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Domain Specific Languages

• Definition by Paul Hudak: 
“A programming language tailored specifically for an 
application domain” 

• DSLs are not general purpose programming language 

• Capture the semantics of a particular application domain 

• Raise level of abstraction (often declarative not imperative)
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Examples of Domain Specific Languages

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;    -- for the unsigned type

entity COUNTER is
  generic (
    WIDTH : in natural := 32);
  port (
    RST   : in std_logic;
    CLK   : in std_logic;
    LOAD  : in std_logic;
    DATA  : in std_logic_vector(WIDTH-1 downto 0);
    Q     : out std_logic_vector(WIDTH-1 downto 0));
end entity COUNTER;

architecture RTL of COUNTER is
  signal CNT : unsigned(WIDTH-1 downto 0);
begin
  process(RST, CLK) is
  begin
    if RST = '1' then
      CNT <= (others => '0');
    elsif rising_edge(CLK) then
      if LOAD = '1' then
        CNT <= unsigned(DATA); -- type is converted to unsigned
      else
        CNT <= CNT + 1;
      end if;
    end if;
  end process;

  Q <= std_logic_vector(CNT); -- type is converted back to std_logic_vector
end architecture RTL;

VHDL
SELECT Book.title AS Title,
       count(*) AS Authors
 FROM  Book
 JOIN  Book_author
   ON  Book.isbn = Book_author.isbn
 GROUP BY Book.title;

SQL

HTML

make
all: hello

hello: main.o factorial.o hello.o
    g++ main.o factorial.o hello.o -o hello

main.o: main.cpp
    g++ -c main.cpp

factorial.o: factorial.cpp
    g++ -c factorial.cpp

hello.o: hello.cpp
    g++ -c hello.cpp

clean:
    rm *o hello

shell scripts
#!/bin/sh  
if [ $(id -u) != "0" ]; then
    echo "You must be the superuser to 
           run this script" >&2
    exit 1
fi
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Parallelism everywhere: The Many-Core Era1.1 multi-core processors and their programming 5
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Figure 1.1: Development of Intel Desktop CPUs over time. While transistor
count continues to grow, around 2005 clock frequency and power
consumption have reached a plateau. As an answer multi-core
processors emerged. Inspired by [145].

and increased heat development. This has led to architectures which
particularly focus on their energy efficiency, the most prominent ex-
ample of such architectures are modern graphics processing units
(GPUs). Originally developed for accelerating the rendering of com-
plex graphics and 3D scenes, GPU architectures have been recently
generalized to support more types of computations. Some people re-
fer to this development using the term general-purpose computing
on graphics processing units (GPGPU).

Technically GPU architectures are multi-core architectures like mod-
ern multi-core CPUs, but each individual core on a GPU typically has
dozens or hundreds of functional units which can perform computa-
tions in parallel following the Single Instruction, Multiple Data (SIMD)
principle. These types of architectures are optimized towards a high
throughput of computations, therefore, they focus on performing a
large amount of operations in parallel and feature no, or only small,
caches to prevent or mitigate latencies of the memory: if a thread
stalls waiting for the memory, another thread takes over and keeps
the core busy. For multi-core CPUs switching between threads is more
expensive, therefore, CPUs are instead optimized to avoid long laten-
cies when accessing the memory with a deep cache hierarchy and
advanced architectural features, like long pipelines and out-of-order
execution, all of which are designed to keep each core busy.

Inspired by Herb Sutter “The Free Lunch is Over: 
A Fundamental Turn Towards 

Concurrency in Software”

Intel CPUs from 1970 to 2015
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Challenges of Parallel Programming

• Threads are the dominant parallel programming model for  
multi-core architectures 

• Concurrently executing threads can modify shared data, leading to: 
• race conditions 
• need for mutual execution and synchronisation 
• deadlocks 
• non-determinism 

• Writing correct parallel programs is extremely challenging
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Structured Parallel Programming 
aka: “Threads Considered Harmful”

• Dijkstra’s: “GO TO” Considered Harmful let to structured programming 
• Raise the level of abstraction by capturing common patterns: 

• E.g. use ‘if A then B else C’ instead of multiple goto statements 

• Murray Cole at Edinburgh invented Algorithmic Skeletons: 
• special higher-order functions which describe the 

“computational skeleton” of a parallel algorithm 
• E.g. use DC indivisible split join f 

instead of a custom divide-and-conquer implementation with threads 

• Algorithmic Skeletons are structured parallel programming and raise 
the level of abstraction over threads 

• No race conditions and no need for explicit synchronisation 
• No deadlocks 
• Deterministic
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Examples of Algorithmic Skeletons

map(f, xs)

x1 x2 x3 x4 x5 x6 x7 x8 f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(x8)⟼

reduce(+, 0, xs)
x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1+x2+x3+x4+x5+x6+x7+x8 

zip(+, xs, ys)

⟼
x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

x1+y1 x2+y2 x3+y3 x4+y4 x5+y5 x6+y6 x7+y7 x8+y8

• Algorithmic Skeletons have a parallel semantics 
• Every (parallel) execution order to compute the result is valid 
• Complexity of parallelism is hidden by the skeleton
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DSLs for Parallel Programming with 
Algorithmic Skeletons

• There exist numerous implementations of algorithmic skeletons libraries 
• The Edinburgh Skeleton Library (eSkel): C, MPI 
• FastFlow and Muesli: C++, multi-core CPU, MPI, GPU 
• SkePU, SkelCL: C++, GPU 
• Accelerate: Haskell, GPU 
• … 

• Libraries from industry implementing similar concepts: 
• Intel’s Threading Building Blocks (TBB) 
• Nvidia’s Thrust Library
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SkelCL by Example

dotProduct A B = reduce (+) 0 ⚬ zip (⨉) A B

#include <SkelCL/SkelCL.h>  
#include <SkelCL/Zip.h>  
#include <SkelCL/Reduce.h>  
#include <SkelCL/Vector.h> 

float dotProduct(const float* a, const float* b, int n) { 
  using namespace skelcl;  
  skelcl::init( 1_device.type(deviceType::ANY) ); 
 
  auto mult =    zip([](float x, float y) { return x*y; }); 
  auto sum  = reduce([](float x, float y) { return x+y; }, 0);  
 
  Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
  Vector<float> C = sum( mult(A, B) );  
 
  return C.front(); 
} 

52 high-level programming for multi-gpu systems

#include <SkelCL/SkelCL.h>

float dotProduct(
     const float* a,
     const float* b,
     int n) {
 using namespace skelcl;
 auto mult =
  zip( [](float x, float y)
       { return x*y; } );
  ...
}

#include <SkelCL/SkelCL.h>

float dotProduct(
     const float* a,
     const float* b,
     int n) {
 using namespace skelcl;
 auto mult =
   Zip<C<float>(C<float>,                    
                C<float>)>(
 "float func(float x,”
 “           float y)"
 " { return x*y; }"),
 "func");
  ...
}

skelclc
Compiler

SkelCL
library

001000110110100101101110011
000110110110001110101011001
000110010100100000001111000
101001101101011011001010110
110001000011010011000010111
101010011011010110110010101
101100010000110100110000101
110011010000011111000100100
010111000110110001100001011
000100110010101101100011110
110110110001110011011101000
011101001110011011010110110
010101101100011000110110110
000111010011001000110111101
110100011100000111001001101
111011001000111010101100011

Traditional
C++

Compiler

Step 1

Step 2

OpenCL

Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h> 

float dotProduct(const float* a, const float* b, int n) { 
  using namespace skelcl; 
  skelcl::init( 1_device.type(deviceType::ANY) ); 
 
  auto mult =    zip([](float x, float y) { return x*y; }); 
  auto sum  = reduce([](float x, float y) { return x+y; }, 0);  
 
  Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
  Vector<float> C = sum( mult(A, B) );  
 
  return C.front(); 
} 

❶
❶

❷

❸
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Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h> 

float dotProduct(const float* a, const float* b, int n) { 
  using namespace skelcl; 
  skelcl::init( 1_device.type(deviceType::ANY) ); 
 
  auto mult = Zip<Container<float>(Container<float>, 
                                   Container<float>)>( 
   Source(“float func(float x, float y) {return x*y;}”)); 
  auto sum  = Reduce<Vector<float>(Vector<float>)>( 
   Source(“float func(float x, float y) {return x+y;}”), “0”); 
 
  Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
  Vector<float> C = sum( mult(A, B) );  
 
  return C.front(); 
} 

❶

❸

❷

❷
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Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

❶

❷

❸

// reduce kernel

// zip kernel 
 
typedef float T0; typedef float T1; 
typedef float T2; 
 
kernel void ZIP(const global T0* left, 
                const global T1* right, 
                      global T2* out, 
                const int size) { 
  size_t id = get_global_id(0); 
  if (id < size) 
    out[id] = func(left[id], right[id]); 
}

Implementations of 
Algorithmic Skeletons 

in OpenCL
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SkelCL Evaluation — Performance

4.8 summary 113
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Figure 4.23: Relative lines of code for five application examples discussed in
this chapter comparing OpenCL code with SkelCL code.
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Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL performance close to native OpenCL code!
(Exception: dot product … we will address this later)
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SkelCL Evaluation — Productivity
4.8 summary 113
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Figure 4.23: Relative lines of code for five application examples discussed in
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Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL programs are significantly shorter! 
Common advantage of Domain Specific Languages!
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The Performance Portability Problem

• Many different types: CPUs, GPUs, … 

• Parallel programming is hard 

• Optimising is even harder 

• Problem: 
No portability of performance!

CPU

GPU

FPGA

Accelerator
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Case Study: Parallel Reduction in OpenCL

• Summing up all values of an array (== reduce skeleton) 
• Comparison of 7 implementations by Nvidia 
• Investigating complexity and efficiency of optimisations5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].
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OpenCL

• Parallel programming language for GPUs, multi-core CPUs 
• Application is executed on the host and offloads computations to devices 
• Computations on the device are expressed as kernels: 

• functions executed in parallel 
• Usual problems of deadlocks, race conditions, …

HostDevices
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OpenCL Programming Model
kernel void reduce0(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 

barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

• Multiple work-items (threads) execute the same kernel function  
• Work-items are organised for execution in work-groups

19

kernel void reduce0(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 

barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Unoptimised Implementation Parallel Reduction
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kernel void reduce1(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    // continuous work-items remain active 
    int index = 2 * s * tid; 
    if (index < get_local_size(0)) { 
      l_data[index] += l_data[index + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Avoid Divergent Branching
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kernel void reduce2(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  // process elements in different order 
  // requires commutativity 
  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Avoid Interleaved Addressing
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kernel void reduce3(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  // performs first addition during loading 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Increase Computational Intensity per Work-Item

kernel void reduce4(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  # pragma unroll 1 
  for (unsigned int s=get_local_size(0)/2; s>32; s>>=1) { 
    if (tid < s) { l_data[tid] += l_data[tid + s]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 

  // this is not portable OpenCL code! 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Avoid Synchronisation inside a Warp
kernel void reduce5(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Complete Loop Unrolling



kernel void reduce6(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  unsigned int gridSize = WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { l_data[tid] += g_idata[i]; 
                  if (i + WG_SIZE < n) 
                    l_data[tid] += g_idata[i+WG_SIZE]; 
                  i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Fully Optimised Implementation

• Optimising OpenCL is complex 
• Understanding of target hardware required 

• Program changes not obvious 
• Is it worth it? …

kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

kernel 
void reduce0(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; 
       s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

Case Study Conclusions

Unoptimized Implementation Fully Optimized Implementation
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(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results Nvidia

• … Yes! Optimising improves performance by a factor of 10! 
• Optimising is important, but …

28

• … unfortunately, optimisations in OpenCL are not portable! 

• Challenge: how to achieving portable performance?

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S
Ba

nd
w

id
th

 (G
B/

s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results AMD and Intel



29

Generating Performance Portable Code 
using Rewrite Rules

• Goal: automatic generation of Performance Portable code

134 code generation using patterns

High-level Expression

OpenCL Program

OpenCL Patterns

Algorithmic Patterns

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduction

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

Michel Steuwer, Christian Fensch, Sam Lindley, Christophe Dubach: 
“Generating performance portable code using rewrite rules: 
from high-level functional expressions to high-performance OpenCL code.” 
ICFP 2015

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1

5
�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1

5
�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation
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 Algorithmic Primitives

mapA,B,I : (A ! B) ! [A]I ! [B]I

zipA,B,I : [A]I ! [B]I ! [A ⇥ B]I

reduceA,I : ((A ⇥ A) ! A) ! A ! [A]I ! [A]1

splitA,I : (n : size) ! [A]n⇥I ! [[A]n]I

joinA,I,J : [[A]I ]J ! [A]I⇥J

iterateA,I,J : (n : size) ! ((m : size) ! [A]I⇥m ! [A]m) !
[A]In⇥J ! [A]J

reorderA,I : [A]I ! [A]I
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 High-Level Programs

asum = reduce (+) 0 � map abs

gemv = � mat xs ys ↵ �.map (+) (

zip (map (scal ↵ � dot xs) mat) (scal � ys) )

dot = � xs ys.(reduce (+) 0 � map (⇤)) (zip xs ys)

scal = � a.map (⇤a)

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1

5
�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

vecSum = reduce (+) 0

rewrite rules code generation

• Provably correct rewrite rules 
• Express algorithmic implementation choices
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 Algorithmic Rewrite Rules

map f � map g ! map (f � g)
Map fusion rule:

reduce f z ! reduce f z � reducePart f z

reducePart f z ! iterate n (reducePart f z)

reducePart f z ! reducePart f z � reorder

reducePart f z ! join � map (reducePart f z) � split n

Reduce rules:

map f ! join � map (map f) � split n

Split-join rule:
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 OpenCL Primitives

mapGlobal Work-items
mapWorkgroup

mapLocal
Work-groups

mapSeq

reduceSeq
Sequential implementations

Memory areastoLocal toGlobal,

mapVec

splitVec joinVec

,
, Vectorization

Primitive OpenCL concept

38

 OpenCL Rewrite Rules

map f ! mapWorkgroup f | mapLocal f | mapGlobal f | mapSeq f

Map rules:

mapLocal f ! toGlobal (mapLocal f)mapLocal f ! toLocal (mapLocal f)

Local/ global memory rules:

map f ! joinVec � map (mapVec f) � splitVec n
Vectorisation rule:

reduceSeq f z � mapSeq g ! reduceSeq (� (acc, x). f (acc, g x)) z
Fusion rule:

• Express low-level implementation and optimisation choices

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

39

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1

5
�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Example Parallel Reduction kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}
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1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128

14
�
� split blockSize

vecSum = reduce (+) 0

rewrite rules code generation
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 Pattern based OpenCL Code Generation

mapGlobal f xs
for (int g_id = get_global_id(0); g_id < n; 
     g_id += get_global_size(0)) { 
  output[g_id]  = f(xs[g_id]); 
}

reduceSeq f z xs
T acc = z; 
for (int i = 0; i < n; ++i) { 
  acc = f(acc, xs[i]); 
}

...
...

• Generate OpenCL code for each OpenCL primitive
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Rewrite rules define a space of 
possible implementations

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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Rewrite rules define a space of 
possible implementations

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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Rewrite rules define a space of 
possible implementations

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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Rewrite rules define a space of 
possible implementations

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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Rewrite rules define a space of 
possible implementations

• Fully automated search for good implementations possible

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
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Search Strategy
• For each node in the tree: 

• Apply one rule and randomly sample subtree 
• Repeat for node with best performing subtreereduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

apply rule

generate code 
execute 
measure performance
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Search Strategy
• For each node in the tree: 

• Apply one rule and randomly sample subtree 
• Repeat for node with best performing subtreereduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…
generate code 
execute 
measure performance

apply rule
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Search Strategy
• For each node in the tree: 

• Apply one rule and randomly sample subtree 
• Repeat for node with best performing subtreereduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

apply rule

generate code 
execute 
measure performance
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Search Strategy
• For each node in the tree: 

• Apply one rule and randomly sample subtree 
• Repeat for node with best performing subtreereduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

highest performance
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Search Strategy
• For each node in the tree: 

• Apply one rule and randomly sample subtree 
• Repeat for node with best performing subtree

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0  

reduce (+) 0 ○ reducePart (+) 0 ○ reorder  

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

repeat process
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Search Results 
Automatically Found Expressions

asumI : [float]I ! [float]1
asumI⇥J = reducefloat,I⇥J (+) 0 � map abs

6d! reducefloat,J (+) 0 � reducePartfloat,I (+) 0 J � map abs (1)
6d! reduce (+) 0 � join � map (reducePart (+) 0 1) � splitfloat,J I � map abs (2)
6c! reduce (+) 0 � join � map (reducePart (+) 0 1) � split I � join � map (map abs) � split I (3)
6e! reduce (+) 0 � join � map (reducePart (+) 0 1) � map (map abs) � split I (4)
6f! reduce (+) 0 � join � map (reducePart (+) 0 1 � map abs) � split I (5)
7a! reduce (+) 0 � join � map (reducePart (+) 0 1 � mapSeq abs) � split I (6)

6d&7b! reduce (+) 0 � join � map (reduceSeq (+) 0 � mapSeq abs) � split I (7)
6f! reduce (+) 0 � join � map (reduceSeq (�(acc, a).acc + (abs a)) 0) � split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

(a) Nvidia
GPU

�x.(reduceSeq � join � join � mapWorkgroup (

toGlobal
�
mapLocal (reduceSeq (�(a, b). a + (abs b)) 0)

�
� reorderStride 2048

) � split 128 � split 2048) x

(b) AMD
GPU

�x.(reduceSeq � join � joinVec � join � mapWorkgroup (

mapLocal (reduceSeq (mapVec 2 (�(a, b). a + (abs b))) 0 � reorderStride 2048

) � split 128 � splitVec 2 � split 4096) x

(c) Intel
CPU

�x.(reduceSeq � join � mapWorkgroup (join � joinVec � mapLocal (

reduceSeq (mapVec 4 (�(a, b). a + (abs b))) 0

) � splitVec 4 � split 32768) � split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 � map abs .
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Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-

asum = reduce (+) 0 � map abs

• Search on: Nvidia GTX 480 GPU, AMD Radeon HD 7970 GPU, Intel Xeon E5530  CPU
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• Overall search on each platform took < 1 hour 
• Average execution time per tested expression < 1/2 second

asumI : [float]I ! [float]1
asumI⇥J = reducefloat,I⇥J (+) 0 � map abs

6d! reducefloat,J (+) 0 � reducePartfloat,I (+) 0 J � map abs (1)
6d! reduce (+) 0 � join � map (reducePart (+) 0 1) � splitfloat,J I � map abs (2)
6c! reduce (+) 0 � join � map (reducePart (+) 0 1) � split I � join � map (map abs) � split I (3)
6e! reduce (+) 0 � join � map (reducePart (+) 0 1) � map (map abs) � split I (4)
6f! reduce (+) 0 � join � map (reducePart (+) 0 1 � map abs) � split I (5)
7a! reduce (+) 0 � join � map (reducePart (+) 0 1 � mapSeq abs) � split I (6)

6d&7b! reduce (+) 0 � join � map (reduceSeq (+) 0 � mapSeq abs) � split I (7)
6f! reduce (+) 0 � join � map (reduceSeq (�(acc, a).acc + (abs a)) 0) � split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

(a) Nvidia
GPU

�x.(reduceSeq � join � join � mapWorkgroup (

toGlobal
�
mapLocal (reduceSeq (�(a, b). a + (abs b)) 0)

�
� reorderStride 2048

) � split 128 � split 2048) x

(b) AMD
GPU

�x.(reduceSeq � join � joinVec � join � mapWorkgroup (

mapLocal (reduceSeq (mapVec 2 (�(a, b). a + (abs b))) 0 � reorderStride 2048

) � split 128 � splitVec 2 � split 4096) x

(c) Intel
CPU

�x.(reduceSeq � join � mapWorkgroup (join � joinVec � mapLocal (

reduceSeq (mapVec 4 (�(a, b). a + (abs b))) 0

) � splitVec 4 � split 32768) � split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 � map abs .

●
●●●

●●

●

●

●●●
●●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●
●
●

●

●

●

●

●

●●

●●

0 10 20 30 40 50 60 70

0
20

40
60

80
12

0

Number of evaluated expressions

Ab
so

lu
te

 p
er

fo
rm

an
ce

 in
 G

B/
s

(a) Nvidia GPU

●

●

●●

●●●
●
●

●
●●

●

●
●●

●

●●

●●

●

●●●●●●
●

●●

●
●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
50

10
0

15
0

20
0

Number of evaluated expressions

Ab
so

lu
te

 p
er

fo
rm

an
ce

 in
 G

B/
s

(b) AMD GPU

●●●●
●●
●

●

●●

●
●

●●

●●●

●

●●
●

●
●

●●●●●●

●●

●●●●

●

●
●●●

●●●●
●

●●●

●

●●

●
●●●

●●

●

●

●

●●
●●
●
●

●●●●

●
●

●●
●●
●

●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●●

●
●●

●

●

●
●
●●

●

●●

●

●

●
●

●

0 20 40 60 80 100 120

0
5

10
15

Number of evaluated expressions

Ab
so

lu
te

 p
er

fo
rm

an
ce

 in
 G

B/
s
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Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-
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Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS).

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. As can be seen, we achieve better
performance than clBLAS on most platforms and benchmarks. The
speedups are the highest for the CPU, with up to 20⇥ for the asum
benchmark with a small input size. The reason is that clBLAS was
written and tuned specifically for an AMD GPU which usually
exhibits a larger number of parallel processing units. As we saw in
Section 6, our systematically derived expression for this benchmark
is specifically tuned for the CPU by avoiding creating too much
parallelism, which is what gives us such large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK BlackScholes and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2⇥ speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Similar to the high performance libraries our approach results
in device-specific OpenCL code with implementation parameters
tuned for specific data sizes. In contrast, existing library approaches
are based on device-specific manually optimized implementations
whereas our approach systematically and automatically generates
these specialized versions.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary

library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5⇥ faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, they only generate
one implementation since they do not explore different template
compositions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, where our implementation does and, thus, achieves a
speedup of up to 1.78 on the larger input size.

This section has shown that our approach generates perfor-
mance portable code which is competitive with highly-tuned plat-
form specific implementations. Our systematic approach is generic
and generates optimized kernels for different devices or data
sizes. Therefore, our results suggest that high performance can
be achieved for different input sizes and for other benchmarks ex-
pressible with our primitives.

10. Related Work
Algorithmic Patterns Algorithmic patterns (or algorithmic skele-
tons [11]) have been around for more than two decades. Early
work already discussed algorithmic skeletons in the context of
performance portability [16]. Patterns are parts of popular frame-
works such as Map-Reduce [18] from Google. Current pattern-
based libraries for platforms ranging from cluster systems [37] to
GPUs [41] have been proposed with recent extension to irregular al-
gorithms [20]. Lee et al., [28] discuss how nested parallel patterns
can be mapped efficiently to GPUs. Compared to our approach,
most prior work relies on hardware-specific implementations to
achieve high performance. Conversely, we systematically generate
implementations using fine-grain OpenCL patterns combined with
our rule rewriting system.

Algebra of Programming Bird and Meertens, amongst others,
developed formalisms for algebraic reasoning about functional pro-
grams in the 1980s [5]. Our rewrite rules are in the same spirit and
many of our rules are similar to equational rules presented by Bird,
Meertens, and others. Skillicorn [38] described the application of
the algebraic approach for parallel computing. He argued that it
leads to architecture-independent parallel programming — which
we call performance portability in this paper. Our work can be seen
as an application of the algebraic approach to the generation of ef-
ficient code for modern parallel processors.

Functional Approaches for GPU Code Generation Accelerate
is a functional domain specific language embedded into Haskell to
support GPU acceleration [9, 30]. Obsidian [42] and Harlan [24]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [4] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [12], a new functional language
targeted at code generation for GPUs, and Copperhead [7], a data
parallel language embedded in Python. HiDP [46] is a hierarchical
data parallel language which maps computations to OpenCL. All
these projects rely on code analysis or hand-tuned versions of high-
level algorithmic patterns. In contrast, our approach uses rewrite

• Up to 20x speedup on fairly simple benchmarks vs. portable clBLAS implementation
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• Automatically generated code vs. expert written code 
• Competitive performance vs. highly optimised implementations 

• Up to 4.5x speedup for gemv on AMD
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Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.

rules and low-level hardware patterns to produce high-performance
code in a portable way.

Halide [35] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have been used
as a way to automate the optimization process of functional pro-
grams [26]. Recently, rewriting has been applied to HPC appli-
cations [32] as well, where the rewrite process uses user annota-
tions on imperative code. Similar to us, Spiral [34] uses rewrite
rules to optimize signal processing programs and was more recently
adapted to linear algebra [39]. In contrast, our rules and OpenCL
hardware patterns are expressed at a much finer level, allowing for
highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [43] or Liq-
uidMetal [19] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [29], OpenACC to
OpenCL [36], or hiCUDA [22] compile sequential C code for the
GPU. X10, a language for high performance computing, can also
be used to program GPUs [14]. However, this remains low-level
since the programmer has to express the same low-level operations
found in CUDA or OpenCL. Recently, researchers have looked
at generating efficient GPU code for loops using the polyhedral
framework [44]. Delite [6, 8], a system that enables the creation
of domain-specific languages, can also target multicore CPUs or
GPUs. Unfortunately, all these approaches do not provide full per-
formance portability since the mapping of the application assumes
a fixed platform and the optimizations and implementations are
targeted at a specific device.

Finally, Petabricks [3] takes a different approach by letting
the programmer specify different algorithms implementations. The
compiler and runtime choose the most suitable one based on an
adaptive mechanism and produces OpenCL code [33]. Compared
to our work, this technique relies on static analysis to optimize
code. Our code generator does not perform any analysis since
optimization happens at a higher level within our rewrite rules.

11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightfor-
ward given that all optimizations decisions are made with the rules
and no complex analysis is needed. We achieve performance on par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes or for molecular dynamics simulation.
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Summary

• DSLs simplify programming but also enable optimisation opportunities 
• Algorithmic skeletons allow for structured parallel programming 

• OpenCL code is not performance portable 
• Our code generation approach uses 

• functional high-level primitives, 
• OpenCL-specific low-level primitives, and 
• rewrite-rules to generate performance portable code. 

• Rewrite-rules define a space of possible implementations 
• Performance on par with specialised, highly-tuned code
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