

• Largest Informatics Department in the UK:
• > 500 academic and research staff 

 + PhD students
• Overall 6 Research Institutes 

2 particular relevant for the topic of the talk:

• ICSA — Institute for Computing Systems Architecture

• Compiler & Architecture

• Parallel Computing

• …

• LFCS — Laboratory for Foundations of Computer Science

• Programming Languages and Foundations

• Software Engineering
• …

Structured Parallel Programming  
From High-Level Functional Expressions  

to High-Performance OpenCL Code

http://homepages.inf.ed.ac.uk/msteuwer/

Michel Steuwer

4

The Problem(s)

• Parallel processors everywhere

• Many different types: CPUs, GPUs, …

• First Major Challenge: 
Parallel programming is hard. 
Optimising is even harder!

• Second Major Challenges: 
No portability of performance!

CPU

GPU

FPGA

Accelerator

5

Part I:  
Addressing the  

Programmability Challenge

6

Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

• Case Study: Parallel reduction in OpenCL

7

Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

• Case Study: Parallel reduction in OpenCL

Kernel function executed in parallel by multiple work-items

Work-items are identified by a unique global id

8

Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

• Case Study: Parallel reduction in OpenCL

Work-items are grouped into work-groups Local id within work-group

9

Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

• Case Study: Parallel reduction in OpenCL

Big, but slow global memory Small, but fast local memory

Memory barriers for consistency

10

Programming with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

• Case Study: Parallel reduction in OpenCL

Functionally correct implementations in OpenCL are hard!

• parallel container data types 
for unified memory management between CPU and (multiple) GPUs

• implicit memory transfers between CPU and GPU
• lazy copying minimizes data transfers

• recurring patterns of parallelism  
(a.k.a., algorithmic skeletons) for easily expressing parallel computation patterns;

• data distribution and redistribution 
mechanisms for transparent data transfers in multi-GPU systems.

11

The SkelCL Programming Model

Three high-level features added to OpenCL:

zip (⊕) [x1, …, xn] [y1, …, yn] = [x1 ⊕ y1, …, xn ⊕ yn]
reduce (⊕) ⊕id [x1, …, xn] = ⊕id ⊕ x1 ⊕ … ⊕ xn

CPU

GPUs0 1

CPU

GPUs0 1

CPU

GPUs0 1

single copy block

12

The SkelCL Library by Example

dotProduct A B = reduce (+) 0 ⚬ zip (⨉) A B

#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h>

float dotProduct(const float* a, const float* b, int n) {  
 using namespace skelcl; 
 skelcl::init(1_device.type(deviceType::ANY));  
 
 auto mult = zip([](float x, float y) { return x*y; });  
 auto sum = reduce([](float x, float y) { return x+y; }, 0);  
 
 Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
 Vector<float> C = sum(mult(A, B));  
 
 return C.front(); 
}

13

52 high-level programming for multi-gpu systems

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 zip([](float x, float y)
 { return x*y; });
 ...
}

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 Zip<C<float>(C<float>,
 C<float>)>(
 "float func(float x,”
 “ float y)"
 " { return x*y; }"),
 "func");
 ...
}

skelclc
Compiler

SkelCL
library

001000110110100101101110011
000110110110001110101011001
000110010100100000001111000
101001101101011011001010110
110001000011010011000010111
101010011011010110110010101
101100010000110100110000101
110011010000011111000100100
010111000110110001100001011
000100110010101101100011110
110110110001110011011101000
011101001110011011010110110
010101101100011000110110110
000111010011001000110111101
110100011100000111001001101
111011001000111010101100011

Traditional
C++

Compiler

Step 1

Step 2

OpenCL

Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

❶
❶

❷

❸

#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h>

float dotProduct(const float* a, const float* b, int n) { 
 using namespace skelcl; 
 skelcl::init(1_device.type(deviceType::ANY)); 
 
 auto mult = zip([](float x, float y) { return x*y; }); 
 auto sum = reduce([](float x, float y) { return x+y; }, 0);  
 
 Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
 Vector<float> C = sum(mult(A, B));  
 
 return C.front(); 
}

14

52 high-level programming for multi-gpu systems

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 zip([](float x, float y)
 { return x*y; });
 ...
}

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 Zip<C<float>(C<float>,
 C<float>)>(
 "float func(float x,”
 “ float y)"
 " { return x*y; }"),
 "func");
 ...
}

skelclc
Compiler

SkelCL
library

001000110110100101101110011
000110110110001110101011001
000110010100100000001111000
101001101101011011001010110
110001000011010011000010111
101010011011010110110010101
101100010000110100110000101
110011010000011111000100100
010111000110110001100001011
000100110010101101100011110
110110110001110011011101000
011101001110011011010110110
010101101100011000110110110
000111010011001000110111101
110100011100000111001001101
111011001000111010101100011

Traditional
C++

Compiler

Step 1

Step 2

OpenCL

Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

❶

❸

❷

❷
#include <SkelCL/SkelCL.h> 
#include <SkelCL/Zip.h> 
#include <SkelCL/Reduce.h> 
#include <SkelCL/Vector.h>

float dotProduct(const float* a, const float* b, int n) { 
 using namespace skelcl; 
 skelcl::init(1_device.type(deviceType::ANY)); 
 
 auto mult = Zip<Container<float>(Container<float>, 
 Container<float>)>( 
 Source(“float func(float x, float y) {return x*y;}”)); 
 auto sum = Reduce<Vector<float>(Vector<float>)>( 
 Source(“float func(float x, float y) {return x+y;}”), “0”); 
 
 Vector<float> A(a, a+n); Vector<float> B(b, b+n);  
 
 Vector<float> C = sum(mult(A, B));  
 
 return C.front(); 
}

15

52 high-level programming for multi-gpu systems

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 zip([](float x, float y)
 { return x*y; });
 ...
}

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 Zip<C<float>(C<float>,
 C<float>)>(
 "float func(float x,”
 “ float y)"
 " { return x*y; }"),
 "func");
 ...
}

skelclc
Compiler

SkelCL
library

001000110110100101101110011
000110110110001110101011001
000110010100100000001111000
101001101101011011001010110
110001000011010011000010111
101010011011010110110010101
101100010000110100110000101
110011010000011111000100100
010111000110110001100001011
000100110010101101100011110
110110110001110011011101000
011101001110011011010110110
010101101100011000110110110
000111010011001000110111101
110100011100000111001001101
111011001000111010101100011

Traditional
C++

Compiler

Step 1

Step 2

OpenCL

Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

From SkelCL to OpenCL

❶

❷

❸

// reduce kernel

// zip kernel 
 
typedef float T0; typedef float T1;
typedef float T2; 
 
kernel void ZIP(const global T0* left, 
 const global T1* right, 
 global T2* out, 
 const int size) { 
 size_t id = get_global_id(0); 
 if (id < size)  
 out[id] = func(left[id], right[id]); 
}

16

Two Novel Algorithmic Skeletons

3.2 the skelcl programming model 43

Figure 3.5: Visualization of the Gaussian blur stencil application.

into account. When neighboring elements are accesses at the bound-
aries of the container out-of-bound accesses occur. In these cases the
function h is called with the index causing the out-of-bound access
and returns a replacement value. We now formally define the stencil
skeleton. We start with the definition for vectors:

definition 3.7. Let ~x be a vector of size n with elements x
i

where 0 < i 6
n. Let f be an unary customizing function, d be a positive integer value, and
h be an out-of-bound handling function. The algorithmic skeleton stencil is
defined as follows:

stencil f d h [x
1

, x
2

, . . . , x
n

]
def
= [y

1

,y
2

, . . . ,y
n

]

where

y
i

= f [x
i-d

, . . . , x
i+d

] 8 i : 0 < i 6 n

and
x
j

= h j 8 j : -d < j 6 0 _n < j 6 n+ d.

The definition for matrices is similar:

definition 3.8. Let M be an n⇥m matrix with elements m
i,j where 0 <

i 6 n and 0 < j 6 m. Let f be an unary customizing function, d be
an positive integer value, and h be an out-of-bound handling function. The
algorithmic skeleton stencil is defined as follows:

stencil f d h

2

64
m

1,1 · · · m
1,m...
...

m
n,1 · · · m

n,m

3

75
def
=

2

64
n
1,1 · · · n

1,m...
...

n
n,1 · · · n

n,m

3

75

where

n
i,j = f

2

64
m

i-d,j-d

· · · m
i-d,j+d...

...
m

i+d,j-d

· · · m
i+d,j+d

3

75 8 i, j
0 < i 6 n,
0 < j 6 m

and

46 high-level programming for multi-gpu systems

A

B

C

BT

1

2

3

(a)

A

BT

C

1

2

3

(b)

Figure 3.7: The allpairs computation schema. (a): element c
2,3 3 is com-

puted by combining the second row of A 1 with the third row
of B 2 using the binary operator �. (b): the same situation where
the transpose of matrix B is shown.

Figure 3.7a illustrates this definition: the element c
2,3 of matrix C

marked as 3 is computed by combining the second row of A marked
as 1 with the third row of B marked as 2 using the binary opera-
tor �. Figure 3.7b shows the same computation with the transposed
matrix B. This visualization shows how the structure of matrix C is
determined by the two input matrices A and B.

Let us consider two example applications which can be expressed
by customizing the allpairs skeleton with a particular function �.

example 1 : The Manhattan distance (or L
1

distance) is a measure
of distance which is used in many applications. In general, it is de-
fined for two vectors, ~x and ~y, of equal length d, as follows:

ManDist ~x ~y =
dX

k=1

|x
k

- y
k

| (3.2)

In [31], the so-called Pairwise Manhattan Distance (PMD) is studied
as a fundamental operation in hierarchical clustering for data analy-
sis. PMD is obtained by computing the Manhattan distance for every
pair of rows of a given matrix. This computation for arbitrary matrix
A can be expressed using the allpairs skeleton customized with the
Manhattan distance defined in Equation (3.2):

PMD A = allpairs ManDist A A (3.3)

The n⇥ n matrix computed by the customized skeleton contains the
Manhattan distance for every pair of rows of the input n⇥ d matrix
A.

example 2 : Matrix multiplication is a basic linear algebra opera-
tion, which is a building block of many scientific applications. A n⇥d

Stencil Computations Allpairs Computations

A ⨉ B = allpairs dotProduct A BT

dotProduct a b = zipReduce (+) 0 (⨉) a b

gauss M = stencil f 1 0 M

where f is the weighted 
gaussian kernel

CPU

GPUs0 1

overlap distribution

Example: Gaussian blur

Multi-GPU support:

Example: 
Matrix Multiplication

Optimization for zipReduce patterns:

Multi-GPU support with 
block and copy distribution

17

SkelCL Evaluation — Performance

4.8 summary 113

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

0.00
0.15

0.50

1.00

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

Re
la

tiv
e

Li
ne

s
of

 C
od

e

CPU code GPU code

Figure 4.23: Relative lines of code for five application examples discussed in
this chapter comparing OpenCL code with SkelCL code.

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

physics simulation
(FDTD)

0.0

0.5

1.0

1.5

2.0

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

Re
la

tiv
e

Ru
nt

im
e

Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL performance close to native OpenCL code!
(Exception: dot product … wait for Part II)

18

SkelCL Evaluation — Productivity
4.8 summary 113

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

0.00
0.15

0.50

1.00

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

Re
la

tiv
e

Li
ne

s
of

 C
od

e

CPU code GPU code

Figure 4.23: Relative lines of code for five application examples discussed in
this chapter comparing OpenCL code with SkelCL code.

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

physics simulation
(FDTD)

0.0

0.5

1.0

1.5

2.0

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

Re
la

tiv
e

Ru
nt

im
e

Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

SkelCL programs are significantly shorter!

SkelCL is open source software and available from 
http://github.com/skelcl/skelcl

http://github.com/skelcl/skelcl

19

Part II:  
Addressing the  

Performance Portability Challenge

20

Case Study: Parallel Reduction in OpenCL

• Summing up all values of an array
• Comparison of 7 implementations by Nvidia
• Investigating complexity and efficiency of optimisations5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].

21

kernel void reduce0(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];

 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Unoptimised Implementation Parallel Reduction

22

kernel void reduce1(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 // continuous work-items remain active
 int index = 2 * s * tid;
 if (index < get_local_size(0)) {
 l_data[index] += l_data[index + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Avoid Divergent Branching

23

kernel void reduce2(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 // process elements in different order
 // requires commutativity
 for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
 if (tid < s) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Avoid Interleaved Addressing

24

kernel void reduce3(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 // performs first addition during loading
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
 if (tid < s) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Increase Computational Intensity per Work-Item

kernel void reduce4(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 # pragma unroll 1
 for (unsigned int s=get_local_size(0)/2; s>32; s>>=1) {
 if (tid < s) { l_data[tid] += l_data[tid + s]; }
 barrier(CLK_LOCAL_MEM_FENCE); }

 // this is not portable OpenCL code!
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Avoid Synchronisation inside a Warp

kernel void reduce5(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Complete Loop Unrolling

kernel void reduce6(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize = WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) { l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Fully Optimised Implementation

• Optimising OpenCL is complex
• Understanding of target hardware required

• Program changes not obvious
• Is it worth it? …

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

kernel
void reduce0(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=1;
 s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

Case Study Conclusions

Unoptimized Implementation Fully Optimized Implementation

29

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results Nvidia

• … Yes! Optimising improves performance by a factor of 10!
• Optimising is important, but …

30

• … unfortunately, optimisations in OpenCL are not portable!

• Challenge: how to achieving portable performance?

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results AMD and Intel

31

Generating Performance Portable Code 
using Rewrite Rules

• Ambition: automatic generation of Performance Portable code

134 code generation using patterns

High-level Expression

OpenCL Program

OpenCL Patterns

Algorithmic Patterns

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduction

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

Walkthrough kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

32

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

sum(vec) = reduce(+, 0, vec)

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

33

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

34

 Algorithmic Primitives (a.k.a. algorithmic skeletons)

map(f, x):

zip(x, y):

reduce(+, 0, x):

split(n, x):

join(x):

iterate(f, n, x):

reorder(σ, x):

x1 x2 x3 x4 x5 x6 x7 x8 f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(x8)⟼

⟼x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1+x2+x3+x4+x5+x6+x7+x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ xσ(1) xσ(2) xσ(3) xσ(4) xσ(5) xσ(6) xσ(7) xσ(8)

x1 x2 x3 x4 x5 x6 x7 x8f(… f()…)

(x1, y1)(x2, y2)(x3, y3)(x4, y4)(x5, y5)(x6, y6)(x7, y7)(x8, y8)

35

 High-Level Programs

scal(a, vec) = map(λ x ↦ x*a, vec)

asum(vec) = reduce(+, 0, map(abs, vec))

dotProduct(x, y) = reduce(+, 0, map(*, zip(x, y)))

gemv(mat, x, y, α, β) =
map(+, zip(

map(λ row ↦ scal(α, dotProduct(row, x)), mat),
scal(β, y)))

36

 High-Level Programs

A

B

C

A x B =
map(λ rowA ↦

map(λ colB ↦
dotProduct(rowA, colB)

, transpose(B))
, A)

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

37

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

38

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

• Provably correct rewrite rules
• Express algorithmic implementation choices

39

 Algorithmic Rewrite Rules

map f �map g ! map (f � g)
Map fusion rule:

reduce f z ! reduce f z � reducePart f z

reducePart f z ! iterate n (reducePart f z)

reducePart f z ! reducePart f z � reorder
reducePart f z ! join �map (reducePart f z) � split n

Reduce rules:

map f ! join �map (map f) � split n
Split-join rule:

40

 OpenCL Primitives

mapGlobal Work-items

mapWorkgroup

mapLocal

Work-groups

mapSeq

reduceSeq
Sequential implementations

Memory areastoLocal toGlobal,

mapVec
splitVec joinVec

,
, Vectorisation

Primitive OpenCL concept

41

 OpenCL Rewrite Rules

map f ! mapWorkgroup f | mapLocal f | mapGlobal f | mapSeq f

Map rules:

mapLocal f ! toGlobal (mapLocal f)mapLocal f ! toLocal (mapLocal f)

Local/ global memory rules:

map f ! joinVec �map (mapVec f) � splitVec n
Vectorisation rule:

reduceSeq f z �mapSeq g ! reduceSeq (� (acc, x). f (acc, g x)) z
Fusion rule:

• Express low-level implementation and optimisation choices

AC

B

=

*
*

*
*

*
*

+

=
42

} blockFactor 1 kernel void KERNEL(

2 const global float⇤ restrict A,

3 const global float⇤ restrict B,

4 global float⇤ C, int K, int M, int N)

5 {
6 float acc[blockFactor];

7

8 for (int glb id 1 = get global id(1) ;

9 glb id 1 < M / blockFactor;

10 glb id 1 += get global size(1)) {
11 for (int glb id 0 = get global id(0) ; glb id 0 < N;

12 glb id 0 += get global size(0)) {
13

14 for (int i = 0; i < K; i += 1)

15 float temp = B[i ⇤ N + glb id 0];

16 for (int j = 0; j < blockFactor; j+= 1)

17 acc[j] +=

18 A[blockFactor ⇤ glb id 1 ⇤ K + j ⇤ K + i]

19 ⇤ temp;

20

21 for (int j = 0; j < blockFactor; j += 1)

22 C[blockFactor ⇤ glb id 1 ⇤ N + j ⇤ N + glb id 0]

23 = acc[j];

24 }
25 }
26 }

 Optimisation Example: Register Blocking

43

• Optimisations are expressed as Macro Rules:
• Series of Rewrites applied to achieve an optimisation goal

registerBlocking =

Map(f)) Join() �Map(Map(f)) � Split(k)
Map(a 7! Map(b 7! f(a, b)))) Transpose() �Map(b 7! Map(a 7! f(a, b)))

Map(f � g)) Map(f) �Map(g)

Map(Reduce(f))) Transpose() �Reduce((acc, x) 7! Map(f) � Zip(acc, x))

Map(Map(f))) Transpose() �Map(Map(f)) � Transpose()
Transpose() � Transpose()) id

Reduce(f) �Map(g)) Reduce((acc, x) 7! f(acc, g(x)))

Map(f) �Map(g)) Map(f � g)

 Register Blocking as a Macro Rule

Map(
���!
rowA 7!

Map(
��!
colB 7!

Reduce(+) �Map(⇤)

$ Zip(
���!
rowA,

��!
colB)

) � Transpose() $B
) $A

44

 Register Blocking as a Series of Rewrites

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!pair) 7!
Map(x 7! x 0 + x 1 ⇤ pair. 1)
$ Zip(�!acc, pair. 0)

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

…

AC

B

=

*
*

*
*

*
*

+

=
45

} blockFactor

 Register Blocking Functionally Expressed

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!pair) 7!
Map(x 7! x 0 + x 1 ⇤ pair. 1)
$ Zip(�!acc, pair. 0)

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

46

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log

2

(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Walkthrough

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

47

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10

�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

vecSum = reduce (+) 0

rewrite rules code generation

Walkthrough

48

 Pattern based OpenCL Code Generation

mapGlobal f xs

for (int g_id = get_global_id(0); g_id < n;
 g_id += get_global_size(0)) {
 output[g_id] = f(xs[g_id]);
}

reduceSeq f z xs

T acc = z;
for (int i = 0; i < n; ++i) {
 acc = f(acc, xs[i]);
}

...
...

• Generate OpenCL code for each OpenCL primitive

49

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0

reduce (+) 0 ○ reducePart (+) 0 ○ reorder

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

Rewrite rules define a space of 
possible implementations

50

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0

reduce (+) 0 ○ reducePart (+) 0 ○ reorder

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

Rewrite rules define a space of 
possible implementations

51

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0

reduce (+) 0 ○ reducePart (+) 0 ○ reorder

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

Rewrite rules define a space of 
possible implementations

52

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0

reduce (+) 0 ○ reducePart (+) 0 ○ reorder

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

Rewrite rules define a space of 
possible implementations

53

reduce (+) 0

reduce (+) 0 ○ reducePart (+) 0

reduce (+) 0 ○ reducePart (+) 0 ○ reorder

reduce (+) 0 ○ join ○ map (reducePart (+) 0) ○ split n

reduce (+) 0 ○ iterate n (reducePart (+) 0)

…

…

…

Rewrite rules define a space of 
possible implementations

54

Exploration Strategy

Rewritten Expression

High-Level Expression

Macro Rules

1.2

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.4

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.1

T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1
A ⇤B =

Map(
���!
rowA 7!

Map(
��!
colB 7!

DotProduct(
���!
rowA,

��!
colB)

) � Transpose() $B
) $A

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

55

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

Exploration Strategy

56

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.2

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.4

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.6

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy

57

Rewritten Expression

High-Level Expression

Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

OpenCL Code

Code Generation

1 kernel mm amd opt(global float ⇤ A, B, C,
2 int K, M, N) {
3 local float tileA [512]; tileB [512];
4
5 private float acc 0; ...; acc 31;
6 private float blockOfB 0; ...; blockOfB 3;
7 private float blockOfA 0; ...; blockOfA 7;
8
9 int lid0 = local id(0) ; lid1 = local id(1) ;

10 int wid0 = group id(0); wid1 = group id(1);
11
12 for (int w1=wid1; w1<M/64; w1+=num grps(1)) {
13 for (int w0=wid0; w0<N/64; w0+=num grps(0)) {
14
15 acc 0 = 0.0f; ...; acc 31 = 0.0f;
16 for (int i=0; i<K/8; i++) {
17 vstore4(vload4(lid1⇤M/4+2⇤i⇤M+16⇤w1+lid0,A), 16⇤lid1+lid0, tileA);
18 vstore4(vload4(lid1⇤N/4+2⇤i⇤N+16⇤w0+lid0,B), 16⇤lid1+lid0, tileB);
19 barrier (...) ;
20
21 for (int j = 0; j<8; j++) {
22 blockOfA 0 = tileA[0+64⇤j+lid1⇤8]; ...; blockOfA 7 = tileA[7+64⇤j+lid1⇤8];
23 blockOfB 0 = tileB[0 +64⇤j+lid0]; ...; blockOfB 3 = tileB[48+64⇤j+lid0];
24
25 acc 0 += blockOfA 0 ⇤ blockOfB 0; ...; acc 28 += blockOfA 7 ⇤ blockOfB 0;
26 acc 1 += blockOfA 0 ⇤ blockOfB 1; ...; acc 29 += blockOfA 7 ⇤ blockOfB 1;
27 acc 2 += blockOfA 0 ⇤ blockOfB 2; ...; acc 30 += blockOfA 7 ⇤ blockOfB 2;
28 acc 3 += blockOfA 0 ⇤ blockOfB 3; ...; acc 31 += blockOfA 7 ⇤ blockOfB 3;
29 }
30 barrier (...) ;
31 }
32
33 C[0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 0; ...; C[0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 28;
34 C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 1; ...; C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 29;
35 C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 2; ...; C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 30;
36 C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 3; ...; C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 31;
37 } } }

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy

58

Heuristics for Matrix Multiplication

For Macro Rules:
• Nesting depth
• Distance of addition and

multiplication
• Number of times rules are applied

For Map to OpenCL:
• Fixed parallelism mapping
• Limited choices for mapping to 

local and global memory
• Follows best practice

For Parameter Mapping:
• Amount of memory used

• Global
• Local
• Registers

• Amount of parallelism
• Work-items
• Workgroup

59

Exploration in Numbers for 
Matrix Multiplication

... ...

... ...

... ...

Algorithmic
Exploration
OpenCL speci c
Exploration
Parameter
Exploration

Code Generation

Phases:

Figure 8: Exploration and compilation strategy

Memory Coalescing In section 3 we introduced the reorder
primitive, which allows us to specify an index function to
reorder an array. It is important to point out, that this reorder-
ing is not performed in the generated code by producing a
reordered array. Instead, the index computation required to
perform the reordering is delayed until the next primitive
accesses the input array. This is similar to lazy evaluation.
Therefore, a reorder primitive e↵ectively controls how the fol-
lowing primitive will access its input array.

We can take advantage of this design by applying the
following rewrite rule:

map(f)! reorder(stride�1) � map(f) � reorder(stride)

This rule rewrites an arbitrary map primitive to access its
input array in a strided fashion, enabling memory coalescing.
To ensure correctness, the reordering has to be undone,
by reordering the computed array with the inverse index
function as used before. In situation where each thread
processes multiple data elements in f, this transformation
ensures that these elements are accessed in a coalesced way.

4.5 Summary
In this section, we discussed examples of rewrite rules and
how they are used to implement complex optimizations. Fur-
thermore, we have seen in figure 7 how these optimizations
are combined to transform a simple program into a more op-
timized and specialized form. We eventually reach a program
from which our compiler generates OpenCL code similar to
the highly optimized code shown in figure 2 in the motiva-
tion section. Because the rewrite rules are well-defined and
proven to be correct, we can automate their application and
explore di↵erent optimizations for a single program, as we
will discuss in the next section.

5. Exploration and Compilation Strategy
This section describes how we compile a single high-level
program, as seen in figure 4, to OpenCL code by applying
rewrite rules automatically to explore di↵erent optimization
choices. Figure 8 gives an overview of our exploration and
compilation strategy. For matrix multiplication, we start from
a single high-level program to generate 46,000 OpenCL ker-
nel in four phases, which we discuss in the following: algo-
rithmic exploration, OpenCL specific exploration, parameter
exploration, and code generation.

5.1 Algorithmic Exploration Using Macro Rules
By design, each rewrite rule encodes a simple transformation.
As discussed in the previous section, more complex optimiza-
tions are achieved by composition.

We decided to guide the automatic rewrite process by
grouping rewrite rules together into macro rules which encode
bigger transformations. A macro rule aims to achieve a
particular optimization goal, such as apply tiling or blocking.
These macro rules are more flexible than the simple rules.
They try to apply di↵erent sequences of rewrites to achieve
their optimization goal, whereas a simple rewrite rule always
performs exactly the same transformation. For example, it
might be required to first rewrite the source expression into a
form where the rewrites performing the actual optimization
(e. g., tiling) can be applied.

To explore di↵erent algorithmic optimization choices, we
encoded 4 macro rules: 1D blocking, 2D blocking, tiling,
and a tiling optimization applied to the innermost loop.
Starting from the high-level matrix multiplication program
in figure 5, we apply these macro rules at all valid locations
in an arbitrary order leading to approximately 20,000 di↵erent
variations.

In order to reduce the search space, we discard programs
which are unlikely to deliver good performance on the GPU
using two heuristics. The first heuristic limits the depth of
the nesting in the program: some rules are always applicable,
however they are unlikely to improve performance after ex-
ploiting all levels and dimensions of the OpenCL thread hier-
archy. Using the first heuristic we decided to focus on around
one hundred rewritten programs. The second heuristic looks
at the distance between the addition and multiplication op-
erations. A small distance increases the likelihood of fusing
these two instructions together and avoiding intermediate
results. The number of expressions after applying the second
heuristic is reduced to 8, which are then passed to the next
phase.

5.2 OpenCL Specific Exploration
For each algorithmically rewritten program, we explore dif-
ferent mapping strategies to the GPU. We chose a fixed map-
ping strategy for the OpenCL thread hierarchy: the two outer-
most map primitives are turned into mapWorkgroup primitives
to perform these computations across a two-dimensional
grid of workgroups. The next two maps are rewritten into
mapLocal primitives to exploit the parallelism inside of a two-
dimensional workgroup. Finally, all further nested map prim-
itives will be executed sequentially. This strategy is common
in GPU programming.

For the memory hierarchy, we explored the usage of
local and private memory. We limited the number of copies
into each memory space to two, to avoid expressions which
perform many meaningless copies.

Starting from the 8 algorithmically rewritten programs, we
automatically generate 760 OpenCL specific programs with
a particular mapping decision encoded.

5.3 Parameter Exploration
Every OpenCL specific program contains parameters, e. g.,
the argument to split(n) controlling the size of a tile or
a block. We performed an automatic exploration of these
parameters by exhaustively picking all possible parameter
values in a reasonable range. Furthermore, we make sure that
the parameters picked will not generate an OpenCL kernel
requiring too much private, local, or global memory. We also
discard parameter combinations leading to an unreasonably
small or high number of workgroups or local threads.

For the 760 OpenCL specific programs we generate around
46,000 fully specialized programs.

7 2016/1/19

60

Exploration Space for Matrix Multiplication

Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

Only few OpenCL kernel with very good performance

61

Performance Evolution for Randomised Search

Even with a simple random search strategy one can expect to find  
a good performing kernel quickly

Performance Results Matrix Multiplication

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)
Generated MAGMA cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated MAGMA cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated MAGMA cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated MAGMA cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

62

Performance close or better than hand-tuned MAGMA library

Fermi Kepler Tahiti

X X

X X

X X

X X

XX

XX

0

50

100

0

50

100

1024
2

2048
2

1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K 1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K 1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K

The six specialized OpenCL kernels

R
el

at
ive

 p
er

fo
rm

an
ce

Executed w
ith input size

Executed on

63

Performance Portability Matrix Multiplication

Generated kernels are specialised for device and input size

Summary
• OpenCL code is hard to write and not performance portable
• Our approach uses

• portable and functional high-level primitives,

• OpenCL-specific low-level primitives, and

• rewrite-rules to generate high performance code.
• Rewrite-rules define a space of possible implementations
• Performance on par with specialised, highly-tuned code

Michel Steuwer 
michel.steuwer@ed.ac.uk

supported by:

More details in the ICFP 2015, GPGPU 2016, CASES 2016 papers available at: 
http://www.lift-project.org

Christophe Dubach 
christophe.dubach@ed.ac.uk

Thibaut Lutz 
Now with Nvidia

Toomas Remmelg 
toomas.remmelg@ed.ac.uk

mailto:michel.steuwer@ed.ac.uk
http://www.lift-project.org
mailto:christophe.dubach@ed.ac.uk
mailto:toomas.remmelg@ed.ac.uk

65

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0

500

1000

1500

2000

2500

3000

G
FL

O
PS

Rewrite−
 based

 CLBlast
+ CLTune clBLAS cuBLAS

Desktop GPU
(Nvidia GeForce GTX Titan Black)

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0

500

1000

1500

2000

2500

Rewrite−
 based

 CLBlast
+ CLTune clBLAS

Desktop GPU
(AMD Radeon HD 7970)

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0
2
4
6
8

10
12
14

Rewrite−
 based

 CLBlast
+ CLTune clBLAS Hand

optimized

Mobile GPU
(ARM Mali−T628 MP6)

Figure 7: Performance of matrix multiplication on two desktop GPUs and one mobile GPU for di↵erent input sizes. The
rewrite-based approach is the only one that achieves performance portability across desktop-class and mobile GPUs.

rewrite-based approach consistently achieves a large perfor-
mance improvement on the Mali GPU compared to CLBlast
(up to 1.7⇥ better). It is able to outperform any other imple-
mentation on Mali, especially for the third input size where
choosing a larger tile size increases the amount of work per
thread which is beneficial for this type of matrix shape.

The key for achieving high performance is the support
for architecture specific optimizations expressed as generic
rewrite rules and the ability to generate structurally-di↵erent
OpenCL kernels. In fact, when running the best OpenCL
kernel generated for Mali on the Nvidia GPU we obtain only
4% of the performance compared to running the kernel opti-
mized for this GPU (i.e., 25x slower) as seen in Table 2. Con-
versely, running the kernel optimized for the desktop class
AMD GPU on Mali results in only 11% of the performance
achieved with the best kernel we generate for the embedded
GPU (i.e., 9x slowdown). The Nvidia kernel does not even
run on Mali due to insu�cient hardware resources.

On the desktop GPUs our approach generates kernels ex-
ploiting the hierarchical organization of threads, local mem-
ory, tiling, and the fused multiply-add instruction, whereas
on the mobile GPU, a flat organization of threads, vector-
ization, and the dot built-in are crucial. These very di↵erent
OpenCL kernels are derived from a single high-level expres-
sion of matrix multiplication using rewrites.

7.4 Summary
This section has shown that a rewrite-based approach achieves

high performance on two desktop GPUs and the mobile Mali
GPU starting from a single portable high-level expression.The
comparison against the state-of-the-art auto-tuner, CLBlast,
shows that tuning a fixed parameter space does not achieve
performance portability across di↵erent classes of GPUs.

8. DISCUSSION
While this paper has focused on matrix multiplication, the

proposed approach is in fact more generic. The high-level
functional language introduced in section 4 has been delib-
erately designed to be more restrictive than general purpose
languages to enable e�cient parallel code generation. How-
ever, the language and the rewrite rules are fully extensible
and can be used for expressing a larger class of data-parallel
applications. For instance, we are currently working on ex-
tensions to support sparse linear algebra and stencil applica-
tions using the exact same methodology presented.

Run on
Nvidia AMD Mali

Tuned
for

Nvidia 100.0 % 27.5 % N/A
AMD 20.5 % 100.0 % 11.6 %
Mali 4.2 % 14.4 % 100.0 %

Table 2: Performance portability of kernels (10242 ⇤ 10242)

9. RELATED WORK
Auto-tuning approaches.

There exist a large number of auto-tuning projects in the
literature. We highlight two recent examples. OpenTuner [1]
is a recent generic framework for creating domain-specific
multi-objective auto-tuners. It supports a variety of search
techniques, as well as user-defined ones providing domain
specific knowledge. CLTune [18] is an auto-tuner for opti-
mizing OpenCL kernels. Using CLTune requires the kernel
to be written in a auto-tuning friendly style and might require
providing alternative implementations to achieve good per-
formance on a variety of devices. It supports a broad range
of strategies to e�ciently search the space of parameters.

Auto-tuning has been successfully applied to matrix multi-
plication. Previous work includes templates for di↵erent im-
plementations with auto-tuning targeting Nvidia GPUs [10].
Other work [13] has auto-tuned pre-written kernels.

As we have demonstrated in this paper, our rewrite-based
approach is more fundamental than classical parameter based
auto-tuning, as the rewrite rules allow to drastically change
the structure of generated OpenCL kernels achieving true
performance portability across desktop and mobile GPUs.

Mali GPU optimizations.
There is extensive literature on optimizations for desktop-

class GPUs but significantly less work on mobile GPUs. For
instance, prior work [7] has shown how manual optimiza-
tions for Mali GPUs can be used for HPC-style workloads.
The paper [15] discusses code generation for an mobile GPU
from a domain specific language for image processing.

In contrast, this paper presents a novel technique based
on rewrite rules to automatically generate optimized code for
data parallel applications targeting the Mali GPU.

Polyhedral compilation [3] has been applied to optimize
OpenCL code multiple GPUs, including Mali. Unfortunately,
the Mali GPU was excluded from the matrix multiplication
benchmark. Polyhedral compilation requires complex static

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0

500

1000

1500

2000

2500

3000

G
FL

O
PS

Rewrite−
 based

 CLBlast
+ CLTune clBLAS cuBLAS

Desktop GPU
(Nvidia GeForce GTX Titan Black)

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0

500

1000

1500

2000

2500

Rewrite−
 based

 CLBlast
+ CLTune clBLAS

Desktop GPU
(AMD Radeon HD 7970)

 512x512
* 512x512

 1024x1024
* 1024x1024

 2048x512
* 512x2048

 512x2048
* 2048x512

0
2
4
6
8

10
12
14

Rewrite−
 based

 CLBlast
+ CLTune clBLAS Hand

optimized

Mobile GPU
(ARM Mali−T628 MP6)

Figure 7: Performance of matrix multiplication on two desktop GPUs and one mobile GPU for di↵erent input sizes. The
rewrite-based approach is the only one that achieves performance portability across desktop-class and mobile GPUs.

rewrite-based approach consistently achieves a large perfor-
mance improvement on the Mali GPU compared to CLBlast
(up to 1.7⇥ better). It is able to outperform any other imple-
mentation on Mali, especially for the third input size where
choosing a larger tile size increases the amount of work per
thread which is beneficial for this type of matrix shape.

The key for achieving high performance is the support
for architecture specific optimizations expressed as generic
rewrite rules and the ability to generate structurally-di↵erent
OpenCL kernels. In fact, when running the best OpenCL
kernel generated for Mali on the Nvidia GPU we obtain only
4% of the performance compared to running the kernel opti-
mized for this GPU (i.e., 25x slower) as seen in Table 2. Con-
versely, running the kernel optimized for the desktop class
AMD GPU on Mali results in only 11% of the performance
achieved with the best kernel we generate for the embedded
GPU (i.e., 9x slowdown). The Nvidia kernel does not even
run on Mali due to insu�cient hardware resources.

On the desktop GPUs our approach generates kernels ex-
ploiting the hierarchical organization of threads, local mem-
ory, tiling, and the fused multiply-add instruction, whereas
on the mobile GPU, a flat organization of threads, vector-
ization, and the dot built-in are crucial. These very di↵erent
OpenCL kernels are derived from a single high-level expres-
sion of matrix multiplication using rewrites.

7.4 Summary
This section has shown that a rewrite-based approach achieves

high performance on two desktop GPUs and the mobile Mali
GPU starting from a single portable high-level expression.The
comparison against the state-of-the-art auto-tuner, CLBlast,
shows that tuning a fixed parameter space does not achieve
performance portability across di↵erent classes of GPUs.

8. DISCUSSION
While this paper has focused on matrix multiplication, the

proposed approach is in fact more generic. The high-level
functional language introduced in section 4 has been delib-
erately designed to be more restrictive than general purpose
languages to enable e�cient parallel code generation. How-
ever, the language and the rewrite rules are fully extensible
and can be used for expressing a larger class of data-parallel
applications. For instance, we are currently working on ex-
tensions to support sparse linear algebra and stencil applica-
tions using the exact same methodology presented.

Run on
Nvidia AMD Mali

Tuned
for

Nvidia 100.0 % 27.5 % N/A
AMD 20.5 % 100.0 % 11.6 %
Mali 4.2 % 14.4 % 100.0 %

Table 2: Performance portability of kernels (10242 ⇤ 10242)

9. RELATED WORK
Auto-tuning approaches.

There exist a large number of auto-tuning projects in the
literature. We highlight two recent examples. OpenTuner [1]
is a recent generic framework for creating domain-specific
multi-objective auto-tuners. It supports a variety of search
techniques, as well as user-defined ones providing domain
specific knowledge. CLTune [18] is an auto-tuner for opti-
mizing OpenCL kernels. Using CLTune requires the kernel
to be written in a auto-tuning friendly style and might require
providing alternative implementations to achieve good per-
formance on a variety of devices. It supports a broad range
of strategies to e�ciently search the space of parameters.

Auto-tuning has been successfully applied to matrix multi-
plication. Previous work includes templates for di↵erent im-
plementations with auto-tuning targeting Nvidia GPUs [10].
Other work [13] has auto-tuned pre-written kernels.

As we have demonstrated in this paper, our rewrite-based
approach is more fundamental than classical parameter based
auto-tuning, as the rewrite rules allow to drastically change
the structure of generated OpenCL kernels achieving true
performance portability across desktop and mobile GPUs.

Mali GPU optimizations.
There is extensive literature on optimizations for desktop-

class GPUs but significantly less work on mobile GPUs. For
instance, prior work [7] has shown how manual optimiza-
tions for Mali GPUs can be used for HPC-style workloads.
The paper [15] discusses code generation for an mobile GPU
from a domain specific language for image processing.

In contrast, this paper presents a novel technique based
on rewrite rules to automatically generate optimized code for
data parallel applications targeting the Mali GPU.

Polyhedral compilation [3] has been applied to optimize
OpenCL code multiple GPUs, including Mali. Unfortunately,
the Mali GPU was excluded from the matrix multiplication
benchmark. Polyhedral compilation requires complex static

More Results Matrix Multiplication

66

Performance Results more Benchmarks 
vs. Hardware-Specific Implementations

• Automatically generated code vs. expert written code
• Competitive performance vs. highly optimised implementations

• Up to 4.5x speedup for gemv on AMD

0

1

2

small large small large small large small large

scal asum dot gemv

S
p
e
e
d
u
p
 o

ve
r

C
U

B
L
A

S

CUBLAS Generated

(a) Nvidia GPU

0

1

2
4.5 3.1

small large small large small large small large

scal asum dot gemv

S
p
e
e
d
u
p
 o

ve
r

cl
B

L
A

S

clBLAS Generated

(b) AMD GPU

0

1

2

small large small large small large small large

scal asum dot gemv

S
p
e
e
d
u
p
 o

ve
r

M
K

L

MKL Generated

(c) Intel CPU

Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.

rules and low-level hardware patterns to produce high-performance
code in a portable way.

Halide [35] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have been used
as a way to automate the optimization process of functional pro-
grams [26]. Recently, rewriting has been applied to HPC appli-
cations [32] as well, where the rewrite process uses user annota-
tions on imperative code. Similar to us, Spiral [34] uses rewrite
rules to optimize signal processing programs and was more recently
adapted to linear algebra [39]. In contrast, our rules and OpenCL
hardware patterns are expressed at a much finer level, allowing for
highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [43] or Liq-
uidMetal [19] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [29], OpenACC to
OpenCL [36], or hiCUDA [22] compile sequential C code for the
GPU. X10, a language for high performance computing, can also
be used to program GPUs [14]. However, this remains low-level
since the programmer has to express the same low-level operations
found in CUDA or OpenCL. Recently, researchers have looked
at generating efficient GPU code for loops using the polyhedral
framework [44]. Delite [6, 8], a system that enables the creation
of domain-specific languages, can also target multicore CPUs or
GPUs. Unfortunately, all these approaches do not provide full per-
formance portability since the mapping of the application assumes
a fixed platform and the optimizations and implementations are
targeted at a specific device.

Finally, Petabricks [3] takes a different approach by letting
the programmer specify different algorithms implementations. The
compiler and runtime choose the most suitable one based on an
adaptive mechanism and produces OpenCL code [33]. Compared
to our work, this technique relies on static analysis to optimize
code. Our code generator does not perform any analysis since
optimization happens at a higher level within our rewrite rules.

11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightfor-
ward given that all optimizations decisions are made with the rules
and no complex analysis is needed. We achieve performance on par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes or for molecular dynamics simulation.

Acknowledgments
This work was supported by a HiPEAC collaboration grant, EPSRC
(grant number EP/K034413/1), the Royal Academy of Engineer-
ing, Google and Oracle. We are grateful to the anonymous review-
ers who helped to substantially improve the quality of the paper.
We would like to thank Sergei Gorlatch for his active support of the
HiPEAC collaboration and the following people for their involve-
ment in the discussions on formalization: Robert Atkey, James Ch-
eney, Stefan Fehrenbach, Adam Harries, Shayan Najd, and Philip
Wadler.

References
[1] AMD Accelerated Parallel Processing OpenCL Programming Guide.

AMD, 2013.

[2] C. Andreetta, V. Begot, J. Berthold, M. Elsman, T. Henriksen, M.-
B. Nordfang, and C. Oancea. A financial benchmark for GPGPU
compilation. Technical Report no 2015/02, University of Copenhagen,
2015. Extended version of CPC’15 paper.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. PetaBricks: a language and compiler for algo-
rithmic choice. PLDI. ACM, 2009.

67

Performance Results more Benchmarks 
vs. Portable Implementation

0

1

2

3

4
20 8.5 4.5

small large small large small large small large
scal asum dot gemv Black

Scholes MD

S
p

e
e

d
u

p

Nvidia GPU AMD GPU Intel CPU

Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS).

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. As can be seen, we achieve better
performance than clBLAS on most platforms and benchmarks. The
speedups are the highest for the CPU, with up to 20⇥ for the asum
benchmark with a small input size. The reason is that clBLAS was
written and tuned specifically for an AMD GPU which usually
exhibits a larger number of parallel processing units. As we saw in
Section 6, our systematically derived expression for this benchmark
is specifically tuned for the CPU by avoiding creating too much
parallelism, which is what gives us such large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK BlackScholes and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2⇥ speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Similar to the high performance libraries our approach results
in device-specific OpenCL code with implementation parameters
tuned for specific data sizes. In contrast, existing library approaches
are based on device-specific manually optimized implementations
whereas our approach systematically and automatically generates
these specialized versions.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary

library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5⇥ faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, they only generate
one implementation since they do not explore different template
compositions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, where our implementation does and, thus, achieves a
speedup of up to 1.78 on the larger input size.

This section has shown that our approach generates perfor-
mance portable code which is competitive with highly-tuned plat-
form specific implementations. Our systematic approach is generic
and generates optimized kernels for different devices or data
sizes. Therefore, our results suggest that high performance can
be achieved for different input sizes and for other benchmarks ex-
pressible with our primitives.

10. Related Work
Algorithmic Patterns Algorithmic patterns (or algorithmic skele-
tons [11]) have been around for more than two decades. Early
work already discussed algorithmic skeletons in the context of
performance portability [16]. Patterns are parts of popular frame-
works such as Map-Reduce [18] from Google. Current pattern-
based libraries for platforms ranging from cluster systems [37] to
GPUs [41] have been proposed with recent extension to irregular al-
gorithms [20]. Lee et al., [28] discuss how nested parallel patterns
can be mapped efficiently to GPUs. Compared to our approach,
most prior work relies on hardware-specific implementations to
achieve high performance. Conversely, we systematically generate
implementations using fine-grain OpenCL patterns combined with
our rule rewriting system.

Algebra of Programming Bird and Meertens, amongst others,
developed formalisms for algebraic reasoning about functional pro-
grams in the 1980s [5]. Our rewrite rules are in the same spirit and
many of our rules are similar to equational rules presented by Bird,
Meertens, and others. Skillicorn [38] described the application of
the algebraic approach for parallel computing. He argued that it
leads to architecture-independent parallel programming — which
we call performance portability in this paper. Our work can be seen
as an application of the algebraic approach to the generation of ef-
ficient code for modern parallel processors.

Functional Approaches for GPU Code Generation Accelerate
is a functional domain specific language embedded into Haskell to
support GPU acceleration [9, 30]. Obsidian [42] and Harlan [24]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [4] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [12], a new functional language
targeted at code generation for GPUs, and Copperhead [7], a data
parallel language embedded in Python. HiDP [46] is a hierarchical
data parallel language which maps computations to OpenCL. All
these projects rely on code analysis or hand-tuned versions of high-
level algorithmic patterns. In contrast, our approach uses rewrite

• Up to 20x speedup on fairly simple benchmarks vs. portable clBLAS implementation

