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1.1 multi-core processors and their programming 5
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Figure 1.1: Development of Intel Desktop CPUs over time. While transistor
count continues to grow, around 2005 clock frequency and power
consumption have reached a plateau. As an answer multi-core
processors emerged. Inspired by [145].

and increased heat development. This has led to architectures which
particularly focus on their energy efficiency, the most prominent ex-
ample of such architectures are modern graphics processing units
(GPUs). Originally developed for accelerating the rendering of com-
plex graphics and 3D scenes, GPU architectures have been recently
generalized to support more types of computations. Some people re-
fer to this development using the term general-purpose computing
on graphics processing units (GPGPU).

Technically GPU architectures are multi-core architectures like mod-
ern multi-core CPUs, but each individual core on a GPU typically has
dozens or hundreds of functional units which can perform computa-
tions in parallel following the Single Instruction, Multiple Data (SIMD)
principle. These types of architectures are optimized towards a high
throughput of computations, therefore, they focus on performing a
large amount of operations in parallel and feature no, or only small,
caches to prevent or mitigate latencies of the memory: if a thread
stalls waiting for the memory, another thread takes over and keeps
the core busy. For multi-core CPUs switching between threads is more
expensive, therefore, CPUs are instead optimized to avoid long laten-
cies when accessing the memory with a deep cache hierarchy and
advanced architectural features, like long pipelines and out-of-order
execution, all of which are designed to keep each core busy.

Die Manycore Ära
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I. Die Herausforderung der Programmierbarkeit 

II. Die Herausforderung der Performance-Portabilität 

Agenda

Meine Dissertation adressiert zwei zentrale Herausforderungen:



TEIL I
Die Herausforderung der Programmierbarkeit



Programmierung mit OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Beispiel: Parallele Summation eines Arrays in OpenCL



Programmierung mit OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Beispiel: Parallele Summation eines Arrays in OpenCL

Kernel Funktion wird parallel von vielen work-items ausgeführt

Work-items werden durch eine globale id identifizier



Programmierung mit OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Beispiel: Parallele Summation eines Arrays in OpenCL

Work-items werden zu work-groups zusammengefasst Lokale id innerhalb einer work-group



Programmierung mit OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Beispiel: Parallele Summation eines Arrays in OpenCL

Großer, aber langsamer globaler Speicher Kleiner, aber schneller lokaler Speicher

Barrieren für Speicherkonsistenz



Programmierung mit OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Beispiel: Parallele Summation eines Arrays in OpenCL

Funktional korrekte Implementierungen in OpenCL sind schwierig!



DAS SKELCL 
PROGRAMMIERMODEL



Das SkelCL Programmiermodel

• Parallele Datencontainer  
für eine einheitliche Speicherverwaltung zwischen CPU und (mehreren) GPUs 

• implizite Speichertransfers zwischen CPU und GPU 
• lazy copying minimiert den Datentransfer 

• Wiederkehrende Muster paralleler Programmierung (Algorithmische Skelette)  
für eine vereinfachte Beschreibung paralleler Berechnungen 

• Daten Verteilungen 
für einen transparenten Datentransfer in Systemen mit mehreren GPUs. 

Drei Abstraktionen zu OpenCL hinzugefügt:

zip (⊕) [x1, …, xn] [y1, …, yn] = [x1 ⊕ y1, …, xn ⊕ yn] 
reduce (⊕) ⊕id [x1, …, xn] = ⊕id ⊕ x1 ⊕ … ⊕ xn

CPU

GPUs0 1

CPU

GPUs0 1

CPU

GPUs0 1

single copy block



Die SkelCL Softwarebibliothek am Beispiel

#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h> 

float dotProduct(const float* a, const float* b, int n) { 
  using namespace skelcl; 
  skelcl::init( 1_device.type(deviceType::ANY) );  
 
  auto mult =    zip([](float x, float y) { return x*y; }); 
  auto sum  = reduce([](float x, float y) { return x+y; }, 0);  
 
  Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
  Vector<float> C = sum( mult(A, B) );  
 
  return C.front(); 
} 

dotProduct A B = reduce (+) 0 (zip (⨉) A B)



Neue Algorithmische Skelette

3.2 the skelcl programming model 43

Figure 3.5: Visualization of the Gaussian blur stencil application.

into account. When neighboring elements are accesses at the bound-
aries of the container out-of-bound accesses occur. In these cases the
function h is called with the index causing the out-of-bound access
and returns a replacement value. We now formally define the stencil
skeleton. We start with the definition for vectors:

definition 3.7. Let ~x be a vector of size n with elements x
i

where 0 < i 6
n. Let f be an unary customizing function, d be a positive integer value, and
h be an out-of-bound handling function. The algorithmic skeleton stencil is
defined as follows:

stencil f d h [x
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] 8 i : 0 < i 6 n
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x
j

= h j 8 j : -d < j 6 0 _n < j 6 n+ d.

The definition for matrices is similar:

definition 3.8. Let M be an n⇥m matrix with elements m
i,j where 0 <

i 6 n and 0 < j 6 m. Let f be an unary customizing function, d be
an positive integer value, and h be an out-of-bound handling function. The
algorithmic skeleton stencil is defined as follows:

stencil f d h
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Figure 3.7: The allpairs computation schema. (a): element c
2,3 3 is com-

puted by combining the second row of A 1 with the third row
of B 2 using the binary operator �. (b): the same situation where
the transpose of matrix B is shown.

Figure 3.7a illustrates this definition: the element c
2,3 of matrix C

marked as 3 is computed by combining the second row of A marked
as 1 with the third row of B marked as 2 using the binary opera-
tor �. Figure 3.7b shows the same computation with the transposed
matrix B. This visualization shows how the structure of matrix C is
determined by the two input matrices A and B.

Let us consider two example applications which can be expressed
by customizing the allpairs skeleton with a particular function �.

example 1 : The Manhattan distance (or L
1

distance) is a measure
of distance which is used in many applications. In general, it is de-
fined for two vectors, ~x and ~y, of equal length d, as follows:

ManDist ~x ~y =
dX

k=1

|x
k

- y
k

| (3.2)

In [31], the so-called Pairwise Manhattan Distance (PMD) is studied
as a fundamental operation in hierarchical clustering for data analy-
sis. PMD is obtained by computing the Manhattan distance for every
pair of rows of a given matrix. This computation for arbitrary matrix
A can be expressed using the allpairs skeleton customized with the
Manhattan distance defined in Equation (3.2):

PMD A = allpairs ManDist A A (3.3)

The n⇥ n matrix computed by the customized skeleton contains the
Manhattan distance for every pair of rows of the input n⇥ d matrix
A.

example 2 : Matrix multiplication is a basic linear algebra opera-
tion, which is a building block of many scientific applications. A n⇥d

Stencil Berechnungen Allpairs Berechnungen

A ⨉ B = allpairs dotProduct A BT

dotProduct a b = zipReduce (+) 0 (⨉) a b

gauss M = stencil f 1 0 M

wo f die Funktion is welche  
den Gaußschen Weichzeichner 
beschreibt

CPU

GPUs0 1

overlap Verteilung

Beispiel: Gaußscher Weichzeichner

Unterstützung für mehre GPUs:

Example: 
Matrix Multiplication

Optimierung für zipReduce Muster:

Unterstützung für mehrere GPUs mit 
block und copy Verteilung
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Figure 4.23: Relative lines of code for five application examples discussed in
this chapter comparing OpenCL code with SkelCL code.
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Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL nahe an der Geschwindigkeit von OpenCL!
(Ausnahme: dot product … mehr dazu in Teil II)
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Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL Programme sind signifikant kürzer!



TEIL II
Die Herausforderung der Performance-Portabilität 



EIN NEUER ANSATZ ZUR 
PERFORMANCE PORTABLEN 

CODEGENERIERUNG
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(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

• Beispiel: Parallele Summation eines Arrays in OpenCL 

• Vergleich von 7 OpenCL Implementierungen von Nvidia
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(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reductionPerformance in OpenCL ist nicht portabel!

• Beispiel: Parallele Summation eines Arrays in OpenCL 

• Vergleich von 7 OpenCL Implementierungen von Nvidia

OpenCL und Performance-Portabilität 
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Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

Performance portable Codegenerierung mit 
Transformationsregeln



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Beispiel: Parallele Summation 



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation
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mapA,B,I : (A ! B) ! [A]I ! [B]I

zipA,B,I : [A]I ! [B]I ! [A⇥B]I

reduceA,I : ((A⇥A) ! A) ! A ! [A]I ! [A]1

splitA,I : (n : size) ! [A]n⇥I ! [[A]n]I

joinA,I,J : [[A]I ]J ! [A]I⇥J

 Algorithmische Primitive

iterateA,I,J : (n : size) ! ((m : size) ! [A]I⇥m ! [A]m)

! [A]In⇥J ! [A]J



asum = reduce (+) 0 �map abs

gemv = � mat xs ys ↵ �.map (+) (

zip (map (scal ↵ � dot xs) mat) (scal � ys) )

dot = � xs ys.(reduce (+) 0 �map (⇤)) (zip xs ys)

scal = � a.map (⇤a)

 High-Level Programme



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation
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kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
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8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

vecSum = reduce (+) 0

rewrite rules code generation
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map f �map g ! map (f � g)
Map Zusammenschluss:

reduce f z ! reduce f z � reducePart f z

reducePart f z ! iterate n (reducePart f z)

reducePart f z ! reducePart f z � reorder
reducePart f z ! join �map (reducePart f z) � split n

Reduktionsregeln:

map f ! join �map (map f) � split n
Split-Join Zerlegung:

 Algorithmische Transformationsregeln

• Transformationsregeln sind semantikerhaltend 

• Drücken Auswahl bei der algorithmische Implementierungen aus



 OpenCL Primitive

Primitive OpenCL Konzept

mapGlobal Work-items

mapWorkgroup / mapLocal Work-groups

mapSeq / reduceSeq Sequentielle Implementierungen

toLocal / toGlobal Speicherbereiche

mapVec / splitVec / joinVec Vektorisierung



map f ! mapWorkgroup f | mapLocal f | mapGlobal f | mapSeq f

Map:

• Drücken hardware-spezifische Optimierungen aus

mapLocal f ! toGlobal (mapLocal f)mapLocal f ! toLocal (mapLocal f)

Lokaler/ Globaler Speicher:

map f ! joinVec �map (mapVec f) � splitVec n
Vektorisierung:

reduceSeq f z �mapSeq g ! reduceSeq (� (acc, x). f (acc, g x)) z
Map-Reduktion Zusammenschluss:

 OpenCL Transformationsregeln



kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

164 code generation using patterns
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6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-
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kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel

vecSum = reduce (+) 0
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mapGlobal f xs

for (int g_id = get_global_id(0); g_id < n; 
     g_id += get_global_size(0)) { 
  output[g_id]  = f(xs[g_id]); 
}

reduceSeq f z xs

T acc = z; 
for (int i = 0; i < n; ++i) { 
  acc = f(acc, xs[i]); 
}

...
...

 Muster basierte OpenCL Codegenerierung

• Generiere OpenCL Code für jedes OpenCL Primitiv



reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

• Vollautomatische Suche nach guten Implementierungen möglich!  
(Eine einfache Suchstrategie ist in der Dissertation beschrieben)

Transformationsregeln definieren 
einen Suchraum gültiger Implementierungen
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Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS).

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. As can be seen, we achieve better
performance than clBLAS on most platforms and benchmarks. The
speedups are the highest for the CPU, with up to 20⇥ for the asum
benchmark with a small input size. The reason is that clBLAS was
written and tuned specifically for an AMD GPU which usually
exhibits a larger number of parallel processing units. As we saw in
Section 6, our systematically derived expression for this benchmark
is specifically tuned for the CPU by avoiding creating too much
parallelism, which is what gives us such large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK BlackScholes and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2⇥ speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Similar to the high performance libraries our approach results
in device-specific OpenCL code with implementation parameters
tuned for specific data sizes. In contrast, existing library approaches
are based on device-specific manually optimized implementations
whereas our approach systematically and automatically generates
these specialized versions.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary

library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5⇥ faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, they only generate
one implementation since they do not explore different template
compositions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, where our implementation does and, thus, achieves a
speedup of up to 1.78 on the larger input size.

This section has shown that our approach generates perfor-
mance portable code which is competitive with highly-tuned plat-
form specific implementations. Our systematic approach is generic
and generates optimized kernels for different devices or data
sizes. Therefore, our results suggest that high performance can
be achieved for different input sizes and for other benchmarks ex-
pressible with our primitives.

10. Related Work
Algorithmic Patterns Algorithmic patterns (or algorithmic skele-
tons [11]) have been around for more than two decades. Early
work already discussed algorithmic skeletons in the context of
performance portability [16]. Patterns are parts of popular frame-
works such as Map-Reduce [18] from Google. Current pattern-
based libraries for platforms ranging from cluster systems [37] to
GPUs [41] have been proposed with recent extension to irregular al-
gorithms [20]. Lee et al., [28] discuss how nested parallel patterns
can be mapped efficiently to GPUs. Compared to our approach,
most prior work relies on hardware-specific implementations to
achieve high performance. Conversely, we systematically generate
implementations using fine-grain OpenCL patterns combined with
our rule rewriting system.

Algebra of Programming Bird and Meertens, amongst others,
developed formalisms for algebraic reasoning about functional pro-
grams in the 1980s [5]. Our rewrite rules are in the same spirit and
many of our rules are similar to equational rules presented by Bird,
Meertens, and others. Skillicorn [38] described the application of
the algebraic approach for parallel computing. He argued that it
leads to architecture-independent parallel programming — which
we call performance portability in this paper. Our work can be seen
as an application of the algebraic approach to the generation of ef-
ficient code for modern parallel processors.

Functional Approaches for GPU Code Generation Accelerate
is a functional domain specific language embedded into Haskell to
support GPU acceleration [9, 30]. Obsidian [42] and Harlan [24]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [4] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [12], a new functional language
targeted at code generation for GPUs, and Copperhead [7], a data
parallel language embedded in Python. HiDP [46] is a hierarchical
data parallel language which maps computations to OpenCL. All
these projects rely on code analysis or hand-tuned versions of high-
level algorithmic patterns. In contrast, our approach uses rewrite

Evaluation — Geschwindigkeit 
gegenüber einer funktional portablen Implementierung

Bis zu 20x Speedup gegenüber der funktional portablen clBLAS Implementierung



 
gegenüber Hardware spezifischen Implementierungen

• Automatisch generierter Code vs. handoptimierten Code 
• Konkurrenzfähige Ergebnisse vs. hochoptimierte Implementierungen 
• Bis zu 4.5x Speedup für gemv auf der AMD GPU
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Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.

rules and low-level hardware patterns to produce high-performance
code in a portable way.

Halide [35] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have been used
as a way to automate the optimization process of functional pro-
grams [26]. Recently, rewriting has been applied to HPC appli-
cations [32] as well, where the rewrite process uses user annota-
tions on imperative code. Similar to us, Spiral [34] uses rewrite
rules to optimize signal processing programs and was more recently
adapted to linear algebra [39]. In contrast, our rules and OpenCL
hardware patterns are expressed at a much finer level, allowing for
highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [43] or Liq-
uidMetal [19] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [29], OpenACC to
OpenCL [36], or hiCUDA [22] compile sequential C code for the
GPU. X10, a language for high performance computing, can also
be used to program GPUs [14]. However, this remains low-level
since the programmer has to express the same low-level operations
found in CUDA or OpenCL. Recently, researchers have looked
at generating efficient GPU code for loops using the polyhedral
framework [44]. Delite [6, 8], a system that enables the creation
of domain-specific languages, can also target multicore CPUs or
GPUs. Unfortunately, all these approaches do not provide full per-
formance portability since the mapping of the application assumes
a fixed platform and the optimizations and implementations are
targeted at a specific device.

Finally, Petabricks [3] takes a different approach by letting
the programmer specify different algorithms implementations. The
compiler and runtime choose the most suitable one based on an
adaptive mechanism and produces OpenCL code [33]. Compared
to our work, this technique relies on static analysis to optimize
code. Our code generator does not perform any analysis since
optimization happens at a higher level within our rewrite rules.

11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightfor-
ward given that all optimizations decisions are made with the rules
and no complex analysis is needed. We achieve performance on par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes or for molecular dynamics simulation.
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Zusammenfassung

• Um die Herausforderung der Programmierbarkeit zu adressieren:  

• Ein neuer Ansatz zur Programmierung von Systemen mit mehreren GPUs 

• Zwei neue formell definierte und implementierte algorithmische Skelette 

• Um die Herausforderung der Performance-Portabilität zu adressieren: 

• Ein formelles System zur Transformation muster-basierter Programme 

• Ein Codegenerator der Performance-Portabilität erreicht



asum

I

: [float]
I

! [float]1
asum

I⇥J

= reducefloat,I⇥J

(+) 0 � map abs

6d! reducefloat,J (+) 0 � reducePartfloat,I (+) 0 J � map abs (1)
6d! reduce (+) 0 � join � map (reducePart (+) 0 1) � splitfloat,J I � map abs (2)
6c! reduce (+) 0 � join � map (reducePart (+) 0 1) � split I � join � map (map abs) � split I (3)
6e! reduce (+) 0 � join � map (reducePart (+) 0 1) � map (map abs) � split I (4)
6f! reduce (+) 0 � join � map (reducePart (+) 0 1 � map abs) � split I (5)
7a! reduce (+) 0 � join � map (reducePart (+) 0 1 � mapSeq abs) � split I (6)

6d&7b! reduce (+) 0 � join � map (reduceSeq (+) 0 � mapSeq abs) � split I (7)
6f! reduce (+) 0 � join � map (reduceSeq (�(acc, a).acc + (abs a)) 0) � split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

(a) Nvidia
GPU

�x.(reduceSeq � join � join � mapWorkgroup (

toGlobal
�
mapLocal (reduceSeq (�(a, b). a+ (abs b)) 0)

�
� reorderStride 2048

) � split 128 � split 2048) x

(b) AMD
GPU

�x.(reduceSeq � join � joinVec � join � mapWorkgroup (

mapLocal (reduceSeq (mapVec 2 (�(a, b). a+ (abs b))) 0 � reorderStride 2048

) � split 128 � splitVec 2 � split 4096) x

(c) Intel
CPU

�x.(reduceSeq � join � mapWorkgroup (join � joinVec � mapLocal (
reduceSeq (mapVec 4 (�(a, b). a+ (abs b))) 0

) � splitVec 4 � split 32768) � split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 � map abs .
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Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-

asum = reduce (+) 0 �map abs

Ergebnisse der Suche 
Automatisch Gefundene Ausdrücke

Gesucht für: Nvidia GTX 480 GPU, AMD Radeon HD 7970 GPU, Intel Xeon E5530  CPU
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asum

I

: [float]
I

! [float]1
asum

I⇥J

= reducefloat,I⇥J

(+) 0 � map abs

6d! reducefloat,J (+) 0 � reducePartfloat,I (+) 0 J � map abs (1)
6d! reduce (+) 0 � join � map (reducePart (+) 0 1) � splitfloat,J I � map abs (2)
6c! reduce (+) 0 � join � map (reducePart (+) 0 1) � split I � join � map (map abs) � split I (3)
6e! reduce (+) 0 � join � map (reducePart (+) 0 1) � map (map abs) � split I (4)
6f! reduce (+) 0 � join � map (reducePart (+) 0 1 � map abs) � split I (5)
7a! reduce (+) 0 � join � map (reducePart (+) 0 1 � mapSeq abs) � split I (6)

6d&7b! reduce (+) 0 � join � map (reduceSeq (+) 0 � mapSeq abs) � split I (7)
6f! reduce (+) 0 � join � map (reduceSeq (�(acc, a).acc + (abs a)) 0) � split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

(a) Nvidia
GPU

�x.(reduceSeq � join � join � mapWorkgroup (

toGlobal
�
mapLocal (reduceSeq (�(a, b). a+ (abs b)) 0)

�
� reorderStride 2048

) � split 128 � split 2048) x

(b) AMD
GPU

�x.(reduceSeq � join � joinVec � join � mapWorkgroup (

mapLocal (reduceSeq (mapVec 2 (�(a, b). a+ (abs b))) 0 � reorderStride 2048

) � split 128 � splitVec 2 � split 4096) x

(c) Intel
CPU

�x.(reduceSeq � join � mapWorkgroup (join � joinVec � mapLocal (
reduceSeq (mapVec 4 (�(a, b). a+ (abs b))) 0

) � splitVec 4 � split 32768) � split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 � map abs .
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(a) Nvidia GPU
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(b) AMD GPU
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(c) Intel CPU

Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-

• Die Suche hat auf jeder Platform weniger als 1 Stunde gedauert 

• Durchschnittliche Zeit zur Ausführung eines Kandidaten weniger als 1/2 Sekunde

Ergebnisse der Suche



• Optimieren in OpenCL ist kompliziert 
• Verständnis für die Zielarchitektur benötigt 

• Veränderungen im Program  
nicht offensichtlich

kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

kernel 
void reduce0(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; 
       s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

Fazit des Beispiels

Nicht Optimierte Implementierung Voll Optimierte Implementierung
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B

C

A x B = 
map(λ rowA ↦ 
map(λ colB ↦ 
dotProduct(rowA, colB) 

, transpose(B)) 
, A)
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Figure 8: Exploration and compilation strategy

Memory Coalescing In section 3 we introduced the reorder
primitive, which allows us to specify an index function to
reorder an array. It is important to point out, that this reorder-
ing is not performed in the generated code by producing a
reordered array. Instead, the index computation required to
perform the reordering is delayed until the next primitive
accesses the input array. This is similar to lazy evaluation.
Therefore, a reorder primitive e↵ectively controls how the fol-
lowing primitive will access its input array.

We can take advantage of this design by applying the
following rewrite rule:

map(f)! reorder(stride�1) � map(f) � reorder(stride)

This rule rewrites an arbitrary map primitive to access its
input array in a strided fashion, enabling memory coalescing.
To ensure correctness, the reordering has to be undone,
by reordering the computed array with the inverse index
function as used before. In situation where each thread
processes multiple data elements in f, this transformation
ensures that these elements are accessed in a coalesced way.

4.5 Summary
In this section, we discussed examples of rewrite rules and
how they are used to implement complex optimizations. Fur-
thermore, we have seen in figure 7 how these optimizations
are combined to transform a simple program into a more op-
timized and specialized form. We eventually reach a program
from which our compiler generates OpenCL code similar to
the highly optimized code shown in figure 2 in the motiva-
tion section. Because the rewrite rules are well-defined and
proven to be correct, we can automate their application and
explore di↵erent optimizations for a single program, as we
will discuss in the next section.

5. Exploration and Compilation Strategy
This section describes how we compile a single high-level
program, as seen in figure 4, to OpenCL code by applying
rewrite rules automatically to explore di↵erent optimization
choices. Figure 8 gives an overview of our exploration and
compilation strategy. For matrix multiplication, we start from
a single high-level program to generate 46,000 OpenCL ker-
nel in four phases, which we discuss in the following: algo-
rithmic exploration, OpenCL specific exploration, parameter
exploration, and code generation.

5.1 Algorithmic Exploration Using Macro Rules
By design, each rewrite rule encodes a simple transformation.
As discussed in the previous section, more complex optimiza-
tions are achieved by composition.

We decided to guide the automatic rewrite process by
grouping rewrite rules together into macro rules which encode
bigger transformations. A macro rule aims to achieve a
particular optimization goal, such as apply tiling or blocking.
These macro rules are more flexible than the simple rules.
They try to apply di↵erent sequences of rewrites to achieve
their optimization goal, whereas a simple rewrite rule always
performs exactly the same transformation. For example, it
might be required to first rewrite the source expression into a
form where the rewrites performing the actual optimization
(e. g., tiling) can be applied.

To explore di↵erent algorithmic optimization choices, we
encoded 4 macro rules: 1D blocking, 2D blocking, tiling,
and a tiling optimization applied to the innermost loop.
Starting from the high-level matrix multiplication program
in figure 5, we apply these macro rules at all valid locations
in an arbitrary order leading to approximately 20,000 di↵erent
variations.

In order to reduce the search space, we discard programs
which are unlikely to deliver good performance on the GPU
using two heuristics. The first heuristic limits the depth of
the nesting in the program: some rules are always applicable,
however they are unlikely to improve performance after ex-
ploiting all levels and dimensions of the OpenCL thread hier-
archy. Using the first heuristic we decided to focus on around
one hundred rewritten programs. The second heuristic looks
at the distance between the addition and multiplication op-
erations. A small distance increases the likelihood of fusing
these two instructions together and avoiding intermediate
results. The number of expressions after applying the second
heuristic is reduced to 8, which are then passed to the next
phase.

5.2 OpenCL Specific Exploration
For each algorithmically rewritten program, we explore dif-
ferent mapping strategies to the GPU. We chose a fixed map-
ping strategy for the OpenCL thread hierarchy: the two outer-
most map primitives are turned into mapWorkgroup primitives
to perform these computations across a two-dimensional
grid of workgroups. The next two maps are rewritten into
mapLocal primitives to exploit the parallelism inside of a two-
dimensional workgroup. Finally, all further nested map prim-
itives will be executed sequentially. This strategy is common
in GPU programming.

For the memory hierarchy, we explored the usage of
local and private memory. We limited the number of copies
into each memory space to two, to avoid expressions which
perform many meaningless copies.

Starting from the 8 algorithmically rewritten programs, we
automatically generate 760 OpenCL specific programs with
a particular mapping decision encoded.

5.3 Parameter Exploration
Every OpenCL specific program contains parameters, e. g.,
the argument to split(n) controlling the size of a tile or
a block. We performed an automatic exploration of these
parameters by exhaustively picking all possible parameter
values in a reasonable range. Furthermore, we make sure that
the parameters picked will not generate an OpenCL kernel
requiring too much private, local, or global memory. We also
discard parameter combinations leading to an unreasonably
small or high number of workgroups or local threads.

For the 760 OpenCL specific programs we generate around
46,000 fully specialized programs.
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Nur einige generierte OpenCL Programme mit sehr guter Performance
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Performance Entwicklung für Matrix Multiplikation

Selbst mit einer einfachen zufälligen Strategie kann man erwarten 
schnell ein Program mit guter Performance zu finden
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