
The Lift Project: 
Performance Portable GPU Code 

Generation via Rewrite Rules

Michel Steuwer — michel.steuwer@ed.ac.uk

http:!//##www.lift-project.org/

mailto:michel.steuwer@ed.ac.uk
http://www.lift-project.org


2

What are the problems Lift tries to tackle?

• Parallel processors everywhere 

• Many different types: CPUs, GPUs, … 

• Parallel programming is hard 

• Optimising is even harder 

• Problem: 
No portability of performance!

CPU

GPU

FPGA

Accelerator



Prologue



To achieve performance portability  
we need high-level abstraction!

Traditional imperative programming 
approaches always lead to non-portable code

Traditional compiler & runtimes have no freedom  
to explore alternative implementations



Lessons from the past

1968

1972



“High-level” abstractions like if and for have 
carried us through the sequential age of computing

We need appropriate high-level abstractions 
for the parallel and concurrent age of computing



End of Prologue



8

Case Study: Parallel Reduction in OpenCL

• Summing up all values of an array 
• Comparison of 7 implementations by Nvidia 
• Investigating complexity and efficiency of optimisations

5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].



Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Case Study: Parallel reduction in OpenCL

9



Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Case Study: Parallel reduction in OpenCL

Kernel function executed in parallel by multiple work-items

Work-items are identified by a unique global id

10



Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Case Study: Parallel reduction in OpenCL

Work-items are grouped into work-groups Local id within work-group

11



Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Case Study: Parallel reduction in OpenCL

Big, but slow global memory Small, but fast local memory

Memory barriers for consistency

12



Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Case Study: Parallel reduction in OpenCL

Functionally correct implementations in OpenCL are hard!

13



14

kernel void reduce0(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 

 barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Unoptimised Implementation Parallel Reduction



15

kernel void reduce1(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    // continuous work-items remain active 
    int index = 2 * s * tid; 
    if (index < get_local_size(0)) { 
      l_data[index] += l_data[index + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Avoid Divergent Branching



16

kernel void reduce2(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  // process elements in different order 
  // requires commutativity 
  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Avoid Interleaved Addressing



17

kernel void reduce3(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  // performs first addition during loading 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Increase Computational Intensity per Work-Item



kernel void reduce4(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  # pragma unroll 1 
  for (unsigned int s=get_local_size(0)/2; s>32; s>>=1) { 
    if (tid < s) { l_data[tid] += l_data[tid + s]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 

  // this is not portable OpenCL code! 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Avoid Synchronisation inside a Warp

18



kernel void reduce5(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Complete Loop Unrolling

19



kernel void reduce6(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  unsigned int gridSize = WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { l_data[tid] += g_idata[i]; 
                  if (i + WG_SIZE < n) 
                    l_data[tid] += g_idata[i+WG_SIZE]; 
                  i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Fully Optimised Implementation

20



• Optimising OpenCL is complex 
• Understanding of target hardware required 

• Program changes not obvious 
• Is it worth it? …

kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

kernel 
void reduce0(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; 
       s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

Case Study Conclusions

Unoptimized Implementation Fully Optimized Implementation21



22

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results Nvidia

• … Yes! Optimising improves performance by a factor of 10! 
• Optimising is important, but …



23

• … unfortunately, optimisations in OpenCL are not portable! 

• Challenge: how to achieving portable performance?

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results AMD and Intel



24

Lift: Performance Portable GPU Code 
Generation via Rewrite Rules

• Ambition: automatic generation of Performance Portable code

134 code generation using patterns

High-level Expression

OpenCL Program

OpenCL Patterns

Algorithmic Patterns

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduction

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach “Generating Performance Portable Code 
using Rewrite Rules: From High-Level Functional Expressions to High-Performance OpenCL Code” in ICFP 2015.

http://www.lift-project.org/papers/steuwer15generating.pdf
http://www.lift-project.org/papers/steuwer15generating.pdf


Walkthrough kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

25

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

sum(vec) = reduce(+, 0, vec)



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

26

①

②

③

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)



27

① Algorithmic Primitives (a.k.a. algorithmic skeletons)

map(f, x):

zip(x, y):

reduce(+, 0, x): 

split(n, x):

join(x):

iterate(f, n, x): 

reorder(σ, x):

x1 x2 x3 x4 x5 x6 x7 x8 f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(x8)⟼

⟼
x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1+x2+x3+x4+x5+x6+x7+x8 

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ xσ(1) xσ(2) xσ(3) xσ(4) xσ(5) xσ(6) xσ(7) xσ(8)

x1 x2 x3 x4 x5 x6 x7 x8f( … f( )…)

(x1, y1)(x2, y2)(x3, y3)(x4, y4)(x5, y5)(x6, y6)(x7, y7)(x8, y8)



28

① High-Level Programs

scal(a, vec) = map(λ x ↦ x*a, vec)

asum(vec) = reduce(+, 0, map(abs, vec))

dotProduct(x, y) = reduce(+, 0, map(*, zip(x, y)))

gemv(mat, x, y, α, β) = 
map(+, zip( 

map(λ row ↦ scal(α, dotProduct(row, x)), mat), 
scal(β, y) ) )



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

29

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

30

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)



• Provably correct rewrite rules 
• Express algorithmic implementation choices

31

② Algorithmic Rewrite Rules

map f �map g ! map (f � g)
Map fusion rule:

reduce f z ! reduce f z � reducePart f z

reducePart f z ! iterate n (reducePart f z)

reducePart f z ! reducePart f z � reorder
reducePart f z ! join �map (reducePart f z) � split n

Reduce rules:

map f ! join �map (map f) � split n
Split-join rule:



32

② OpenCL Primitives

mapGlobal Work-items

mapWorkgroup

mapLocal

Work-groups

mapSeq

reduceSeq
Sequential implementations

Memory areastoLocal

toGlobal

,

mapVec
splitVec joinVec

,
, Vectorisation

Primitive OpenCL concept



33

② OpenCL Rewrite Rules

map f ! mapWorkgroup f | mapLocal f | mapGlobal f | mapSeq f

Map rules:

mapLocal f ! toGlobal (mapLocal f)mapLocal f ! toLocal (mapLocal f)

Local/ global memory rules:

map f ! joinVec �map (mapVec f) � splitVec n
Vectorisation rule:

reduceSeq f z �mapSeq g ! reduceSeq (� (acc, x). f (acc, g x)) z
Fusion rule:

• Express low-level implementation and optimisation choices



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

34

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Walkthrough



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

35

①

②

③

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

vecSum = reduce (+) 0

rewrite rules code generation

Walkthrough



36

③ Pattern based OpenCL Code Generation

mapGlobal f xs

for (int g_id = get_global_id(0); g_id < n; 
     g_id += get_global_size(0)) { 
  output[g_id]  = f(xs[g_id]); 
}

reduceSeq f z xs

T acc = z; 
for (int i = 0; i < n; ++i) { 
  acc = f(acc, xs[i]); 
}

...
...

• Generate OpenCL code for each OpenCL primitive

• A lot more details about the code generation implementation can be 
found in our CGO 2017 paper

https://github.com/michel-steuwer/publications/raw/master/2017/CGO-2017.pdf


kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

37

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Walkthrough



38

Case Study: Matrix Multiplication

A

B

C

A x B = 
map(λ rowA ↦ 
map(λ colB ↦ 
dotProduct(rowA, colB) 

, transpose(B)) 
, A)



39

Tiling as a Rewrite Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-
cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-
join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19



40

Register Blocking as a Rewrite Rules

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-
cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-
join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19



41

Register Blocking as a Rewrite Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-
cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-
join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

registerBlocking =

Map(f) ) Join() �Map(Map(f)) � Split(k)
Map(a 7! Map(b 7! f(a, b))) ) Transpose() �Map(b 7! Map(a 7! f(a, b)))

Map(f � g) ) Map(f) �Map(g)

Map(Reduce(f)) ) Transpose() �Reduce((acc, x) 7! Map(f) � Zip(acc, x))

Map(Map(f)) ) Transpose() �Map(Map(f)) � Transpose()
Transpose() � Transpose() ) id

Reduce(f) �Map(g) ) Reduce((acc, x) 7! f(acc, g(x)))

Map(f) �Map(g) ) Map(f � g)



42

Exploration Strategy

Rewritten Expression

High-Level Expression

Macro Rules

1.2

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.4

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.1

T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1
A ⇤B =

Map(
���!
rowA 7!

Map(
��!
colB 7!

DotProduct(
���!
rowA,

��!
colB)

) � Transpose() $B
) $A

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A



43

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

Exploration Strategy



44

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.2

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.4

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.6

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy



45

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

OpenCL Code

Code Generation

1 kernel mm amd opt(global float ⇤ A, B, C,
2 int K, M, N) {
3 local float tileA [512]; tileB [512];
4
5 private float acc 0; ...; acc 31;
6 private float blockOfB 0; ...; blockOfB 3;
7 private float blockOfA 0; ...; blockOfA 7;
8
9 int lid0 = local id(0) ; lid1 = local id(1) ;

10 int wid0 = group id(0); wid1 = group id(1);
11
12 for (int w1=wid1; w1<M/64; w1+=num grps(1)) {
13 for (int w0=wid0; w0<N/64; w0+=num grps(0)) {
14
15 acc 0 = 0.0f; ...; acc 31 = 0.0f;
16 for (int i=0; i<K/8; i++) {
17 vstore4(vload4(lid1⇤M/4+2⇤i⇤M+16⇤w1+lid0,A), 16⇤lid1+lid0, tileA);
18 vstore4(vload4(lid1⇤N/4+2⇤i⇤N+16⇤w0+lid0,B), 16⇤lid1+lid0, tileB);
19 barrier (...) ;
20
21 for (int j = 0; j<8; j++) {
22 blockOfA 0 = tileA[0+64⇤j+lid1⇤8]; ...; blockOfA 7 = tileA[7+64⇤j+lid1⇤8];
23 blockOfB 0 = tileB[0 +64⇤j+lid0]; ...; blockOfB 3 = tileB[48+64⇤j+lid0];
24
25 acc 0 += blockOfA 0 ⇤ blockOfB 0; ...; acc 28 += blockOfA 7 ⇤ blockOfB 0;
26 acc 1 += blockOfA 0 ⇤ blockOfB 1; ...; acc 29 += blockOfA 7 ⇤ blockOfB 1;
27 acc 2 += blockOfA 0 ⇤ blockOfB 2; ...; acc 30 += blockOfA 7 ⇤ blockOfB 2;
28 acc 3 += blockOfA 0 ⇤ blockOfB 3; ...; acc 31 += blockOfA 7 ⇤ blockOfB 3;
29 }
30 barrier (...) ;
31 }
32
33 C[ 0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 0; ...; C[ 0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 28;
34 C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 1; ...; C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 29;
35 C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 2; ...; C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 30;
36 C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 3; ...; C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 31;
37 } } }

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy



46

Heuristics for Matrix Multiplication

For Macro Rules: 
• Nesting depth 
• Distance of addition and multiplication 
• Number of times rules are applied 

For Map to OpenCL: 
• Fixed parallelism mapping 
• Limited choices for mapping to 

local and global memory 
• Follows best practice

For Parameter Mapping: 
• Amount of memory used 

• Global 
• Local 
• Registers 

• Amount of parallelism 
• Work-items 
• Workgroup



47

Exploration in Numbers for 
Matrix Multiplication

... ...

... ...

... ...

Algorithmic
Exploration
OpenCL speci c
Exploration
Parameter
Exploration

Code Generation

Phases:

Figure 8: Exploration and compilation strategy

Memory Coalescing In section 3 we introduced the reorder
primitive, which allows us to specify an index function to
reorder an array. It is important to point out, that this reorder-
ing is not performed in the generated code by producing a
reordered array. Instead, the index computation required to
perform the reordering is delayed until the next primitive
accesses the input array. This is similar to lazy evaluation.
Therefore, a reorder primitive e↵ectively controls how the fol-
lowing primitive will access its input array.

We can take advantage of this design by applying the
following rewrite rule:

map(f)! reorder(stride�1) � map(f) � reorder(stride)

This rule rewrites an arbitrary map primitive to access its
input array in a strided fashion, enabling memory coalescing.
To ensure correctness, the reordering has to be undone,
by reordering the computed array with the inverse index
function as used before. In situation where each thread
processes multiple data elements in f, this transformation
ensures that these elements are accessed in a coalesced way.

4.5 Summary
In this section, we discussed examples of rewrite rules and
how they are used to implement complex optimizations. Fur-
thermore, we have seen in figure 7 how these optimizations
are combined to transform a simple program into a more op-
timized and specialized form. We eventually reach a program
from which our compiler generates OpenCL code similar to
the highly optimized code shown in figure 2 in the motiva-
tion section. Because the rewrite rules are well-defined and
proven to be correct, we can automate their application and
explore di↵erent optimizations for a single program, as we
will discuss in the next section.

5. Exploration and Compilation Strategy
This section describes how we compile a single high-level
program, as seen in figure 4, to OpenCL code by applying
rewrite rules automatically to explore di↵erent optimization
choices. Figure 8 gives an overview of our exploration and
compilation strategy. For matrix multiplication, we start from
a single high-level program to generate 46,000 OpenCL ker-
nel in four phases, which we discuss in the following: algo-
rithmic exploration, OpenCL specific exploration, parameter
exploration, and code generation.

5.1 Algorithmic Exploration Using Macro Rules
By design, each rewrite rule encodes a simple transformation.
As discussed in the previous section, more complex optimiza-
tions are achieved by composition.

We decided to guide the automatic rewrite process by
grouping rewrite rules together into macro rules which encode
bigger transformations. A macro rule aims to achieve a
particular optimization goal, such as apply tiling or blocking.
These macro rules are more flexible than the simple rules.
They try to apply di↵erent sequences of rewrites to achieve
their optimization goal, whereas a simple rewrite rule always
performs exactly the same transformation. For example, it
might be required to first rewrite the source expression into a
form where the rewrites performing the actual optimization
(e. g., tiling) can be applied.

To explore di↵erent algorithmic optimization choices, we
encoded 4 macro rules: 1D blocking, 2D blocking, tiling,
and a tiling optimization applied to the innermost loop.
Starting from the high-level matrix multiplication program
in figure 5, we apply these macro rules at all valid locations
in an arbitrary order leading to approximately 20,000 di↵erent
variations.

In order to reduce the search space, we discard programs
which are unlikely to deliver good performance on the GPU
using two heuristics. The first heuristic limits the depth of
the nesting in the program: some rules are always applicable,
however they are unlikely to improve performance after ex-
ploiting all levels and dimensions of the OpenCL thread hier-
archy. Using the first heuristic we decided to focus on around
one hundred rewritten programs. The second heuristic looks
at the distance between the addition and multiplication op-
erations. A small distance increases the likelihood of fusing
these two instructions together and avoiding intermediate
results. The number of expressions after applying the second
heuristic is reduced to 8, which are then passed to the next
phase.

5.2 OpenCL Specific Exploration
For each algorithmically rewritten program, we explore dif-
ferent mapping strategies to the GPU. We chose a fixed map-
ping strategy for the OpenCL thread hierarchy: the two outer-
most map primitives are turned into mapWorkgroup primitives
to perform these computations across a two-dimensional
grid of workgroups. The next two maps are rewritten into
mapLocal primitives to exploit the parallelism inside of a two-
dimensional workgroup. Finally, all further nested map prim-
itives will be executed sequentially. This strategy is common
in GPU programming.

For the memory hierarchy, we explored the usage of
local and private memory. We limited the number of copies
into each memory space to two, to avoid expressions which
perform many meaningless copies.

Starting from the 8 algorithmically rewritten programs, we
automatically generate 760 OpenCL specific programs with
a particular mapping decision encoded.

5.3 Parameter Exploration
Every OpenCL specific program contains parameters, e. g.,
the argument to split(n) controlling the size of a tile or
a block. We performed an automatic exploration of these
parameters by exhaustively picking all possible parameter
values in a reasonable range. Furthermore, we make sure that
the parameters picked will not generate an OpenCL kernel
requiring too much private, local, or global memory. We also
discard parameter combinations leading to an unreasonably
small or high number of workgroups or local threads.

For the 760 OpenCL specific programs we generate around
46,000 fully specialized programs.

7 2016/1/19



48

Exploration Space for Matrix Multiplication

Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

Only few OpenCL kernel with very good performance 



49

Performance Evolution for Randomised Search

Even with a simple random search strategy one can expect to find  
a good performing kernel quickly



Performance Results Matrix Multiplication

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)
Generated  MAGMA  cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated  MAGMA  cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated  MAGMA  cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated  MAGMA  cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

50

Performance close or better than hand-tuned MAGMA library



Fermi Kepler Tahiti

X X

X X

X X

X X

XX

XX

0

50

100

0

50

100

1024
2

2048
2

1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K 1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K 1K
       Fermi

2K 1K
        Kepler

2K 1K
       Tahiti

2K

The six specialized OpenCL kernels

R
el

at
ive

 p
er

fo
rm

an
ce

Executed w
ith input size

Executed on

51

Performance Portability Matrix Multiplication

Generated kernels are specialised for device and input size



Desktop GPUs vs. Mobile GPU

52

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

3000
G

FL
O

PS

Rewrite−
 based

  CLBlast
+ CLTune clBLAS cuBLAS

Desktop GPU
(Nvidia GeForce GTX Titan Black)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

Rewrite−
 based

  CLBlast
+ CLTune clBLAS

Desktop GPU
(AMD Radeon HD 7970)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0
2
4
6
8

10
12
14

Rewrite−
 based

  CLBlast
+ CLTune clBLAS   Hand

optimized

Mobile GPU
(ARM Mali−T628 MP6)

Figure 7: Performance of matrix multiplication on two desktop GPUs and one mobile GPU for di↵erent input sizes. The
rewrite-based approach is the only one that achieves performance portability across desktop-class and mobile GPUs.

rewrite-based approach consistently achieves a large perfor-
mance improvement on the Mali GPU compared to CLBlast
(up to 1.7⇥ better). It is able to outperform any other imple-
mentation on Mali, especially for the third input size where
choosing a larger tile size increases the amount of work per
thread which is beneficial for this type of matrix shape.

The key for achieving high performance is the support
for architecture specific optimizations expressed as generic
rewrite rules and the ability to generate structurally-di↵erent
OpenCL kernels. In fact, when running the best OpenCL
kernel generated for Mali on the Nvidia GPU we obtain only
4% of the performance compared to running the kernel opti-
mized for this GPU (i.e., 25x slower) as seen in Table 2. Con-
versely, running the kernel optimized for the desktop class
AMD GPU on Mali results in only 11% of the performance
achieved with the best kernel we generate for the embedded
GPU (i.e., 9x slowdown). The Nvidia kernel does not even
run on Mali due to insu�cient hardware resources.

On the desktop GPUs our approach generates kernels ex-
ploiting the hierarchical organization of threads, local mem-
ory, tiling, and the fused multiply-add instruction, whereas
on the mobile GPU, a flat organization of threads, vector-
ization, and the dot built-in are crucial. These very di↵erent
OpenCL kernels are derived from a single high-level expres-
sion of matrix multiplication using rewrites.

7.4 Summary
This section has shown that a rewrite-based approach achieves

high performance on two desktop GPUs and the mobile Mali
GPU starting from a single portable high-level expression.The
comparison against the state-of-the-art auto-tuner, CLBlast,
shows that tuning a fixed parameter space does not achieve
performance portability across di↵erent classes of GPUs.

8. DISCUSSION
While this paper has focused on matrix multiplication, the

proposed approach is in fact more generic. The high-level
functional language introduced in section 4 has been delib-
erately designed to be more restrictive than general purpose
languages to enable e�cient parallel code generation. How-
ever, the language and the rewrite rules are fully extensible
and can be used for expressing a larger class of data-parallel
applications. For instance, we are currently working on ex-
tensions to support sparse linear algebra and stencil applica-
tions using the exact same methodology presented.

Run on
Nvidia AMD Mali

Tuned
for

Nvidia 100.0 % 27.5 % N/A
AMD 20.5 % 100.0 % 11.6 %
Mali 4.2 % 14.4 % 100.0 %

Table 2: Performance portability of kernels (10242 ⇤ 10242)

9. RELATED WORK
Auto-tuning approaches.

There exist a large number of auto-tuning projects in the
literature. We highlight two recent examples. OpenTuner [1]
is a recent generic framework for creating domain-specific
multi-objective auto-tuners. It supports a variety of search
techniques, as well as user-defined ones providing domain
specific knowledge. CLTune [18] is an auto-tuner for opti-
mizing OpenCL kernels. Using CLTune requires the kernel
to be written in a auto-tuning friendly style and might require
providing alternative implementations to achieve good per-
formance on a variety of devices. It supports a broad range
of strategies to e�ciently search the space of parameters.

Auto-tuning has been successfully applied to matrix multi-
plication. Previous work includes templates for di↵erent im-
plementations with auto-tuning targeting Nvidia GPUs [10].
Other work [13] has auto-tuned pre-written kernels.

As we have demonstrated in this paper, our rewrite-based
approach is more fundamental than classical parameter based
auto-tuning, as the rewrite rules allow to drastically change
the structure of generated OpenCL kernels achieving true
performance portability across desktop and mobile GPUs.

Mali GPU optimizations.
There is extensive literature on optimizations for desktop-

class GPUs but significantly less work on mobile GPUs. For
instance, prior work [7] has shown how manual optimiza-
tions for Mali GPUs can be used for HPC-style workloads.
The paper [15] discusses code generation for an mobile GPU
from a domain specific language for image processing.

In contrast, this paper presents a novel technique based
on rewrite rules to automatically generate optimized code for
data parallel applications targeting the Mali GPU.

Polyhedral compilation [3] has been applied to optimize
OpenCL code multiple GPUs, including Mali. Unfortunately,
the Mali GPU was excluded from the matrix multiplication
benchmark. Polyhedral compilation requires complex static

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

3000

G
FL

O
PS

Rewrite−
 based

  CLBlast
+ CLTune clBLAS cuBLAS

Desktop GPU
(Nvidia GeForce GTX Titan Black)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

Rewrite−
 based

  CLBlast
+ CLTune clBLAS

Desktop GPU
(AMD Radeon HD 7970)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0
2
4
6
8

10
12
14

Rewrite−
 based

  CLBlast
+ CLTune clBLAS   Hand

optimized

Mobile GPU
(ARM Mali−T628 MP6)

Figure 7: Performance of matrix multiplication on two desktop GPUs and one mobile GPU for di↵erent input sizes. The
rewrite-based approach is the only one that achieves performance portability across desktop-class and mobile GPUs.

rewrite-based approach consistently achieves a large perfor-
mance improvement on the Mali GPU compared to CLBlast
(up to 1.7⇥ better). It is able to outperform any other imple-
mentation on Mali, especially for the third input size where
choosing a larger tile size increases the amount of work per
thread which is beneficial for this type of matrix shape.

The key for achieving high performance is the support
for architecture specific optimizations expressed as generic
rewrite rules and the ability to generate structurally-di↵erent
OpenCL kernels. In fact, when running the best OpenCL
kernel generated for Mali on the Nvidia GPU we obtain only
4% of the performance compared to running the kernel opti-
mized for this GPU (i.e., 25x slower) as seen in Table 2. Con-
versely, running the kernel optimized for the desktop class
AMD GPU on Mali results in only 11% of the performance
achieved with the best kernel we generate for the embedded
GPU (i.e., 9x slowdown). The Nvidia kernel does not even
run on Mali due to insu�cient hardware resources.

On the desktop GPUs our approach generates kernels ex-
ploiting the hierarchical organization of threads, local mem-
ory, tiling, and the fused multiply-add instruction, whereas
on the mobile GPU, a flat organization of threads, vector-
ization, and the dot built-in are crucial. These very di↵erent
OpenCL kernels are derived from a single high-level expres-
sion of matrix multiplication using rewrites.

7.4 Summary
This section has shown that a rewrite-based approach achieves

high performance on two desktop GPUs and the mobile Mali
GPU starting from a single portable high-level expression.The
comparison against the state-of-the-art auto-tuner, CLBlast,
shows that tuning a fixed parameter space does not achieve
performance portability across di↵erent classes of GPUs.

8. DISCUSSION
While this paper has focused on matrix multiplication, the

proposed approach is in fact more generic. The high-level
functional language introduced in section 4 has been delib-
erately designed to be more restrictive than general purpose
languages to enable e�cient parallel code generation. How-
ever, the language and the rewrite rules are fully extensible
and can be used for expressing a larger class of data-parallel
applications. For instance, we are currently working on ex-
tensions to support sparse linear algebra and stencil applica-
tions using the exact same methodology presented.

Run on
Nvidia AMD Mali

Tuned
for

Nvidia 100.0 % 27.5 % N/A
AMD 20.5 % 100.0 % 11.6 %
Mali 4.2 % 14.4 % 100.0 %

Table 2: Performance portability of kernels (10242 ⇤ 10242)

9. RELATED WORK
Auto-tuning approaches.

There exist a large number of auto-tuning projects in the
literature. We highlight two recent examples. OpenTuner [1]
is a recent generic framework for creating domain-specific
multi-objective auto-tuners. It supports a variety of search
techniques, as well as user-defined ones providing domain
specific knowledge. CLTune [18] is an auto-tuner for opti-
mizing OpenCL kernels. Using CLTune requires the kernel
to be written in a auto-tuning friendly style and might require
providing alternative implementations to achieve good per-
formance on a variety of devices. It supports a broad range
of strategies to e�ciently search the space of parameters.

Auto-tuning has been successfully applied to matrix multi-
plication. Previous work includes templates for di↵erent im-
plementations with auto-tuning targeting Nvidia GPUs [10].
Other work [13] has auto-tuned pre-written kernels.

As we have demonstrated in this paper, our rewrite-based
approach is more fundamental than classical parameter based
auto-tuning, as the rewrite rules allow to drastically change
the structure of generated OpenCL kernels achieving true
performance portability across desktop and mobile GPUs.

Mali GPU optimizations.
There is extensive literature on optimizations for desktop-

class GPUs but significantly less work on mobile GPUs. For
instance, prior work [7] has shown how manual optimiza-
tions for Mali GPUs can be used for HPC-style workloads.
The paper [15] discusses code generation for an mobile GPU
from a domain specific language for image processing.

In contrast, this paper presents a novel technique based
on rewrite rules to automatically generate optimized code for
data parallel applications targeting the Mali GPU.

Polyhedral compilation [3] has been applied to optimize
OpenCL code multiple GPUs, including Mali. Unfortunately,
the Mali GPU was excluded from the matrix multiplication
benchmark. Polyhedral compilation requires complex static

Performance portable even for mobile GPU device!



Using Lift as a code generation backend

53

parallelize the loop by distributing the work to many threads
and then merging the results of each thread.

The key idea of this paper is to recognize idioms of code
using a constraints based system which express properties
that must hold for parallelization to be applicable such as
that the update of the bins only depend on closure variables
and that the input array is read affinely. Once detected, the
original C code is transformed into a data-parallel functional
intermediate language as shown in Listing 2. In this exam-
ple, the idioms detected maps to the compReduce functional
pattern which is customized with the operators f and g au-
tomatically extracted from the original sequential code.

A rewrite based approach is then used to lower the orig-
inal functional expression into a form amenable to OpenCL
code generation. The rewrite system use a set of semantic
preserving rules which encodes implementation and opti-
mization choices explicitly. This rewrite process automati-
cally explores different optimizations and specializes the im-
plementation for a particular parallel device. The resulting
expression in Listing 3 encodes a particular way to exploit
the parallelism of the complex reduction; multiple threads
perform a reduction in parallel on private bins and the tem-
porary results are combined sequentially as a second step.

Finally, an OpenCL kernel is generated, using a straight-
forward process which traverses the expression and emit
templated code for each pattern. Listing 4 shows the gener-
ated OpenCL code for the parallel part of the complex reduc-
tion. This code might run on a multi-core CPU, a GPU, or
any other OpenCL capable device. By choosing a different
set of rewrites we are able to generate differently optimized
OpenCL kernels specialized for each different device.

Using this fully automated strategy, it is possible to
achieve speedups of up to 1.95⇥ on a quad-core CPU and
over 20⇥ speedup on a GPU when compared to the original
sequential C implementation.

3. Overview
Figure 1 summarizes the key components of our approach.
It is entirely automatic, taking as an input, arbitrary sequen-
tial ’C’ programs, and outputs platform specific optimized
OpenCL. We use the existing compiler infrastructure LLVM
to translate sequential ’C’ programs to an SSA intermedi-
ate representation. We then search the SSA representation
for idioms based on constraints using SMT (section 5). The
constraints describing idioms are written in an external lan-
guage (section 4) allowing a plug and play exploration of
idiom representation.

Once the idioms have been detected, they are mechani-
cally translated (section 7) into our data parallel FunIL (sec-
tion 6). We then iterative apply rewrite rules to improve per-
formance (section 8). The transformed data parallel FunIL
is then translated into OpenCL code which is compiled to
the 3 host platforms considered in this paper. This is stitched
together with the original program, by inserting boiler plate

LLVM IR
LLVM IR

⟳

Sequential C Programs

CPU

NAS Parallel Benchmarks Parboil

iGPU GPU

LLVM IR
§5 Idiom Detection

§6 Data
Parallel

Functional
IL

§7

§8 Optimizing
using Rewrite Rules

Optimized
OpenCL
Kernel

§4 Idioms
Expressed as
Constraints

LLVM IR

MG SP USIS LUBT CG DC EP FT histo lbm mri-gbfs cutcpsad sgemm spmv stencil tpcaf mri-q

Figure 1: Overview of our approach

host code into the LLVM IR which is then unparsed back to
C source and compiled for the host CPU processor.

A key component of this flow, is the representation of
idioms as constraints which is described in the next section.

4. Constraints-based System
Our method for the detection of computational idioms
is based on a Satisfiability Modulo Theories (SMT) ap-
proach [8]. We operate on single static assignment IR code
that has been normalized using a set of optimization passes.
More concretely, our implementation operates on the LLVM
IR. We formulate individual idioms as formulas with vari-
ables as LLVM::Values and by using a mix of constrains
on control flow, data types, instruction opcodes and more.

We use a custom constraint solver to search for instances
of LLVM::Values that satisfy the formula in a given
LLVM IR function. A solution of the formula then corre-
sponds to a slice of instructions that implements the compu-
tational idiom that is formalized in the constraint.

The custom constraint solver is integrated with the LLVM
infrastructure to generate analysis passes that recognize
complex computational idioms specified by a constraint
specification language. This enables an extensible system
for processing complex idioms.

We now give a detailed discussion of the language we use
to specify computational idioms as constraints.

3 2016/11/16



Using Lift as a code generation backend

BT CG DC EP FT IS LU MG SP UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

3

6

9

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

Const.
Polly

# 
De

te
ct

ed
 Id

io
m

s

Idiom Type Constraint Based Histogram Reduction
Constraint Based Matrix Operations

Constraint Based Scalar Reduction             
Constraint Based Stencil

Polly Scalar Reduction             
Polly Stencil

Figure 13: The different computational idioms found in all benchmarks.

CG DC EP FT IS MG UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

25

50

75

100

R
un

tim
e 

C
ov

er
ag

e 
(%

)

Figure 14: Runtime coverage of the detected idioms in all benchmarks.

EP IS MG histo tpacf

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

CPUiGPU
GPU CPUiGPU

GPU CPUiGPU
GPU CPUiGPU

GPU CPUiGPU
GPU

Sp
ee

du
p 

O
ve

r S
eq

ue
nt

ia
l

lbm stencil sgemm

0
10

20

0
20

0
40

0
60

0
80

0

0
10

00
20

00
30

00
40

00

CPUiGPU
GPU CPUiGPU

GPU CPUiGPU
GPU

Figure 15: Speedup compared to the sequential C program.
The red bars indicate avoiding unnecessary data transfers.

die. On all investigated benchmarks our approach is able to
achieve a speedup – not a given for many other automatic
parallelization techniques.

We generated parallel versions using our automated
rewrite-based optimization strategy.

Speedup vs. Sequential For five benchmarks we have ob-
tained moderate speedups from 1.24⇥ for MG up to 3.4⇥
for IS. All of these benchmarks (besides MG) have a scalar
or histogram reduction as their performance bottleneck and
are, therefore, not very computational expensive. Interest-
ingly, we can see that different hardware is beneficial for dif-
ferent benchmarks: for tpcaf the CPU parallelization is the
most efficient choice beating the GPU implementation for
which the data transfer time dominates; for EP and MG the
integrated GPU strikes the right balance between computa-
tional power while avoiding the movement of data to the ex-
ternal GPU; and, finally, for IS and histo the data transfer to
the GPU pays off exploiting the high GPU internal memory
bandwidth. These results emphasize the significance of our
heterogeneous code generation technology. A fixed library
implementation targeting a particular hardware architecture

would not be flexible enough to achieve speedups for all of
these benchmarks.

For three of the benchmarks we achieve significantly
higher speedups between 28⇥ for lbm and up to over 4500⇥
on the sgemm benchmark. All of these benchmarks are more
computationally expensive than the other group. Here the
external GPU is always clearly the fastest architecture. The
particular large speedup for sgemm is partly due to a very
bad sequential implementation which triggers a cache miss
in almost every single iteration. Nevertheless, as we will see
in more detail in the next section, the generated code for
sgemm is of high quality almost achieving the performance
of the fast cuBLAS library.

For lbm and stencil we report GPU runtimes with and
without avoiding unnecessary data transfers. Both of these
benchmarks execute a stencil computation inside a for loop
and do not require access to the data on the CPU side be-
tween iterations. Therefore, it is straightforward to avoid
moving the data between GPU and CPU in every iteration
using a runtime system which transfers data only on demand.
We report these numbers separately, as this goes beyond the
simple schema of integrating OpenCL into the sequential
program we have given in the motivation section.

Speedup vs. Parallel Handwritten Implementations Fig-
ure 16 shows the performance our approach achieves com-
pared to the provided OpenMP and OpenCL implementa-
tions. As we only detect and parallelize idioms locally, we
are not able to parallelize the entire benchmark applications.
For some benchmarks the provided parallel implementations
are a complete rewrite using a significantly different par-
allelization strategy then we are able to achieve using our
approach. We have highlighted those implementations with
bright bars in Figure 16 and use a dark color for all the bars
which follow a similar parallelization strategy. We can see,

10 2016/11/16

0.22 0.00 1.95274.510.03

EP IS MG histo tpacf lbm stencil sgemm

1

10

100

1000

10000

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Constraint

OpenCL
OpenMP

Sp
ee

du
p 

O
ve

r S
eq

ue
nt

ia
l

Figure 16: Speedup compared to the handwritten parallel
OpenCL and OpenMP implementations.

2198.162198.162198.162198.162198.162198.16

0

200

400

600

Constraint NAS

R
un

tim
e 

(m
s)

Parallel Rest Data Transfer

(a) MG

0.0

0.4

0.8

1.2

R
un

tim
e 

(m
s)

Constraint cuBLAS Parboil

(b) SGEMM

Figure 17: Performance analysis of two benchmarks.

that for the benchmarks where the handwritten implemen-
tations follows the same parallelization strategy we achieve
comparable – or better – performance. Nevertheless, for four
benchmarks it is highly beneficial to parallelize the entire
application – which we can not achieve following our idiom
detection approach.

In the next subsection we will focus on the MG and
sgemm benchmarks to analyze why we achieve particu-
larly bad and good performance improvements for these two
benchmarks.

10.4 Performance Analysis
Figure 17 shows detailed performance results for MG and
sgemm.

MG The left side of Figure 17a shows a breakdown of the
runtime of our generated code on the external GPU into three
sections: 1) the parallel computation; 2) the non-parallel
computation; and, 3) the data transfer time. We can see that
our generated parallel code achieves a similar performance
compared to the handwritten implementation. Unfortunately,
we are not able to parallelize the rest of the application lead-
ing to a large portion of the program still being executed se-
quentially. In the parallel handwritten implementation these
parts are also parallelized. Furthermore, because we execute
the non-parallel computations on the CPU we are forced to
perform a data transfer in every iteration of a loop which
is called many times. This leads to a large amount of data
transfer and an overall runtime of over 2000ms, because we

are only parallelizing one part of the entire application. If we
could also parallelize the other parts and, therefore, avoid the
costly data transfer we could potentially achieve a similar
performance as the handwritten implementation.

SGEMM Figure 17b shows the performance results of
our generated sgemm code compared to the handwritten
OpenCL implementation and cuBLAS, the fast BLAS li-
brary implemented by Nvidia engineers. The rewrite-based
optimization performed GPU-specific optimizations such
as tiling, register blocking and usage of local memory to
achieve a significantly higher performance compared to the
handwritten implementation and performance close to the
highly tuned cuBLAS implementation.

11. Related Work
11.1 Domain specific Languages
Domain specific languages have received significant interest
in recent years ranging from SPIRAL [42] a DSL for Fast
Fourier Transforms to UFL [1], a DSL for partial differen-
tial equations. Stencils in particular have received much at-
tention [38], the best known of which is Halide [48]. DSLs
to exploit complex reductions are less studied. In [14] they
introduce a type of DSL via annotations that allow expres-
sion of complex reductions based on the Platform-Neutral
Compute Intermediate Language ([4]). In the case of matrix
multiplication, this is a well specified idiom that is supported
by specific libraries [2, 27, 40].

11.2 Discovery
Idiom Detection Idiom based optimization [44] has fallen
out of fashion in recent years with more systematic ap-
proaches based on SSA [33] and polyhedral representations
[6]. They were largely syntactic pattern matching based and
were not robust in the presence of complex control and
dataflow. More recently, [3], describes a compiler based
parallelization approach for heterogeneous computing that
is based on an idiomatic intermediate representation called
KIR. It is not clear how such an approach would work on
general ’C’ programs.

Stencils Stencil detection has been driven by the introduc-
tion of DSLs such as Halide. Helium [37] tackles the chal-
lenging task of detecting stencils in binary code. Although
impressive, it relies on considerable dynamic analysis and
cannot easily be extended to other idioms. The paper most
closely related to this work is [31] which detects stencils
in FORTRAN by the verified lifting of code segments to a
representation that can be mapped to Halide DSL. It uses
syntax guided synthesis to verify translation with added con-
strains to ensure that it can be mapped to Halide. It however,
uses a narrow approach to selecting code snippets to ana-
lyze and focuses on nested loops. It relies on well structured
FORTRAN without conditionals and uses occasional anno-
tation support. Our constraint approach could be used as a

11 2016/11/16

Heterogeneous code generation gives a speedup in all cases

Performance close to manual written code —when parallelisation strategy is comparable
54



Lift is now Open-Source Software

http:!//##www.lift-project.org/

https:!//github.com/lift-project/lift

55

http://www.lift-project.org
https://github.com/lift-project/lift
http://www.lift-project.org


The Lift Team

56



The Lift Project: 
Performance Portable GPU Code 

Generation via Rewrite Rules

Michel Steuwer — michel.steuwer@ed.ac.uk

http:!//##www.lift-project.org/

mailto:michel.steuwer@ed.ac.uk
http://www.lift-project.org

