
Towards Composable  
GPU Programming:

Programming GPUs with Eager Actions and Lazy Views

Michael Haidl · Michel Steuwer · Hendrik Dirks 
Tim Humernbrum · Sergei Gorlatch

The State of GPU Programming

• Low-Level GPU programming with CUDA / OpenCL
is widely considered too difficult

• Higher level approaches improve programmability

• Thrust and others allow programmers to write
programs by customising and composing patterns

2

Dot Product Example in Thrust

Dot Product expressed as special case  
No composition of universal patterns

Our LLVM-based, C++-to-GPU code generator uses
multi-staging optimizations to embed values only known
at CPU runtime into the kernel code which is then JIT com-
piled and executed on the GPU. This allows to specialize
the kernel code for the particular input size and particular
number of threads executing the kernel.

Our experimental evaluation demonstrates that compos-
able code written using our approach achieves the same
performance as low-level monolithic implementations in
CUDA and outperforms composable code written using
Thrust.

This paper makes the following main contributions:

• Enabling composable GPU programming by enriching
the range-v3 library with GPU-enabled algorithms;

• Giving programmers full control and better predictability
about kernel fusion by choosing between eager actions
and algorithms and lazy views;

• Implementing JIT code generation which takes advan-
tage of multi-staging to optimize GPU code based on val-
ues known at runtime of the CPU program.

The remainder of the paper is organized as follows: In
Section 2 we recap related work on GPU programming and
we motivate the necessity for writing efficient composable
GPU code. Section 3 introduces our API with ranges and
GPU-enabled algorithms. Section 4 introduces actions and
views and show how these give the programmer precise con-
trol over kernel fusion. Section 5 explains our C++-to-GPU
code generation process and our enhanced compiler opti-
mizations (in particular multi-staging). Section 6 evaluates
our approach, and Section 7 concludes the paper.

2. Background and Related Work
GPU programming using the current low-level programming
models such as OpenCL and CUDA is challenging. Special
kernel functions are executed in parallel on the GPU by ex-
plicitly specifying the number of executing threads running
in parallel. OpenCL and CUDA clearly separate the host pro-
gram running on the CPU from the GPU program (kernel)
which is written in a subset of the C/C++ programming lan-
guage with GPU-specific extensions.

1 __global__ void partialDotProduct(float* a,
2 float* b,
3 float* res){
4 extern __shared__ float* tmp;
5 int lid = threadIdx.x;
6 int gid = lid + blockIdx.x * blockDim.x;
7 tmp[lid] = a[gid] * b[gid];
8 __syncthreads ();
9 for (int i = get_local_size (0)/2; i>0; i*=2) {

10 if (lid < i) tmp[lid] += tmp[lid + i];
11 __syncthreads (); }
12 if (lid == 0) res[blockIdx.x] = tmp[lid];}

Listing 1: GPU Kernel in CUDA computing a dot product.

Listing 1 shows a simple, unoptimized CUDA kernel,
adopted from the Nvidia toolkit [14] that computes a dot
product of vectors a and b. In line 7 each thread multiplies
the corresponding elements of the two vectors with each
other. A tree-based reduction is performed by a group of
threads (called block in CUDA): in each iteration of the loop
in line 9 the number of active threads which add up two el-
ements (line 10) is halved. Finally, one thread of each block
writes the computed result back into memory (line 12). The
barriers in lines 8 and 11 ensure a consistent view of the
memory across all threads. As synchronization across blocks
is not possible, the summation of all results computed by the
blocks cannot be performed in this kernel and must either
be done on the host or in another CUDA kernel. The imple-
mentation in Listing 1 is not very efficient on modern GPUs
and can be significantly optimized [9] which makes the code
significantly more complex. But even the simple dot product
code is not trivial: it works in a hierarchical CUDA address
space (global and shared memory) and requires barrier syn-
chronization, making it prone to subtle bugs like deadlocks
and race conditions.

One popular way to overcome this low-level program-
ming style is to provide reusable generic parallel patterns,
also known as algorithmic skeletons. Thrust [2], Bolt [1],
Accelerate [11], and SkelCL [19] follow this approach.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 return thrust :: inner_product(
6 d_a.begin(), d_a.end(), d_b.begin(), 0.0f); }

Listing 2: Optimal dot product implementation in Thrust
using a domain-specific library function.

Listing 2 shows the implementation of the dot product
in Thrust using a single library call. This implementation is
straightforward and relies on an optimized GPU pattern writ-
ten by experts and tuned for performance. Unfortunately, it
uses a very domain-specific library function (inner_product)
which limits its applicability for other applications.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 thrust :: device_vector <float > tmp(a.size());
6 thrust :: transform(d_a.begin(), d_a.end(),
7 d_b.begin(), tmp.begin (),
8 thrust ::multiplies <floal >());
9 return thurst :: reduce(tmp.begin (), tmp.end());}

Listing 3: Generic and composable, but non-optimal Thrust
implemenation of dot product

In Listing 3, the dot product is implemented in Thrust us-
ing two smaller but more universal patterns: transform and
reduce. However, here we pay a performance penalty for

2 2016/12/16

3

Specialized Pattern

Composed Dot Product in Thrust

In Thrust: 
Two Patterns !== Two Kernels !-> Bad Performance

Our LLVM-based, C++-to-GPU code generator uses
multi-staging optimizations to embed values only known
at CPU runtime into the kernel code which is then JIT com-
piled and executed on the GPU. This allows to specialize
the kernel code for the particular input size and particular
number of threads executing the kernel.

Our experimental evaluation demonstrates that compos-
able code written using our approach achieves the same
performance as low-level monolithic implementations in
CUDA and outperforms composable code written using
Thrust.

This paper makes the following main contributions:

• Enabling composable GPU programming by enriching
the range-v3 library with GPU-enabled algorithms;

• Giving programmers full control and better predictability
about kernel fusion by choosing between eager actions
and algorithms and lazy views;

• Implementing JIT code generation which takes advan-
tage of multi-staging to optimize GPU code based on val-
ues known at runtime of the CPU program.

The remainder of the paper is organized as follows: In
Section 2 we recap related work on GPU programming and
we motivate the necessity for writing efficient composable
GPU code. Section 3 introduces our API with ranges and
GPU-enabled algorithms. Section 4 introduces actions and
views and show how these give the programmer precise con-
trol over kernel fusion. Section 5 explains our C++-to-GPU
code generation process and our enhanced compiler opti-
mizations (in particular multi-staging). Section 6 evaluates
our approach, and Section 7 concludes the paper.

2. Background and Related Work
GPU programming using the current low-level programming
models such as OpenCL and CUDA is challenging. Special
kernel functions are executed in parallel on the GPU by ex-
plicitly specifying the number of executing threads running
in parallel. OpenCL and CUDA clearly separate the host pro-
gram running on the CPU from the GPU program (kernel)
which is written in a subset of the C/C++ programming lan-
guage with GPU-specific extensions.

1 __global__ void partialDotProduct(float* a,
2 float* b,
3 float* res){
4 extern __shared__ float* tmp;
5 int lid = threadIdx.x;
6 int gid = lid + blockIdx.x * blockDim.x;
7 tmp[lid] = a[gid] * b[gid];
8 __syncthreads ();
9 for (int i = get_local_size (0)/2; i>0; i*=2) {

10 if (lid < i) tmp[lid] += tmp[lid + i];
11 __syncthreads (); }
12 if (lid == 0) res[blockIdx.x] = tmp[lid];}

Listing 1: GPU Kernel in CUDA computing a dot product.

Listing 1 shows a simple, unoptimized CUDA kernel,
adopted from the Nvidia toolkit [14] that computes a dot
product of vectors a and b. In line 7 each thread multiplies
the corresponding elements of the two vectors with each
other. A tree-based reduction is performed by a group of
threads (called block in CUDA): in each iteration of the loop
in line 9 the number of active threads which add up two el-
ements (line 10) is halved. Finally, one thread of each block
writes the computed result back into memory (line 12). The
barriers in lines 8 and 11 ensure a consistent view of the
memory across all threads. As synchronization across blocks
is not possible, the summation of all results computed by the
blocks cannot be performed in this kernel and must either
be done on the host or in another CUDA kernel. The imple-
mentation in Listing 1 is not very efficient on modern GPUs
and can be significantly optimized [9] which makes the code
significantly more complex. But even the simple dot product
code is not trivial: it works in a hierarchical CUDA address
space (global and shared memory) and requires barrier syn-
chronization, making it prone to subtle bugs like deadlocks
and race conditions.

One popular way to overcome this low-level program-
ming style is to provide reusable generic parallel patterns,
also known as algorithmic skeletons. Thrust [2], Bolt [1],
Accelerate [11], and SkelCL [19] follow this approach.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 return thrust :: inner_product(
6 d_a.begin(), d_a.end(), d_b.begin(), 0.0f); }

Listing 2: Optimal dot product implementation in Thrust
using a domain-specific library function.

Listing 2 shows the implementation of the dot product
in Thrust using a single library call. This implementation is
straightforward and relies on an optimized GPU pattern writ-
ten by experts and tuned for performance. Unfortunately, it
uses a very domain-specific library function (inner_product)
which limits its applicability for other applications.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 thrust :: device_vector <float > tmp(a.size());
6 thrust :: transform(d_a.begin (), d_a.end(),
7 d_b.begin(), tmp.begin (),
8 thrust :: multiplies <floal >());
9 return thurst :: reduce(tmp.begin (), tmp.end());}

Listing 3: Generic and composable, but non-optimal Thrust
implemenation of dot product

In Listing 3, the dot product is implemented in Thrust us-
ing two smaller but more universal patterns: transform and
reduce. However, here we pay a performance penalty for

2 2016/12/164

Universal patterns

Intermediate vector required

Iterators prevent composable programming style

Composability in the Range-based STL*

• Replacing pairs of Iterators with Ranges allows for a
composable style:

• We can even write:

5

pattern composition: two kernels are launched and a tem-
porary vector tmp is required to store the intermediate re-
sult of transform. This loss of efficiency is the reason why
Thrust offers the specific inner_product function: high per-
formance is not achievable by composing universal patterns.

In the next sections, we present our approach where
higher-level programs can be expressed as a composition
of universal patterns without a performance loss.

3. Programming with Ranges and
GPU-Enabled Algorithms

Our suggested composable API for GPUs is inspired by
the Standard Template Library (STL) which is widely used
in C++ programming. The STL consists of three main
components: 1) containers: collection data types such as
std::vector or std::set, 2) algorithms: reusable operations
on containers such as std::accumulate or std::sort, 3) it-
erators: glue containers with algorithms, such that the same
algorithm is reusable for different containers. This library
design has proven to be highly flexible and is one of the
main reasons of the STL’s success.

3.1 From Iterators to Ranges
The existing STL with iterators does not allow to compose
algorithms easily. Listing 4 shows the dot product example
using two STL algorithms with iterators: transform to ap-
ply the binary mult function to the corresponding elements
of the input containers a and b, and accumulate to sum up
all the values of a sequence. These two algorithms do not
compose nicely, because transform returns only a single it-
erator, while accumulate expects a pair of iterators as its first
two arguments describing the start and end of the input con-
tainer. Furthermore, a temporary vector tmp is required, as
the transform algorithm has to write the computed interme-
diate result into a container. The algorithm cannot allocate
this temporary container itself, because the iterator abstrac-
tion hides the type of container (in this case a vector) from
the algorithm.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto x, auto y){return x * y;};
4
5 vector <float > tmp(a.size());
6 transform(a.begin (), a.end(), b.begin (),
7 tmp.begin (), mult);
8 return accumulate(tmp.begin (), tmp.end() ,0.0f);
9 }

Listing 4: Dot product implementation using iterators.

Listing 5 shows how we can overcome these composability
problems using the recent range-v3 library [13] that replaces
iterators with ranges. The accumulate call now takes its input
as the single first argument compared to two separate itera-
tors in Listing 4. Ranges are composable, because they carry
information about the start and end points of a container, i.e.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5
6 return
7 accumulate(
8 view:: transform(view::zip(a,b),mult) ,0.0f); }

Listing 5: Dot product implementation using composable
ranges.

ranges combine the information scattered across the first two
arguments of accumulate into a single value. This change,
together with the introduction of views — lazily computed
ranges, which we will discuss in more detail in Section 4
— allows to write the dot product example in a concise and
composable style in Listing 5. Here the zip function creates
pairs of elements from vectors a and b which are then mul-
tiplied and summed up. Composability is a central feature
of the range-v3 library: it allows and encourages developers
to use the pipe symbol | to denote composition (similar to
the bash shell). Therefore, we can also rewrite lines 7–8 of
Listing 5 as explicit composition of patterns:

view::zip(a,b) | view::transform(mult) | accumulate(0.0f)

The idea of our approach is to bring this range-based ab-
straction to GPU programming.

3.2 GPU-enabled containers and algorithms
We extend the range-v3 library with a GPU-enabled con-
tainer and GPU-enabled algorithms to allow programmers
to write GPU applications in a composable way.

For storing data on the GPU we introduce the gpu::vector

container which provides a range-based interface to access
its elements. We use type traits to ensure statically that the
GPU-enabled algorithms only operate on data stored in a
gpu::vector. Data is transferred to the GPU by copying data
into a gpu::vector, e.g., by using the gpu::copy function as
in Listing 6, and transferred back by copying such a con-
tainer into a regular STL vector.

Our algorithm implementations for the GPU using ranges
currently covers the three central algorithms – gpu::for_each,
gpu::transform, and gpu::reduce – and is currently being
extended to cover all algorithms of the recently standardized
parallel STL [10]. The for_each and transform algorithms
apply a given function to every element of the input range in
parallel. The transform writes the result of each function ap-
plication into an output range (this algorithm is also known
as map in functional programming). The for_each algorithm
produces no result directly, but is executed for its side ef-
fects. This allows, for example, to write computed values to
memory in a less structured fashion than using transform.
The reduce algorithm performs a parallel reduction using a
given binary operator which has to be associative. We will

3 2016/12/16

pattern composition: two kernels are launched and a tem-
porary vector tmp is required to store the intermediate re-
sult of transform. This loss of efficiency is the reason why
Thrust offers the specific inner_product function: high per-
formance is not achievable by composing universal patterns.

In the next sections, we present our approach where
higher-level programs can be expressed as a composition
of universal patterns without a performance loss.

3. Programming with Ranges and
GPU-Enabled Algorithms

Our suggested composable API for GPUs is inspired by
the Standard Template Library (STL) which is widely used
in C++ programming. The STL consists of three main
components: 1) containers: collection data types such as
std::vector or std::set, 2) algorithms: reusable operations
on containers such as std::accumulate or std::sort, 3) it-
erators: glue containers with algorithms, such that the same
algorithm is reusable for different containers. This library
design has proven to be highly flexible and is one of the
main reasons of the STL’s success.

3.1 From Iterators to Ranges
The existing STL with iterators does not allow to compose
algorithms easily. Listing 4 shows the dot product example
using two STL algorithms with iterators: transform to ap-
ply the binary mult function to the corresponding elements
of the input containers a and b, and accumulate to sum up
all the values of a sequence. These two algorithms do not
compose nicely, because transform returns only a single it-
erator, while accumulate expects a pair of iterators as its first
two arguments describing the start and end of the input con-
tainer. Furthermore, a temporary vector tmp is required, as
the transform algorithm has to write the computed interme-
diate result into a container. The algorithm cannot allocate
this temporary container itself, because the iterator abstrac-
tion hides the type of container (in this case a vector) from
the algorithm.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto x, auto y){return x * y;};
4
5 vector <float > tmp(a.size());
6 transform(a.begin (), a.end(), b.begin (),
7 tmp.begin(), mult);
8 return accumulate(tmp.begin (), tmp.end() ,0.0f);
9 }

Listing 4: Dot product implementation using iterators.

Listing 5 shows how we can overcome these composability
problems using the recent range-v3 library [13] that replaces
iterators with ranges. The accumulate call now takes its input
as the single first argument compared to two separate itera-
tors in Listing 4. Ranges are composable, because they carry
information about the start and end points of a container, i.e.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5
6 return
7 accumulate(
8 view:: transform(view::zip(a,b),mult) ,0.0f); }

Listing 5: Dot product implementation using composable
ranges.

ranges combine the information scattered across the first two
arguments of accumulate into a single value. This change,
together with the introduction of views — lazily computed
ranges, which we will discuss in more detail in Section 4
— allows to write the dot product example in a concise and
composable style in Listing 5. Here the zip function creates
pairs of elements from vectors a and b which are then mul-
tiplied and summed up. Composability is a central feature
of the range-v3 library: it allows and encourages developers
to use the pipe symbol | to denote composition (similar to
the bash shell). Therefore, we can also rewrite lines 7–8 of
Listing 5 as explicit composition of patterns:

view::zip(a,b) | view::transform(mult) | accumulate(0.0f)

The idea of our approach is to bring this range-based ab-
straction to GPU programming.

3.2 GPU-enabled containers and algorithms
We extend the range-v3 library with a GPU-enabled con-
tainer and GPU-enabled algorithms to allow programmers
to write GPU applications in a composable way.

For storing data on the GPU we introduce the gpu::vector

container which provides a range-based interface to access
its elements. We use type traits to ensure statically that the
GPU-enabled algorithms only operate on data stored in a
gpu::vector. Data is transferred to the GPU by copying data
into a gpu::vector, e.g., by using the gpu::copy function as
in Listing 6, and transferred back by copying such a con-
tainer into a regular STL vector.

Our algorithm implementations for the GPU using ranges
currently covers the three central algorithms – gpu::for_each,
gpu::transform, and gpu::reduce – and is currently being
extended to cover all algorithms of the recently standardized
parallel STL [10]. The for_each and transform algorithms
apply a given function to every element of the input range in
parallel. The transform writes the result of each function ap-
plication into an output range (this algorithm is also known
as map in functional programming). The for_each algorithm
produces no result directly, but is executed for its side ef-
fects. This allows, for example, to write computed values to
memory in a less structured fashion than using transform.
The reduce algorithm performs a parallel reduction using a
given binary operator which has to be associative. We will

3 2016/12/16

Patterns operate on ranges

* https:!//github.com/ericniebler/range-v3

Patterns are composable

https://github.com/ericniebler/range-v3

GPU-enabled container and algorithms

6

• We extended the range-v3 library with:

• GPU-enabled container  
gpu!::vector<T>

• GPU-enabled algorithms 
 void gpu!::for_each(InRange, Fun);  
OutRange& gpu!::transform(InRange, OutRange, Fun);  
 T gpu!::reduce(InRange, Fun, T);

GPU-enabled Dot Product using
extended range-v3

7

see that already using these three algorithms as patterns al-
lows us to express many interesting applications, especially
when combined with views (lazily evaluated ranges) as dis-
cussed in Section 4.

3.3 First GPU example
Listing 6 shows a code of the dot product using our API with
the gpu::reduce algorithm. Notice how close the implemen-
tation is compared to Listing 5. In line 6 the input vectors a

and b are copied to the GPU, and then their pairwise multi-
plication results (line 7) are summed up in line 8. Our API
implementation (described in Section 5) guarantees to fuse
the operations expressed as views into a single efficient GPU
kernel. In the example, the zip and the vector multiplica-
tion in lines 6 and 7 are fused together with the reduction
in line 8. We will discuss the implementation of views in the
next section.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5
6 return view::zip(gpu::copy(a), gpu::copy(b))
7 | view:: transform(mult)
8 | gpu:: reduce (0.0f); }

Listing 6: GPU dot product using composable patterns.

3.4 Summary
In our API, ranges combined with GPU algorithms and GPU
containers enable a natural way to program GPUs in C++
similar to the programming approach widely known from
the STL. To achieve composability, programs are written by
combining small and simple-to-understand patterns which
greatly simplify programming as compared to traditional
low-level programming approaches like CUDA. Next we
discuss the key idea for achieving high performance in our
composable approach: guaranteed kernel fusion using views.

4. Eager Actions and Lazy Views
The range-v3 library introduces two new consructs to the
STL — actions and views — which enhance the compos-
ability. We exploit views and actions for GPU programming:
by using them programmers can control the fusion of com-
putations expressed by patterns into a single GPU kernel.

4.1 Actions
Actions perform (potentially mutating) in-place operations
on containers, i.e., actions do not require an externally pro-
vided output container, such as the temporary vector tmp

in Listing 4. Actions are implemented with the STL algo-
rithms and, therefore, we implemented corresponding ac-
tions for our GPU-enabled algorithms. Actions return a ref-
erence to the modified container and, therefore, compose
nicely with other actions.

4.2 Views
Views are the counterpart to actions and describe non-
mutating operations on ranges. Views, like actions, compose
nicely and are designed to be used together with each other
and with the algorithms described earlier.

An example for a view is view::transform(mult) in List-
ing 6. It applies a given function (in this case mult) to its
input range. When executed on the CPU, this computation
is not performed eagerly by writing the computed result to
some (temporary) memory location, but rather an object (the
view) is created which behaves like a range and performs
the computation lazily, i.e., on-demand once an element in
the range is requested. The view object holds references to
its input range and the function to be called. When the view
is iterated over, it evaluates the requested elements. Views
are implemented as first class objects which can be stored in
variables and passed to and returned from functions.

When views are composed with each other or with algo-
rithms, they are evaluated only when the finally computed
range is accessed. For example, in Listing 6 the zip and
transform views are composed with the gpu::reduce algo-
rithm. The implementation of reduce iterates over the input
range to sum up all of its elements. Inside of this iteration,
the pairwise multiplication expressed by the two views is
performed, i.e., it is automatically fused by our API imple-
mentation into the implementation of the reduce algorithm.
When we compile this code for the GPU, as described in
Section 5 this API design ensures that only a single GPU ker-
nel is emitted which performs the zip and transform compu-
tations inside of the iteration code of the reduce algorithm.

Together with our GPU-enabled algorithms, this guaran-
teed behavior of the views let programmers reason precisely
about the cost of operations and the number of GPU kernels
launched. Views allow to write composable and elegant code
without paying a performance penalty, as we will see in our
experimental evaluation.

4.3 Provided Views
The range-v3 library offers currently over 40 views (e.g.,
filter or generate) which can be used together with our
GPU algorithms. This greatly enhances the flexibility of our
GPU programming approach. Interestingly, some views such
as repeat represent infinite ranges; the take and take_while

views can be used to limit such infinite ranges. In our ap-
proach kernel fusion is directly tied to the available views.
The possibility to fuse two kernels corresponds to the ability
to express a computation as a view which can be performed
lazily and, therefore, folded into another computation.

The benefit of reusing the existing views from the range-v3

library is ensured by our LLVM-based GPU code generator
which compiles arbitrary C++ code for the GPU. There are
only minor not supported exemptions, such as virtual func-
tions or exceptions which are not used in the STL.

4 2016/12/16

1. Copy a and b to gpu!::vectors

2. Combine vectors

3. Multiply vectors pairwise

4. Sum up result

• Executes as fast as thurst!::inner_product

• Many Patterns !!= Many Kernels !-> Good Performance

Lazy Views !== Kernel Fusion

8

• Views describe non-mutating operations on ranges 
 
 
 
 
 
 

• The implementation of views guarantees fusion with the
following operation

• Fused with GPU-enabled pattern !=> Kernel Fusion

see that already using these three algorithms as patterns al-
lows us to express many interesting applications, especially
when combined with views (lazily evaluated ranges) as dis-
cussed in Section 4.

3.3 First GPU example
Listing 6 shows a code of the dot product using our API with
the gpu::reduce algorithm. Notice how close the implemen-
tation is compared to Listing 5. In line 6 the input vectors a

and b are copied to the GPU, and then their pairwise multi-
plication results (line 7) are summed up in line 8. Our API
implementation (described in Section 5) guarantees to fuse
the operations expressed as views into a single efficient GPU
kernel. In the example, the zip and the vector multiplica-
tion in lines 6 and 7 are fused together with the reduction
in line 8. We will discuss the implementation of views in the
next section.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5
6 return view::zip(gpu::copy(a), gpu::copy(b))
7 | view:: transform(mult)
8 | gpu:: reduce (0.0f); }

Listing 6: GPU dot product using composable patterns.

3.4 Summary
In our API, ranges combined with GPU algorithms and GPU
containers enable a natural way to program GPUs in C++
similar to the programming approach widely known from
the STL. To achieve composability, programs are written by
combining small and simple-to-understand patterns which
greatly simplify programming as compared to traditional
low-level programming approaches like CUDA. Next we
discuss the key idea for achieving high performance in our
composable approach: guaranteed kernel fusion using views.

4. Eager Actions and Lazy Views
The range-v3 library introduces two new consructs to the
STL — actions and views — which enhance the compos-
ability. We exploit views and actions for GPU programming:
by using them programmers can control the fusion of com-
putations expressed by patterns into a single GPU kernel.

4.1 Actions
Actions perform (potentially mutating) in-place operations
on containers, i.e., actions do not require an externally pro-
vided output container, such as the temporary vector tmp

in Listing 4. Actions are implemented with the STL algo-
rithms and, therefore, we implemented corresponding ac-
tions for our GPU-enabled algorithms. Actions return a ref-
erence to the modified container and, therefore, compose
nicely with other actions.

4.2 Views
Views are the counterpart to actions and describe non-
mutating operations on ranges. Views, like actions, compose
nicely and are designed to be used together with each other
and with the algorithms described earlier.

An example for a view is view::transform(mult) in List-
ing 6. It applies a given function (in this case mult) to its
input range. When executed on the CPU, this computation
is not performed eagerly by writing the computed result to
some (temporary) memory location, but rather an object (the
view) is created which behaves like a range and performs
the computation lazily, i.e., on-demand once an element in
the range is requested. The view object holds references to
its input range and the function to be called. When the view
is iterated over, it evaluates the requested elements. Views
are implemented as first class objects which can be stored in
variables and passed to and returned from functions.

When views are composed with each other or with algo-
rithms, they are evaluated only when the finally computed
range is accessed. For example, in Listing 6 the zip and
transform views are composed with the gpu::reduce algo-
rithm. The implementation of reduce iterates over the input
range to sum up all of its elements. Inside of this iteration,
the pairwise multiplication expressed by the two views is
performed, i.e., it is automatically fused by our API imple-
mentation into the implementation of the reduce algorithm.
When we compile this code for the GPU, as described in
Section 5 this API design ensures that only a single GPU ker-
nel is emitted which performs the zip and transform compu-
tations inside of the iteration code of the reduce algorithm.

Together with our GPU-enabled algorithms, this guaran-
teed behavior of the views let programmers reason precisely
about the cost of operations and the number of GPU kernels
launched. Views allow to write composable and elegant code
without paying a performance penalty, as we will see in our
experimental evaluation.

4.3 Provided Views
The range-v3 library offers currently over 40 views (e.g.,
filter or generate) which can be used together with our
GPU algorithms. This greatly enhances the flexibility of our
GPU programming approach. Interestingly, some views such
as repeat represent infinite ranges; the take and take_while

views can be used to limit such infinite ranges. In our ap-
proach kernel fusion is directly tied to the available views.
The possibility to fuse two kernels corresponds to the ability
to express a computation as a view which can be performed
lazily and, therefore, folded into another computation.

The benefit of reusing the existing views from the range-v3

library is ensured by our LLVM-based GPU code generator
which compiles arbitrary C++ code for the GPU. There are
only minor not supported exemptions, such as virtual func-
tions or exceptions which are not used in the STL.

4 2016/12/16

Eager Actions !!= Kernel Fusion

• Actions perform in-place operations on ranges 
 
 
 
 

• Actions are (usually) mutating

• Action implementations use GPU-enabled algorithms

9

float dotProduct(const vector<float>& a, 
 const vector<float>& b) {
 auto mult = [](auto p) {
 return get<0>(p) * get<1>(p); };

 gpu!::vector<pair<float, float!>> pairs(a.size());
 for (auto i = 0; i < a.size(); !++i)
 pairs[i] = make_pair(a[i], b[i]);

 return pairs | gpu!::action!::transform(mult)
 | gpu!::reduce(0.0f);
}

Choice of Kernel Fusion

10

• Choice between views and actions/algorithms 
is choice for or against kernel fusion

• Simple cost model: 
Every action/algorithm results in a Kernel

• Programmer is in control! Fusion is guaranteed.

Available for free: Views provided by range-v3

• group_by
• indirect
• intersperse
• ints
• iota
• join
• keys
• move
• partial_sum
• remove_if
• repeat
• repeat_n
• replace
• replace_if
• reverse

• adjacent_filter
• adjacent_remove_if
• all
• bounded
• chunk
• concat
• const_
• counted
• delimit
• drop
• drop_exactly
• drop_while
• empty
• generate
• generate_n

https:!//ericniebler.github.io/range-v3/index.html#range-views

11

• single
• slice
• split
• stride
• tail
• take
• take_exactly
• take_while
• tokenize
• transform
• unbounded
• unique
• values
• zip
• zip_with

Code Generation via PACXX

12

4.4 GPU evaluation of views
Some computations can be expressed in our API only using
views and without ever using an action or algorithm. In such
cases, the evaluation will happen implicitly when the final
view is iterated over, e.g., when printing the result or copying
it into a data container. By default, this evaluation happens
sequentially on the CPU. To allow programmers to perform
such computations on the GPU, we implemented a variation
of the C++ standard async function. Our gpu::async function
takes an arbitrary function whose return value is fixed to be
a gpu::vector and, therefore, if in the function implementa-
tion a view is returned then it is implicitly evaluated on the
GPU in parallel and the result is written into a gpu::vector.

1 auto saxpy(float A, const vector <float >& X,
2 const vector <float >& Y) {
3 return gpu:: async ([=](auto a, const auto& x,
4 const auto& y){
5 auto ax = view::zip(view:: repeat(a), x)
6 | view:: transform(mult);
7 return view::zip(ax,y)
8 | view:: transform(plus);}, A, X, Y) ;}

Listing 7: saxpy on GPU using views and gpu::async.

Listing 7 shows an implementation of the saxpy com-
putation which only uses views and no algorithms or ac-
tions. Our gpu::async function is used in line 3 to evalu-
ate the views on the GPU. First, a ⇥ x is computed where
a is a scalar and x is a vector, before the result is added
to the vector y. We use four views (twice zip and twice
transform) to describe the computation which is nested in-
side a gpu::async. All views are fused together during code
generation and evaluated in a single GPU kernel which pro-
duces a gpu::vector. The gpu::async function ensures that
all input containers are automatically copied to gpu::vector

objects if they are not already of that type. This ensures that
all data used in gpu::async is available on the GPU.

4.5 Summary
With the support of actions and views, our GPU extension of
the range-v3 library encourages a compositional program-
ming style. We make use of this style for GPU programming
by combining actions and views with our GPU-enabled al-
gorithms and providing a natural way to evaluate lazy views
in parallel on the GPU via gpu::async. The views provide a
simple mechanism for the programmer to express programs
compositionally while being guaranteed that the views are
fused together into a single GPU kernel. We will now look
at our GPU code generation and discuss optimizations ap-
plied when generating GPU kernel code.

5. Code Generation and Optimization
Our API with GPU-enabled algorithms and containers is
implemented as a C++ library compiled using PACXX [8]
— our LLVM-based compiler generating GPU code from
C++ code. In this section, we briefly describe the general

design of PACXX and then we focus on a particular feature,
called multi-staging, which allows us to optimize the GPU
code based on values only known at host runtime.

5.1 Overview of PACXX
PACXX transforms C++ code using a combination of offline
and online compilation to a representation executable on
different kinds of GPUs: PTX on Nvidia GPUs, and SPIR
on AMD GPUs.

Executable
PACXX Runtime

Online Compiler

LLVM IR to SPIR

LLVM

NVPTXOpenCL
Backend

CUDA
Backend

LLVM
IR

SPIR PTX

OpenCL Runtime
AMD GPU Intel MIC

CUDA Runtime

Nvidia GPU

#include <algorithm>
#include <vector>
#include <iostream>

template< class ForwardIt,
 class T >
void fill(ForwardIt first,
 ForwardIt last,
 const T& value)
{
 for (; first != last;
 ++first)
 {
 *first = value;
 }
}

C++

PACXX
Offline Compiler

LLVM libc++

Clang Frontend

Figure 1: Key components of PACXX.

Figure 1 shows an overview of the PACXX implementa-
tion which comprises two main components:

1) The PACXX Offline Compiler based on the open-source
Clang compiler, and

2) The PACXX Runtime library consisting of a just-in-time
compiler and a GPU execution runtime.

Correspondingly, C++ code is compiled by PACXX in
two stages: 1) the offline compilation stage separates GPU
and CPU code and prepares the executable for the PACXX
runtime, 2) the online compilation stage just-in-time com-
piles the GPU code during program execution using our
LLVM-based online compiler in the PACXX runtime library.

Stage 1: Offline Compilation In PACXX, code to be ex-
ecuted on a GPU is written as a pacxx::kernel function
supported by PACXX. Based on this kernel function, the
PACXX offline compiler marks the code executed on the
GPU by annotating every function called from inside the
kernel function with a PACXX-specific C++ 11 generalized
attribute. Using generalized attributes of C++ has the advan-
tage that the code remains valid C++ and other compilers
have the freedom to ignore PACXX custom annotations.

After the annotations are added, two passes are per-
formed: the first pass prepares the GPU kernel generation
at runtime, and the second pass compiles the CPU program.

In the kernel compilation pass, the program’s abstract
syntax tree (AST) is lowered to the LLVM intermediate
representation (IR), and functions with the PACXX-specific
attribute are marked as kernel code in the IR. Then the
following steps transform and optimize the IR:

1) dead code elimination removes all IR nodes beside the
code reachable from the kernel;

5 2016/12/16

• We use PACXX to compile the extended C++ range-v3
library implementation to GPU code

• Similar implementation possible with SYCL

Evaluation Sum and Dot Product

13

Performance Results We evaluate each benchmark with
11 input sizes of single precision floating point values. Fig-
ures 2 and 3 show the performance results compared to the
optimized CUDA code. The results for the vector addition
and saxpy benchmark (Figure 2) show that our API imple-
mented using PACXX achieves equal performance to the
low-level CUDA kernels. The transform implementation in
Thrust uses 1024 threads per block and launches a fixed
number of blocks. Using this strategy, each thread computes
multiple elements and Thrust achieves significantly better
performance for the 2

17 input size of the saxpy benchmark.

Figure 2: Speedup of our approach and Thrust compared to
CUDA for the vector addition and saxpy benchmark.

Figure 3 shows the performance of our approach for dot
product and sum in comparison to Thrust and CUDA. All
three approaches follow different implementation strategies
for these benchmarks. The CUDA version from Nvidia’s
SDK [14] uses a tree-based reduction in local memory and
avoids synchronization inside a warp. The Thrust reduction
algorithm computes the result in two GPU kernels while
the PACXX and the CUDA versions execute only one GPU
kernel and finish the computation on the CPU. Using two
kernels with Thrust yields a significant overhead for smaller
input sizes, which is clearly visible in the graph. The multi-
staging optimized gpu::reduce implementation in PACXX
clearly outperforms the Thrust reduction and even beats the
low-level CUDA code for larger input sizes.

0

0.2

0.4

0.6

0.8

1

1.2

215 217 219 221 223 225

Sp
ee

du
p

Input Size

CUDA Dot/Sum
Thrust Dot
PACXX Dot
Thrust Sum
PACXX Sum

Figure 3: Speedup of our approach and Thrust compared to
CUDA for the dot product and sum benchmarks.

Summary This section shows that our composable pro-
gramming style using views does not introduce a perfor-
mance overhead. In contrary, our optimized GPU-enabled

algorithms outperform the corresponding low-level CUDA
and Thrust code. Even the specialized inner_product im-
plementation of Thrust used in the dot product benchmark
is outperformed by our composable implementation where
views are fused with our generic reduction algorithm.

6.3 Performance Impact of Multi-Staging
We continue our evaluation by studying the multi-stage op-
timization applied in PACXX. As described in Section 5,
multi-staging is used in our gpu::reduce algorithm to spe-
cialize the generated GPU code at runtime for the particular
input size, which enables aggressive loop-unrolling.

Figure 4: Performance improvement via multi-stage (MS)
optimization for the dot product and sum benchmarks.

Figure 4 shows the relative performance improvement
when applying multi-staging in the gpu::reduce algorithm,
for the dot product benchmark shown in Listing 6 and for
the sum benchmark that adds up all elements of an array.
We observe that multi-staging improves performance by up
to 1.35⇥ depending on the input size. For input sizes larger
than 2

24, the performance advantage declines, as the number
of threads in a block is increased and, therefore, the num-
ber of loop iterations executed by each individual thread de-
creases: the effect of unrolling the loop becomes less visible.
The improvements for the dot product are lower, because the
kernel performs more loads from the global memory which
dominate the kernel runtime, making the loop unrolling a
less important performance factor.

6.4 Just-in-time Compilation Overhead
PACXX performs an offline and an online compilation step.
In this section, we study the overhead introduced at runtime
by the PACXX JIT compiler by comparing the compilation
times of PACXX with the JIT compiler library nvtrc recently
introduced for CUDA.

Figure 5 shows the compilation time for the sum and the
dot product benchmarks. We compare PACXX with nvrtc
from CUDA 7.5 and 8.0 RC. The compilation of PACXX
is 15 times (for dot product) and almost 20 times (for sum)
faster as compared to CUDA 7.5, and 9-12 times faster com-
pared to CUDA 8.0 RC. This is because the PACXX offline
compiler prepares the GPU code generation and, therefore,
the PACXX JIT compiler operates directly on the LLVM IR.

8 2016/12/16

Performance comparable to Thrust and CUDA code

Multi-Staging in PACXX

• PACXX specializes GPU 
code at CPU runtime

• Implementation of  
gpu!::reduce !=>

• Loop bound known at  
GPU compiler time

2) function calls are inlined into the kernel functions;

3) -O3 equivalent optimizations are performed;

4) the IR is embedded in the executable.

At runtime the prepared IR is loaded, then JIT-compiled and
optimized for the target GPU before execution.

In the host compilation pass, the PACXX offline com-
piler lowers the AST to LLVM IR a second time, but this
time replacing calls to kernel functions with PACXX run-
time calls which manage data transfers and launch the corre-
sponding kernel. The compilation of the host C++ program
is performed as usual, by generating an executable which is
statically linked against the PACXX runtime library.

Stage 2: Online Compilation During program execution,
the PACXX runtime loads the IR previously embedded in the
executable by the PACXX offline compiler, performs addi-
tional, GPU-specific optimizations, such as loop-unrolling
and rearranging load instructions. Finally, the IR is com-
piled to GPU code using one of the two LLVM back-ends:
PTX [15] together with the CUDA runtime library when
targeting Nvidia GPUs, and SPIR [7] for GPUs with an
OpenCL implementation (e.g., from AMD or Intel).

5.2 GPU Algorithm Implementations
We implemented three GPU-enabled STL algorithms to be
used together with the range-v3 library. We are discussing
their efficient implementations for Nvidia GPUs here. This
implementation is not portable, but we intend to incorporate
recent related work in the future which uses a functional
techniques to generate efficient GPU implementations from
portable pattern-based representations [20].

Transform and For_Each The gpu::transform algorithm
applies a given function in parallel to every element of its
input range and stores the produced results in the output
range. The gpu::for_each algorithm is a special case of
transform, where its given function does not produce a result
directly but is rather executed for its side effects. Therefore,
we concentrate on the implementation of gpu::transform.

1 auto kernel = pacxx :: kernel(
2 [func](auto in , auto out , size_t size) {
3 auto id = Thread ::get().global;
4 if (id.x >= size) return;
5 *(out + id.x) = func (*(in + id.x));
6 },{{(distance + 127) / 128}, {128}});
7
8 kernel(in.begin(), out.begin (), size);

Listing 8: Implementation of gpu::transform.

Listing 8 shows the implementation of gpu::transform for
an Nvidia GPU. For each element of the input range, a GPU
thread is launched which: a) loads one element form the
global memory, b) applies the given function (func) to the
element, and c) stores the result back to the global memory
of the GPU. Our implementation configures the underlying

kernel to use 128 threads per block. This is a platform-
specific choice, and auto-tuning [4] or similar techniques can
be used to pick appropriate values.

Reduce To efficiently implement the gpu::reduce algo-
rithm, we make use of the multi-stage programming support
in PACXX [8] for embedding values known at the runtime
of the host program into the GPU code. This enables ad-
ditional optimization opportunities like aggressive loop un-
rolling. PACXX provides a dedicated function (stage) which
evaluates expressions prior to the GPU kernel execution and
the computed values are then automatically embedded into
the GPU program.

1 template <class InRng , class T, class Fun >
2 auto reduce(InRng&& in, T init , Fun&& fun) {
3 // 1. preparation of kernel call
4 ...
5 // 2. create GPU kernel
6 auto kernel = pacxx :: kernel(
7 [fun](auto&& in , auto&& out ,
8 int size , auto init) {
9 // 2a. stage elements per thread

10 int ept = stage(size / glbSize);
11 // 2b. start reduction computation
12 auto sum = init;
13 for (int x = 0; x < ept; ++x) {
14 sum = fun(sum , *(in + gid));
15 gid += glbSize; }
16 // 2c. perform reduction in shared memory
17 ...
18 // 2d. write result back
19 if (lid = 0) *(out + bid) = shared [0];
20 }, glbSize , lclSize);
21 // 3. execute kernel
22 kernel(in, out , distance(in), init);
23 // 4. finish reduction on the CPU
24 return std:: accumulate(out , init , fun); }

Listing 9: Implementation sketch of the gpu::reduce

algorithm making use of multi-staging.

Listing 9 shows a sketch of the implementation of the
gpu::reduce algorithm in PACXX. For brevity and clarity
we concentrate on the parts relevant for the multi-staging op-
timization. After some preparations, a GPU kernel is created
in line 6 using the PACXX-provided kernel function. The
following lambda expression contains the code executed on
the GPU which calls the reduction operation fun in line 14.
In line 10 we make use of the stage function: it indicates
that the expression passed as its argument is evaluated on
the CPU prior to the kernel call and that the evaluated value
is embedded into the GPU code as a compile-time constant.
Here this value is the number of elements processed per
thread which is used as the upper bound in the following
loop in line 13. As a consequence of the staging, this loop
can be completely unrolled, since the upper bound is now
known at the GPU compilation time, which results in a sig-
nificant performance gain as we will see in the evaluation
section. The kernel continues with a reduction performed
in shared memory, synchronized across all threads in the

6 2016/12/16

Performance Impact of Multi-Staging

Performance Results We evaluate each benchmark with
11 input sizes of single precision floating point values. Fig-
ures 2 and 3 show the performance results compared to the
optimized CUDA code. The results for the vector addition
and saxpy benchmark (Figure 2) show that our API imple-
mented using PACXX achieves equal performance to the
low-level CUDA kernels. The transform implementation in
Thrust uses 1024 threads per block and launches a fixed
number of blocks. Using this strategy, each thread computes
multiple elements and Thrust achieves significantly better
performance for the 2

17 input size of the saxpy benchmark.

Figure 2: Speedup of our approach and Thrust compared to
CUDA for the vector addition and saxpy benchmark.

Figure 3 shows the performance of our approach for dot
product and sum in comparison to Thrust and CUDA. All
three approaches follow different implementation strategies
for these benchmarks. The CUDA version from Nvidia’s
SDK [14] uses a tree-based reduction in local memory and
avoids synchronization inside a warp. The Thrust reduction
algorithm computes the result in two GPU kernels while
the PACXX and the CUDA versions execute only one GPU
kernel and finish the computation on the CPU. Using two
kernels with Thrust yields a significant overhead for smaller
input sizes, which is clearly visible in the graph. The multi-
staging optimized gpu::reduce implementation in PACXX
clearly outperforms the Thrust reduction and even beats the
low-level CUDA code for larger input sizes.

Figure 3: Speedup of our approach and Thrust compared to
CUDA for the dot product and sum benchmarks.

Summary This section shows that our composable pro-
gramming style using views does not introduce a perfor-
mance overhead. In contrary, our optimized GPU-enabled

algorithms outperform the corresponding low-level CUDA
and Thrust code. Even the specialized inner_product im-
plementation of Thrust used in the dot product benchmark
is outperformed by our composable implementation where
views are fused with our generic reduction algorithm.

6.3 Performance Impact of Multi-Staging
We continue our evaluation by studying the multi-stage op-
timization applied in PACXX. As described in Section 5,
multi-staging is used in our gpu::reduce algorithm to spe-
cialize the generated GPU code at runtime for the particular
input size, which enables aggressive loop-unrolling.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

215 217 219 221 223 225

Sp
ee

du
p

Input Size

Dot
Sum
Dot +MS
Sum +MS

Figure 4: Performance improvement via multi-stage (MS)
optimization for the dot product and sum benchmarks.

Figure 4 shows the relative performance improvement
when applying multi-staging in the gpu::reduce algorithm,
for the dot product benchmark shown in Listing 6 and for
the sum benchmark that adds up all elements of an array.
We observe that multi-staging improves performance by up
to 1.35⇥ depending on the input size. For input sizes larger
than 2

24, the performance advantage declines, as the number
of threads in a block is increased and, therefore, the num-
ber of loop iterations executed by each individual thread de-
creases: the effect of unrolling the loop becomes less visible.
The improvements for the dot product are lower, because the
kernel performs more loads from the global memory which
dominate the kernel runtime, making the loop unrolling a
less important performance factor.

6.4 Just-in-time Compilation Overhead
PACXX performs an offline and an online compilation step.
In this section, we study the overhead introduced at runtime
by the PACXX JIT compiler by comparing the compilation
times of PACXX with the JIT compiler library nvtrc recently
introduced for CUDA.

Figure 5 shows the compilation time for the sum and the
dot product benchmarks. We compare PACXX with nvrtc
from CUDA 7.5 and 8.0 RC. The compilation of PACXX
is 15 times (for dot product) and almost 20 times (for sum)
faster as compared to CUDA 7.5, and 9-12 times faster com-
pared to CUDA 8.0 RC. This is because the PACXX offline
compiler prepares the GPU code generation and, therefore,
the PACXX JIT compiler operates directly on the LLVM IR.

8 2016/12/16

15

Up to 1.35x performance improvement

Summary: 
Towards Composable GPU Programming

• GPU Programming with universal composable patterns

• Views vs. Actions/Algorithms determine kernel fusion

• Kernel fusion for views guaranteed !=> Programmer in control

• Competitive performance vs. CUDA and specialized Thrust code

• Multi-Staging optimization gives up to 1.35 improvement

16

Towards Composable GPU Programming:
Programming GPUs with Eager Actions and Lazy Views

Michael Haidl · Michel Steuwer · Hendrik Dirks 
Tim Humernbrum · Sergei Gorlatch

Questions?

