,
10 pages. doi:10.1145/3399666.3399911

[30] Ingo Müller, Renato Marroquín, Dimitrios Koutsoukos, Mike Wawr-
zoniak, Sabir Akhadov, and Gustavo Alonso. 2020. The collection
virtual machine: an abstraction for multi-frontend multi-backend data
analysis. In Proceedings of the 16th International Workshop on Data
Management on New Hardware. 1–10.

[31] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy:
A Programming Language for Compilers Courses. In Proceedings of
the 2019 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019).
Association for Computing Machinery, New York, NY, USA, 41–45.
doi:10.1145/3358711.3361627

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[33] Anurudh Peduri, Siddharth Bhat, and Tobias Grosser. 2022. QSSA: An
SSA-Based IR for Quantum Computing. In Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction (Seoul,
South Korea) (CC). Association for Computing Machinery, New York,
NY, USA, 2–14. doi:10.1145/3497776.3517772

[34] James Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason
Ansel. 2022. torch. fx: Practical Program Capture and Transformation
for Deep Learning in Python. Proceedings of Machine Learning and
Systems 4 (2022), 638–651.

[35] Tiark Rompf and Martin Odersky. 2010. Lightweight modular stag-
ing: a pragmatic approach to runtime code generation and compiled
DSLs. In Proceedings of the ninth international conference on Generative
programming and component engineering. 127–136.

[36] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value
Numbers and Redundant Computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’88). Association for Computing
Machinery, 12–27. doi:10.1145/73560.73562

[37] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. 2005. ED-
UCATIONAL PEARL: A Nanopass Framework for Compiler Edu-
cation. J. Funct. Program. 15, 5 (Sept. 2005), 653–667. doi:10.1017/
S0956796805005605

[38] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2014. Delite: A
compiler architecture for performance-oriented embedded domain-
specific languages. ACM Transactions on Embedded Computing Systems
(TECS) 13, 4s (2014), 1–25.

[39] Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravis-
hankar, Thomas Raoux, Alexander Belyaev, Matthias Springer, To-
bias Gysi, Diego Caballero, Stephan Herhut, Stella Laurenzo, and
Albert Cohen. 2022. Composable and Modular Code Generation
in MLIR: A Structured and Retargetable Approach to Tensor Com-
piler Construction. CoRR abs/2202.03293 (2022). arXiv:2202.03293
https://arxiv.org/abs/2202.03293

[40] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM Intermediate Representation
for Verified Program Transformations. SIGPLAN Not. 47, 1 (jan 2012),
427–440. doi:10.1145/2103621.2103709

[41] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve
Zdancewic. 2013. Formal Verification of SSA-based Optimizations for
LLVM. SIGPLAN Not. 48, 6 (June 2013), 175–186. doi:10.1145/2499370.
2462164

Received 2024-09-12; accepted 2024-11-04

192

https://doi.org/10.1145/3469030
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://arxiv.org/abs/2307.16080
https://arxiv.org/abs/2202.11840
https://github.com/numba/llvmlite
https://github.com/numba/llvmlite
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3374916
https://doi.org/10.1145/3399666.3399911
https://doi.org/10.1145/3358711.3361627
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/73560.73562
https://doi.org/10.1017/S0956796805005605
https://doi.org/10.1017/S0956796805005605
https://arxiv.org/abs/2202.03293
https://arxiv.org/abs/2202.03293
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2499370.2462164
https://doi.org/10.1145/2499370.2462164

	Abstract
	1 Introduction
	2 Sidekick Compilation
	3 Use Cases for SideKick Compilation
	3.1 Use Case 1: Teaching Compilation with ChocoPy
	3.2 Use Case 2: Designing a DSL Compiler
	3.3 Use Case 3: Prototyping New MLIR Features

	4 Sharing Core Compilation Concepts
	4.1 Operations and Values
	4.2 Attributes and Types
	4.3 Regions and Blocks
	4.4 Dialects
	4.5 Different Implementations

	5 Defining and Sharing Dialect Definitions
	5.1 The IRDL Dialect: An IR for IR Definitions
	5.2 PyRDL: Connecting IRDL to xDSL
	5.3 A Shared Dialect Ecosystem

	6 Compiler Design Space Characterization
	6.1 Startup and Build Times
	6.2 Runtime Performance of xDSL

	7 Features Enabling SideKick Compilation
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Notes

	References

