
ELEVATE a language to write
composable program optimisations

Michel Steuwer — michel.steuwer@glasgow.ac.uk

Beta

mailto:michel.steuwer@glasgow.ac.uk

Bastian Hagedorn

Joined work with

https:!//bastianhagedorn.github.io

Bastian Hagedorn

Joined work with

https:!//bastianhagedorn.github.io

Currently at the Heidelberg Laureate Forum

How do we optimise programs today?

Program

Compiler

Performance ?

•Change the program manually

•Change compiler options

How do we optimise programs today?

Program

Compiler

Performance ?

for (i = 0; i < N; !++i) {
 for (j = 0; j < N; !++j){
 C[i][j] = 0;
 for (k = 0; k < N; !++k)
 C[i][j] += A[i][k] * B[k][j]; } }

How do we optimise programs today?

Program

Compiler

Performance ?

for (i = 0; i < N; !++i) {
 for (j = 0; j < N; !++j){
 C[i][j] = 0;
 for (k = 0; k < N; !++k)
 C[i][j] += A[i][k] * B[k][j]; } }

for (ii = 0; ii < N; ii += ib) {
 for (kk = 0; kk < N; kk += kb) {
 for (j=0; j < N; j += 2) {
 for(i = ii; i < ii + ib; i += 2) {
 if (kk !== 0)
 acc00 = acc01 = acc10 = acc11 = 0;
 else {
 acc00 = C[i + 0][j + 0];
 acc01 = C[i + 0][j + 1];
 acc10 = C[i + 1][j + 0];
 acc11 = C[i + 1][j + 1]; }
 for (k = kk; k < kk + kb; k!++) {
 acc00 += A[k][j + 0] * B[i + 0][k];
 acc01 += A[k][j + 1] * B[i + 0][k];
 acc10 += A[k][j + 0] * B[i + 1][k];
 acc11 += A[k][j + 1] * B[i + 1][k];
 }
 C[i + 0][j + 0] = acc00;
 C[i + 0][j + 1] = acc01;
 C[i + 1][j + 0] = acc10;
 C[i + 1][j + 1] = acc11; } } } }

• Blocking / Tiling
• Exploit ILP
• Exploit locality

CPUs

How do we optimise programs today?

Program

Compiler

Performance ?

for (i = 0; i < N; !++i) {
 for (j = 0; j < N; !++j){
 C[i][j] = 0;
 for (k = 0; k < N; !++k)
 C[i][j] += A[i][k] * B[k][j]; } }

GPUs

AMD ARM

!// kernel !__attribute((reqd_work_group_size(32, 8, 1)))
void KERNEL(const global float *restrict A, const global float *restrict B,
 const global float *restrict C, float alpha, float beta,
 global float *out, int K, int M, int N) {
 local float l_tmp_1[512];
 local float l_tmp_2[1024];
 float acc_1_1_425 = 0.0f;
 !// !!... 31 more
 float p_tmp_1_1_457;
 !// !!... 107 more
 int wg_id_1 = get_group_id(1);
 int wg_id_0 = get_group_id(0);
 for (int i = 0; i < (K / 8); i = (1 + i)) {
 int l_id_1 = get_local_id(1);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 64); l_id_0 = (32 + l_id_0)) {
 l_tmp_1[(l_id_0 + (64 * l_id_1))] =
 (A[(l_id_0 + (8 * M * i) + (64 * wg_id_1) + (M * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 128); l_id_0 = (32 + l_id_0)) {
 l_tmp_2[(l_id_0 + (128 * l_id_1))] =
 (B[(l_id_0 + (8 * N * i) + (128 * wg_id_0) + (N * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int j = 0; (j < 8); j = (1 + j)) {
 p_tmp_1_1_457 = (l_tmp_1[(0 + (8 * get_local_id(1)) + (64 * j))]);
 p_tmp_1_2_458 = (l_tmp_1[(1 + (8 * get_local_id(1)) + (64 * j))]);
 !// !!... 6 more
 p_tmp_2_1_465 = (l_tmp_2[(0 + (128 * j) + get_local_id(0))]);
 p_tmp_2_2_466 = (l_tmp_2[(32 + (128 * j) + get_local_id(0))]);
 !// !!... 2 more
 p_tmp_3_1_469 = p_tmp_1_1_457 * p_tmp_2_1_465;
 acc_1_1_425 = acc_1_1_425 + p_tmp_3_1_469;
 !// !!... 31 more
 }
 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 }
 p_tmp_4_1_501 = acc_1_1_425 * alpha;
 p_tmp_5_1_533 = C[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) +
 (128 * wg_id_0) + get_local_id(0))] *
 beta;
 out[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) + (128 * wg_id_0) +
 get_local_id(0))] = p_tmp_4_1_501 + p_tmp_5_1_533;
 !// !!... 31 more
}

Nvidia

How do we optimise programs today?

Program

Compiler

Performance ?

for (i = 0; i < N; !++i) {
 for (j = 0; j < N; !++j){
 C[i][j] = 0;
 for (k = 0; k < N; !++k)
 C[i][j] += A[i][k] * B[k][j]; } }

GPUs

AMD ARM

!// kernel !__attribute((reqd_work_group_size(32, 8, 1)))
void KERNEL(const global float *restrict A, const global float *restrict B,
 const global float *restrict C, float alpha, float beta,
 global float *out, int K, int M, int N) {
 local float l_tmp_1[512];
 local float l_tmp_2[1024];
 float acc_1_1_425 = 0.0f;
 !// !!... 31 more
 float p_tmp_1_1_457;
 !// !!... 107 more
 int wg_id_1 = get_group_id(1);
 int wg_id_0 = get_group_id(0);
 for (int i = 0; i < (K / 8); i = (1 + i)) {
 int l_id_1 = get_local_id(1);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 64); l_id_0 = (32 + l_id_0)) {
 l_tmp_1[(l_id_0 + (64 * l_id_1))] =
 (A[(l_id_0 + (8 * M * i) + (64 * wg_id_1) + (M * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 128); l_id_0 = (32 + l_id_0)) {
 l_tmp_2[(l_id_0 + (128 * l_id_1))] =
 (B[(l_id_0 + (8 * N * i) + (128 * wg_id_0) + (N * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int j = 0; (j < 8); j = (1 + j)) {
 p_tmp_1_1_457 = (l_tmp_1[(0 + (8 * get_local_id(1)) + (64 * j))]);
 p_tmp_1_2_458 = (l_tmp_1[(1 + (8 * get_local_id(1)) + (64 * j))]);
 !// !!... 6 more
 p_tmp_2_1_465 = (l_tmp_2[(0 + (128 * j) + get_local_id(0))]);
 p_tmp_2_2_466 = (l_tmp_2[(32 + (128 * j) + get_local_id(0))]);
 !// !!... 2 more
 p_tmp_3_1_469 = p_tmp_1_1_457 * p_tmp_2_1_465;
 acc_1_1_425 = acc_1_1_425 + p_tmp_3_1_469;
 !// !!... 31 more
 }
 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 }
 p_tmp_4_1_501 = acc_1_1_425 * alpha;
 p_tmp_5_1_533 = C[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) +
 (128 * wg_id_0) + get_local_id(0))] *
 beta;
 out[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) + (128 * wg_id_0) +
 get_local_id(0))] = p_tmp_4_1_501 + p_tmp_5_1_533;
 !// !!... 31 more
}

Nvidia

Coalesced 
mem accesses 
 
Vectorization 
 
Blocking / Tiling 
 
…

Coalesced 
mem accesses 
 
Blocking / Tiling 
 
…

Vectorization 
 
Builtin math functions 
 
Blocking / Tiling 
 
…

How do we optimise programs today?

Program

Compiler

Performance ?

for (i = 0; i < N; !++i) {
 for (j = 0; j < N; !++j){
 C[i][j] = 0;
 for (k = 0; k < N; !++k)
 C[i][j] += A[i][k] * B[k][j]; } }

GPUs

AMD ARM

!// kernel !__attribute((reqd_work_group_size(32, 8, 1)))
void KERNEL(const global float *restrict A, const global float *restrict B,
 const global float *restrict C, float alpha, float beta,
 global float *out, int K, int M, int N) {
 local float l_tmp_1[512];
 local float l_tmp_2[1024];
 float acc_1_1_425 = 0.0f;
 !// !!... 31 more
 float p_tmp_1_1_457;
 !// !!... 107 more
 int wg_id_1 = get_group_id(1);
 int wg_id_0 = get_group_id(0);
 for (int i = 0; i < (K / 8); i = (1 + i)) {
 int l_id_1 = get_local_id(1);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 64); l_id_0 = (32 + l_id_0)) {
 l_tmp_1[(l_id_0 + (64 * l_id_1))] =
 (A[(l_id_0 + (8 * M * i) + (64 * wg_id_1) + (M * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int l_id_0 = get_local_id(0); (l_id_0 < 128); l_id_0 = (32 + l_id_0)) {
 l_tmp_2[(l_id_0 + (128 * l_id_1))] =
 (B[(l_id_0 + (8 * N * i) + (128 * wg_id_0) + (N * l_id_1))]);
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int j = 0; (j < 8); j = (1 + j)) {
 p_tmp_1_1_457 = (l_tmp_1[(0 + (8 * get_local_id(1)) + (64 * j))]);
 p_tmp_1_2_458 = (l_tmp_1[(1 + (8 * get_local_id(1)) + (64 * j))]);
 !// !!... 6 more
 p_tmp_2_1_465 = (l_tmp_2[(0 + (128 * j) + get_local_id(0))]);
 p_tmp_2_2_466 = (l_tmp_2[(32 + (128 * j) + get_local_id(0))]);
 !// !!... 2 more
 p_tmp_3_1_469 = p_tmp_1_1_457 * p_tmp_2_1_465;
 acc_1_1_425 = acc_1_1_425 + p_tmp_3_1_469;
 !// !!... 31 more
 }
 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 }
 p_tmp_4_1_501 = acc_1_1_425 * alpha;
 p_tmp_5_1_533 = C[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) +
 (128 * wg_id_0) + get_local_id(0))] *
 beta;
 out[((64 * N * wg_id_1) + (8 * N * get_local_id(1)) + (128 * wg_id_0) +
 get_local_id(0))] = p_tmp_4_1_501 + p_tmp_5_1_533;
 !// !!... 31 more
}

Nvidia

Coalesced 
mem accesses 
 
Vectorization 
 
Blocking / Tiling 
 
…

Coalesced 
mem accesses 
 
Blocking / Tiling 
 
…

Vectorization 
 
Builtin math functions 
 
Blocking / Tiling 
 
…

Unsustainable to re-optimise for every new architecture !=> No performance portability

How do we optimise programs today?

Program

Compiler

Performance ?

From the LLVM manual:

"... in an attempt to make the program run faster"

How do we optimise programs today?

Program

Compiler

Performance ?

From the LLVM manual:

"... in an attempt to make the program run faster"

-O3

How do we optimise programs today?

Program

Compiler

Performance ?

From the LLVM manual:

"... in an attempt to make the program run faster"

-O3

How do we optimise programs today?

Program

Compiler

Performance ?

From the LLVM manual:

"... in an attempt to make the program run faster"

-O3

-opt-matmul

Intel compiler:

Options -opt-matmul and /Qopt-matmul tell the compiler to identify matrix multiplication loop nests (if any) and
replace them with a matmul library call for improved performance. The resulting executable may get additional
performance gain on Intel® microprocessors than on non-Intel microprocessors.

How do we optimise programs today?

Program

Compiler

Performance ?

From the LLVM manual:

"... in an attempt to make the program run faster"

-O3

Impossible to understand what is going on in the compiler !=> Hard to control optimisations

-opt-matmul

Intel compiler:

Options -opt-matmul and /Qopt-matmul tell the compiler to identify matrix multiplication loop nests (if any) and
replace them with a matmul library call for improved performance. The resulting executable may get additional
performance gain on Intel® microprocessors than on non-Intel microprocessors.

Separate Program from Optimisations

Program

Schedule
Domain Specific 

Compiler
Performance

Halide

Separation in Program and Schedule allows for portable performance

Tiramisu Compiler

used by:

[PLDI’13] [SIGGRAPH’12, 16, 18]

Halide - Program vs. Schedule
Program Schedule

Func prod(“prod");
RDom r(0, size);
prod(x, y) += A(x, r) * B(r, y);
out(x, y) = prod(x, y);

const int warp_size = 32;
const int vec_size = 2;
const int x_tile = 3;
const int y_tile = 4;
const int y_unroll = 8;
const int r_unroll = 1;

Var xi, yi, xio, xii, yii, xo, yo, x_pair, xiio, ty;
RVar rxo, rxi;

out.bound(x, 0, size)
 .bound(y, 0, size)
 .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll)
 .split(yi, ty, yi, y_unroll)
 .vectorize(xi, vec_size)
 .split(xi, xio, xii, warp_size)
 .reorder(xio, yi, xii, ty, x, y)
 .unroll(xio)
 .unroll(yi)
 .gpu_blocks(x, y)
 .gpu_threads(ty)
 .gpu_lanes(xii);
prod.store_in(MemoryType!::Register)
 .compute_at(out, x)
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .unroll(xo)
 .unroll(y)
 .update()
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .split(r.x, rxo, rxi, warp_size)
 .unroll(rxi, r_unroll)
 .reorder(xi, xo, y, rxi, ty, rxo)
 .unroll(xo)
 .unroll(y);

Var Bx = B.in().args()[0], By = B.in().args()[1];
Var Ax = A.in().args()[0], Ay = A.in().args()[1];
B.in()
 .compute_at(prod, ty)
 .split(Bx, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(By);

A.in()
 .compute_at(prod, rxo)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).split(Ay, yo, yi, y_tile)
 .gpu_threads(yi).unroll(yo);

A.in().in().compute_at(prod, rxi)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(Ay);

set_alignment_and_bounds(A, size);
set_alignment_and_bounds(B, size);
set_alignment_and_bounds(out, size);

Schedule much harder to write and reason about then functional program!

Domain Specific Language 
embedded in C++

C++ API for selecting 
optimisation options

const int warp_size = 32;
const int vec_size = 2;
const int x_tile = 3;
const int y_tile = 4;
const int y_unroll = 8;
const int r_unroll = 1;

Var xi, yi, xio, xii, yii, xo, yo, x_pair, xiio, ty;
RVar rxo, rxi;

out.bound(x, 0, size)
 .bound(y, 0, size)
 .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll)
 .split(yi, ty, yi, y_unroll)
 .vectorize(xi, vec_size)
 .split(xi, xio, xii, warp_size)
 .reorder(xio, yi, xii, ty, x, y)
 .unroll(xio)
 .unroll(yi)
 .gpu_blocks(x, y)
 .gpu_threads(ty)
 .gpu_lanes(xii);
prod.store_in(MemoryType!::Register)
 .compute_at(out, x)
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .unroll(xo)
 .unroll(y)
 .update()
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .split(r.x, rxo, rxi, warp_size)
 .unroll(rxi, r_unroll)
 .reorder(xi, xo, y, rxi, ty, rxo)
 .unroll(xo)
 .unroll(y);

Var Bx = B.in().args()[0], By = B.in().args()[1];
Var Ax = A.in().args()[0], Ay = A.in().args()[1];
B.in()
 .compute_at(prod, ty)
 .split(Bx, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(By);

A.in()
 .compute_at(prod, rxo)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).split(Ay, yo, yi, y_tile)
 .gpu_threads(yi).unroll(yo);

A.in().in().compute_at(prod, rxi)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(Ay);

set_alignment_and_bounds(A, size);
set_alignment_and_bounds(B, size);
set_alignment_and_bounds(out, size);

C++ API for selecting 
optimisation options

Func prod(“prod");
RDom r(0, size);
prod(x, y) += A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Domain Specific Language 
embedded in C++

Halide - Program vs. Schedule
Program Schedule

…
out.bound(x, 0, size)
 .bound(y, 0, size)
 .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll)
 .split(yi, ty, yi, y_unroll)
 .vectorize(xi, vec_size)
 .split(xi, xio, xii, warp_size)
 .reorder(xio, yi, xii, ty, x, y)
 .unroll(xio)
 .unroll(yi)
 .gpu_blocks(x, y)
 .gpu_threads(ty)
 .gpu_lanes(xii);
…

Fixed set of optimisations ⇒ lack of extensibility

What happens if the order of these are swapped?  
⇒ unclear semantics ⇒ unclear how to automatically generate schedules

const int warp_size = 32;
const int vec_size = 2;
const int x_tile = 3;
const int y_tile = 4;
const int y_unroll = 8;
const int r_unroll = 1;

Var xi, yi, xio, xii, yii, xo, yo, x_pair, xiio, ty;
RVar rxo, rxi;

out.bound(x, 0, size)
 .bound(y, 0, size)
 .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll)
 .split(yi, ty, yi, y_unroll)
 .vectorize(xi, vec_size)
 .split(xi, xio, xii, warp_size)
 .reorder(xio, yi, xii, ty, x, y)
 .unroll(xio)
 .unroll(yi)
 .gpu_blocks(x, y)
 .gpu_threads(ty)
 .gpu_lanes(xii);
prod.store_in(MemoryType!::Register)
 .compute_at(out, x)
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .unroll(xo)
 .unroll(y)
 .update()
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .split(r.x, rxo, rxi, warp_size)
 .unroll(rxi, r_unroll)
 .reorder(xi, xo, y, rxi, ty, rxo)
 .unroll(xo)
 .unroll(y);

Var Bx = B.in().args()[0], By = B.in().args()[1];
Var Ax = A.in().args()[0], Ay = A.in().args()[1];
B.in()
 .compute_at(prod, ty)
 .split(Bx, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(By);

A.in()
 .compute_at(prod, rxo)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).split(Ay, yo, yi, y_tile)
 .gpu_threads(yi).unroll(yo);

A.in().in().compute_at(prod, rxi)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(Ay);

set_alignment_and_bounds(A, size);
set_alignment_and_bounds(B, size);
set_alignment_and_bounds(out, size);

C++ API for selecting 
optimisation options

Func prod(“prod");
RDom r(0, size);
prod(x, y) += A(x, r) * B(r, y);
out(x, y) = prod(x, y);

Domain Specific Language 
embedded in C++

Halide - Program vs. Schedule
Program Schedule

Unintuitive semantics: “Update: Get a handle on an update step for the purposes of scheduling it”

Unintuitive semantics: Why are these lines repeated

Halide - Program vs. Schedule
Program Schedule

Func prod(“prod");
RDom r(0, size);
prod(x, y) += A(x, r) * B(r, y);
out(x, y) = prod(x, y);

const int warp_size = 32;
const int vec_size = 2;
const int x_tile = 3;
const int y_tile = 4;
const int y_unroll = 8;
const int r_unroll = 1;

Var xi, yi, xio, xii, yii, xo, yo, x_pair, xiio, ty;
RVar rxo, rxi;

out.bound(x, 0, size)
 .bound(y, 0, size)
 .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll)
 .split(yi, ty, yi, y_unroll)
 .vectorize(xi, vec_size)
 .split(xi, xio, xii, warp_size)
 .reorder(xio, yi, xii, ty, x, y)
 .unroll(xio)
 .unroll(yi)
 .gpu_blocks(x, y)
 .gpu_threads(ty)
 .gpu_lanes(xii);
prod.store_in(MemoryType!::Register)
 .compute_at(out, x)
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .unroll(xo)
 .unroll(y)
 .update()
 .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp)
 .split(y, ty, y, y_unroll)
 .gpu_threads(ty)
 .unroll(xi, vec_size)
 .gpu_lanes(xi)
 .split(r.x, rxo, rxi, warp_size)
 .unroll(rxi, r_unroll)
 .reorder(xi, xo, y, rxi, ty, rxo)
 .unroll(xo)
 .unroll(y);

Var Bx = B.in().args()[0], By = B.in().args()[1];
Var Ax = A.in().args()[0], Ay = A.in().args()[1];
B.in()
 .compute_at(prod, ty)
 .split(Bx, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(By);

A.in()
 .compute_at(prod, rxo)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).split(Ay, yo, yi, y_tile)
 .gpu_threads(yi).unroll(yo);

A.in().in().compute_at(prod, rxi)
 .vectorize(Ax, vec_size)
 .split(Ax, xo, xi, warp_size)
 .gpu_lanes(xi)
 .unroll(xo).unroll(Ay);

set_alignment_and_bounds(A, size);
set_alignment_and_bounds(B, size);
set_alignment_and_bounds(out, size);

Schedules are second class citizens. 
We should write schedules in a proper programming language!

Domain Specific Language 
embedded in C++

C++ API for selecting 
optimisation options

ELEVATE 
A programming language for program optimizations

ELEVATE programs are composed of (possibly recursive) functions:  
 def transform(p: Program): RewriteResult[Program] = implementation 
 
Program transformations are expressed as functions with a particular type:  
 Program !-> RewriteResult[Program] 
Optimisation strategies are composed functions with the same type

A RewriteResult can either be Success or Failure 
 A successfully applied transformation contains the transformed program. 
 A unsuccessfully applied transformation is indicated as failure.

ELEVATE is a functional language that allows to compose individual 
program transformations into larger optimisation strategies.

ELEVATE for optimising Lift programs

ELEVATE can be used to optimise programs written in different languages

In this talk I focus on programs written in two functional languages: 
 - the data parallel Lift programming language 
 - the FSmooth language used for automatic differentiation

We intend to use ELEVATE for additional high-level languages like TensorFlow

Lift: More info at http:!//!!www.lift-project.org and papers at: [ICFP 2015] [CASES 2016] [CGO 2017 & 2018]  
FSmmoth: [ICFP 2019]

http://www.lift-project.org

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift [ICFP’15]

[GPGPU’16]

map()

reduce()

split(n)

join

zip

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

reduce(+,0, map(*, zip(a,b)))

reduce(+,0, map(*, zip(a,b)))

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

reduce(+,0, map(*, zip(a,b)))

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map(λ rowA ↦
map(λ colB ↦
 dotProduct(rowA, colB)

, transpose(B))
, A)

matrixMult.lift

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

Implementation Choices as Rewrite Rules

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)
join(map(map(f),
 split(n, A)))

Implementation Choices as Rewrite Rules

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

OptimizationS as MACRO Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

2D Tiling

[GPGPU’16]

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

OptimizationS as MACRO Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

2D Tiling

[GPGPU’16]

Many rewrite rules applied here

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(
���!
rowA 7!

Reduce(+) �Map(⇤)

$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

Register Blocking
Join() �Map(rowsA 7!

Map(
���!
rowA 7!

Map(
��!
colB 7!

Reduce(+) �Map(⇤)

$ Zip(
���!
rowA,

��!
colB)

) � Transpose() $B
) $ rowsA

) � Split(blockFactor) $A

9

Map(a 7! Map(b 7! f(a, b))))
Transpose() �Map(b 7! Map(a 7! f(a, b)))

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(
���!
rowA 7!

Reduce(+) �Map(⇤)

$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

10

Map(f � g)) Map(f) �Map(g)

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(

Reduce(+)

) �Map(
���!
rowA 7!

Map(⇤) $ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(
���!
rowA 7!

Reduce(+) �Map(⇤)

$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

10

Map(f � g)) Map(f) �Map(g)

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(

Reduce(+)

) �Map(
���!
rowA 7!

Map(⇤) $ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

11

Map(Reduce(f)))
Transpose() �Reduce(Map(f) � Zip())

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose() �Map(
���!
rowA 7!

Map(⇤)$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Map(

Reduce(+)

) �Map(
���!
rowA 7!

Map(⇤) $ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

11

Map(Reduce(f)))
Transpose() �Reduce(Map(f) � Zip())

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose() �Map(
���!
rowA 7!

Map(⇤)$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

12

Map(Map(f)))
Transpose() �Map(Map(f)) � Transpose()

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose()
� Transpose() �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose() �Map(
���!
rowA 7!

Map(⇤)$ Zip(
���!
rowA,

��!
colB)

) $ rowsA

) � Transpose() $B
) � Split(blockFactor) $A

12

Map(Map(f)))
Transpose() �Map(Map(f)) � Transpose()

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose()
� Transpose() �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

13

Transpose() � Transpose()) id

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) � Transpose()
� Transpose() �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

13

Transpose() � Transpose()) id

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

14

Reduce(f) �Map(g))
Reduce((acc, x) 7! f(acc, g(x))

Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!pair) 7!
Map(+) $ Zip(�!acc,

Map(x 7! x ⇤ pair. 1) $ pair. 0)

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!next) 7!

Map(+) $ Zip(�!acc,��!next)

) �Map(pair 7!
Map(x 7! x ⇤ pair. 1) $ pair. 0

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

14

Reduce(f) �Map(g))
Reduce((acc, x) 7! f(acc, g(x))

Register Blocking
Join() �Map(rowsA 7!

Transpose() �Map(
��!
colB 7!

Transpose() �Reduce((�!acc,��!pair) 7!
Map(+) $ Zip(�!acc,

Map(x 7! x ⇤ pair. 1) $ pair. 0)

) $ Zip(Transpose() $ rowsA,
��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

15

Map(f) �Map(g)) Map(f � g)

Combining Optimisations

17

(p239, p36 7!
Join() �Map((p179 7!

Transpose() � Join() �Map((p70 7!
Transpose() � Join() �Map((p20 7!

Transpose() �Map((p65 7!
Transpose()(p65)

)) � Transpose()(p20)
)) � Transpose() �Reduce((p75, p0 7!

Map((p164 7!
Join() �Map((p81 7!
Reduce((p136, p90 7!

Map((p163 7!
Get(0)(p163) +Get(1)(p163) ⇤Get(1)(p90)

)) � Zip(2)(p136, Get(0)(p90))

))(Get(0)(p81), Zip(2)(Transpose() �Get(1)(p164), Get(1)(p81)))

)) � Zip(2)(Get(0)(p164), Get(1)(p0))

)) � Zip(2)(p75, Split(blockFactor) � Transpose() �Get(0)(p0))

))(Zip(2)(Split(sizeK) � Transpose()(p179), p70))
)) � Transpose() �Map((p4 7!
Split(sizeN) � Transpose()(p4)

)) � Split(sizeK)(p36)

)) � Split(sizeM)(p239)

)

A ⇤B =

Map(
���!
rowA 7!

Map(
��!
colB 7!

DotProduct(
���!
rowA,

��!
colB)

) � Transpose() $B
) $A

80 rewrites

[GPGPU’16] Presentation Slides

80 rewrite steps!

ELEVATE for optimising Lift programs

Domain Specific Language 
embedded in Scala

Domain Specific Language 
embedded in Scala

Lift Program
val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

ELEVATE Program

Lift rewrite rule in ELEVATE
Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

Lift rewrite rule in ELEVATE
Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

Lift

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale)Apply transformation:

Lift rewrite rule in ELEVATE

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale) Failure!Apply transformation:

Lift rewrite rule in ELEVATE

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale) Failure!Apply transformation:
The transformation is applied at the wrong location

Lift rewrite rule in ELEVATE

The transformation is applied at the wrong location

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale) Failure!Apply transformation:

Lift rewrite rule in ELEVATEλ

a

id

λ

body

xs

id apply

body

arg

apply

fun

map

fun

λ

arg

x

id apply

body

arg

apply

fun

arg

mul

fun

The transformation is applied at the wrong location

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale) Failure!Apply transformation:

Lift rewrite rule in ELEVATEλ

a

id

λ

body

xs

id apply

body

arg

apply

fun

map

fun

λ

arg

x

id apply

body

arg

apply

fun

arg

mul

fun

The transformation is applied at the wrong location

Lift Program

ELEVATE Program

val scale = fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))

def splitJoin(n: Nat)(e: Lift): RewriteResult[Lift] = e match {
 case Apply(`map`, f) !=> Success(split(n) !|> map(map(f)) !|> join)
 case _ !=> Failure(splitJoin(n))
}

splitJoin(n)(scale) Failure!Apply transformation:

Lift rewrite rule in ELEVATEλ

a

id

λ

body

xs

id apply

body

arg

apply

fun

map

fun

λ

arg

x

id apply

body

arg

apply

fun

arg

mul

fun

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

body(body(function(splitJoin(n))))(
 fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))
)

Apply transformation:

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

body(body(function(splitJoin(n))))(
 fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))
)

Apply transformation:
Success!

λ

a

id

λ

body

xs

id apply

body

arg

apply

fun

map

fun

λ

arg

x

id apply

body

arg

apply

fun

arg

mul

fun

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

body(body(function(splitJoin(n))))(
 fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))
)

Apply transformation:
Success!

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

body(body(function(splitJoin(n))))(
 fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))
)

Apply transformation:
Success!

Compose existing strategies

ELEVATE Program def body(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Lambda(f, x) !=> s(x).mapSuccess(y !=> Lambda(f, y))
 case _ !=> Failure(s)
}

def function(s: Lift !=> RewriteResult[Lift])
 (e: Lift): RewriteResult[Lift] = e match {
 case Apply(f, e) !=> s(f).mapSuccess(g !=> Apply(g, e))
 case _ !=> Failure(s)
}

Traversal Lift programs

body(body(function(splitJoin(n))))(
 fun(a !=> fun(xs !=> 
 xs !|> map(fun(x !=> a * x))))
)

Apply transformation:
Success!

These are domain specific abstractions  
that makes sense for optimising  

 Lift programs. 
 

These are not backed into ELEVATE

Compose existing strategies

Generic ELEVATE combinators

type Strategy[P] = P !=> RewriteResult[P]

def id[P](p: P) = Success(p) 

def seq[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapSuccess(s)

def leftChoice[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapFailure(_ !=> s(p))

def try[P](s: Strategy[P])
 (p: P): RewriteResult[P] = leftChoice[P](s, id)(p)

def repeat[P](s: Strategy[P])
 (p: P): RewriteResult[P] = try[P](s `;` repeat[P](s))(p)
!!...

ELEVATE defines generic combinators for programs written in an arbitrary language P

Generic ELEVATE combinators

type Strategy[P] = P !=> RewriteResult[P]

def id[P](p: P) = Success(p) 

def seq[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapSuccess(s)

def leftChoice[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapFailure(_ !=> s(p))

def try[P](s: Strategy[P])
 (p: P): RewriteResult[P] = leftChoice[P](s, id)(p)

def repeat[P](s: Strategy[P])
 (p: P): RewriteResult[P] = try[P](s `;` repeat[P](s))(p)
!!...

ELEVATE defines generic combinators for programs written in an arbitrary language P

f `;` s

f !<+ s

Syntactic sugar:

Generic ELEVATE combinators

type Strategy[P] = P !=> RewriteResult[P]

def id[P](p: P) = Success(p) 

def seq[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapSuccess(s)

def leftChoice[P](f: Strategy[P], s: Strategy[P])
 (p: P): RewriteResult[P] = f(p).flatMapFailure(_ !=> s(p))

def try[P](s: Strategy[P])
 (p: P): RewriteResult[P] = leftChoice[P](s, id)(p)

def repeat[P](s: Strategy[P])
 (p: P): RewriteResult[P] = `try`[P](s `;` repeat[P](s))℗
!!...

ELEVATE defines generic combinators for programs written in an arbitrary language P[ICFP 1998]

f `;` s

f !<+ s

Syntactic sugar:

Generic ELEVATE traversals

!// applies strategy to all direct subexpressions 
def all[P]: Strategy[P] !=> Strategy[P] 
 
!// applies strategy to one direct subexpression
def one[P]: Strategy[P] !=> Strategy[P] 
 
!// applies strategy to at least one direct subexpression
def some[P]: Strategy[P] !=> Strategy[P] 
 
def oncetd[P](s: Strategy[P])
 (p: P): RewriteResult[P] = (s !<+ one(oncetd(s)))(p)

def tryAll[P](s: Strategy[P])
 (p: P): RewriteResult[P] = (all(tryAll(try(s))) `;` try(s))(p)
!!...

ELEVATE defines generic traversals if three basic traversals are defined for P

Generic ELEVATE normalisation

def normalize[P]: Strategy[P] !=> Strategy[P] = s !=> repeat(oncetd(s))

ELEVATE defines a normalisation strategy based on the generic traversals

This applies a given strategy until this is not applicable anymore

Complex compiler optimisations in ELEVATE

def tileNDRec: Int !=> Int !=> Strategy[Lift] = dim !=> n !=> dim match {
 case x if x !<= 0 !=> id()
 case 1 !=> function(splitJoin(n))
 case 2 !=> fmap(function(splitJoin(n))) `;` function(splitJoin(n)) `;` shiftDim(2)
 case i !=> fmap(tileNDRec(dim-1)(n)) `;` tileNDRec(1)(n) `;` shiftDim(i)
}

With ELEVATE we easily express traditional compiler optimisations, like tiling or loop reordering:

def reorder: Seq[Int] !=> Strategy[Lift] = perm !=> {
 if(perm.length !== 1) return id
 (perm.head match {
 case 1 !=> fmap(reorder(perm.tail.map(_-1)))
 case x !=>
 val transposes = x-1
 shiftDimension(transposes) `;`
 moveTowardsArgument(transposes)(fmap(reorder(perm.tail.map(y !=> if(y > x) y-1 else y))))
 }) `;` RNF `;` LCNF
}

Complex compiler optimisations in ELEVATE

def tileNDRec: Int !=> Int !=> Strategy[Lift] = dim !=> n !=> dim match {
 case x if x !<= 0 !=> id()
 case 1 !=> function(splitJoin(n))
 case 2 !=> fmap(function(splitJoin(n))) `;` function(splitJoin(n)) `;` shiftDim(2)
 case i !=> fmap(tileNDRec(dim-1)(n)) `;` tileNDRec(1)(n) `;` shiftDim(i)
}

With ELEVATE we easily express traditional compiler optimisations, like tiling or loop reordering:

def reorder: Seq[Int] !=> Strategy[Lift] = perm !=> {
 if(perm.length !== 1) return id
 (perm.head match {
 case 1 !=> fmap(reorder(perm.tail.map(_-1)))
 case x !=>
 val transposes = x-1
 shiftDimension(transposes) `;`
 moveTowardsArgument(transposes)(fmap(reorder(perm.tail.map(y !=> if(y > x) y-1 else y))))
 }) `;` RNF `;` LCNF
}

 float[B][A]
1. float[bTile][B/bTile][A] !// traverse to innermost dim and apply split join
2. float[bTile][B/bTile][aTile][A/aTile] !// apply splitJoin to next `map` going inner !-> outer
3. float[bTile][aTile][B/bTile][A/aTile] !// reorder tiles using map(transpose)

ELEVATE for optimising Lift programs

Lift Program

ELEVATE Program

Program

Schedule
Domain Specific 

Compiler
Performance

Halide

PerformanceGeneric rewrite-based 
Compiler

Domain Specific 
Optimisations

Goal: Demonstrate same performance as Halide with a more extensible design

ELEVATE for optimising FSmooth programs

97

Efficient Differentiable Programming in a Functional
Array-Processing Language

AMIR SHAIKHHA, University of Oxford, United Kingdom

ANDREW FITZGIBBON,Microsoft Research, United Kingdom

DIMITRIOS VYTINIOTIS, DeepMind, United Kingdom

SIMON PEYTON JONES,Microsoft Research, United Kingdom

We present a system for the automatic differentiation (AD) of a higher-order functional array-processing
language. The core functional language underlying this system simultaneously supports both source-to-
source forward-mode AD and global optimisations such as loop transformations. In combination, gradient
computation with forward-mode AD can be as efficient as reverse mode, and that the Jacobianmatrices required
for numerical algorithms such as Gauss-Newton and Levenberg-Marquardt can be efficiently computed.

CCS Concepts: • Mathematics of computing → Automatic differentiation; • Software and its engi-
neering→ Functional languages; Domain specific languages.

Additional Key Words and Phrases: Linear Algebra, Differentiable Programming, Optimising Compilers, Loop

Fusion, Code Motion.

ACM Reference Format:
Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones. 2019. Efficient Differentiable
Programming in a Functional Array-Processing Language. Proc. ACM Program. Lang. 3, ICFP, Article 97
(August 2019), 30 pages. https://doi.org/10.1145/3341701

... in the summer of 1958 John McCarthy decided to investigate differentiation as an
interesting symbolic computation problem, which was difficult to express in the primitive
programming languages of the day. This investigation led him to see the importance of
functional arguments and recursive functions in the field of symbolic computation. From
Norvig [Norvig 1992, p248].

1 INTRODUCTION

Forward-mode Automatic Differentiation is relatively straightforward, both as a runtime technique
using dual numbers, or as a source-to-source program transformation. However, forward-mode
AD is usually considered wildly inefficient as a way to compute the gradient of a function, because
it involves calling the forward-mode AD function n times — and n may be very large (e.g. n = 106).
This has led to a tremendous amount of work on reverse-mode AD. As a source-to-source

transformation, reverse-mode AD is characterised by the necessity to maintain temporary variables
holding partial results, to be consumed during a “reverse pass” of gradient computation. Modern

Authors’ addresses: Amir Shaikhha, University of Oxford, United Kingdom, amir.shaikhha@cs.ox.ac.uk; Andrew Fitzgibbon,
Microsoft Research, United Kingdom, awf@microsoft.com; Dimitrios Vytiniotis, DeepMind, United Kingdom, dvytin@
google.com; Simon Peyton Jones, Microsoft Research, United Kingdom, simonpj@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART97
https://doi.org/10.1145/3341701

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 97. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

[ICFP 2019]

5 EFFICIENT DIFFERENTIATION 
 
… 
One of the key challenges for applying these rewrite
rules is the order in which these rules should be applied.
We apply these rules based on heuristics and cost
models for the size of the code (which is used by many
optimising compilers, especially the ones for just-in-time
scenarios). Furthermore, based on heuristics, we ensure
that certain rules are applied only when some specific
other rules are applicable. For example, the loop fission
rule (Figure 8g) is usually applicable only when it can be
combined with tuple projection partial evaluation rules
(Figure 8f). We leave the use of search strategies for
automated rewriting (e.g., using Monte-Carlo tree search
[De Mesmay et al. 2009]) as future work. 
…

ELEVATE for optimising FSmooth programs
97:14 Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones

(fun x -> e0) e1 ! let x = e1 in e0
let x = e0 in e1 ! e1[x !→ e0]
let x = e0 in e1 ! e1 (x " fvs(e1))
let x = let y = e0 in
let y = e0 in e1 ! let x = e1

in e2 in e2
let x = e0 in let x = e0 in
let y = e0 in ! let y = x in
e1 e1
let x = e0 in let y = e1 in
let y = e1 in ! let x = e0 in
e2 e2
f(let x = e0 in e1) ! let x = e0 in f(e1)

(a) λ-Calculus Rules

e + 0 = 0 + e ! e
e * 1 = 1 * e ! e
e * 0 = 0 * e ! 0
e + -e = e - e ! 0
e0 * e1 + e0 * e2 ! e0 * (e1 + e2)

(b) Ring-Structure Rules

(build e0 e1)[e2] ! e1 e2
length (build e0 e1) ! e0

(c) Loop Fusion Rules

if true then e1 else e2 ! e1
if false then e1 else e2 ! e2
if e0 then e1 else e1 ! e1
if e0 then e1 else e2 ! if e0 then e1[e0 !→ true] else e2[e0 !→ false]
f (if e0 then e1 else e2) ! if e0 then f (e1) else f (e2)

(d) Conditional Rules

ifold f z 0 ! z
ifold f z n ! ifold (fun a i -> f a (i+1)) (f z 0) (n - 1)
ifold (fun a i -> a) z n ! z
ifold (fun a i -> let a = z in let i = e0 in
if(i = e0) then e1 else a) z n ! e1 (if e0 does not mention a or i)

(e) Loop Normalisation Rules

fst (e0, e1) ! e0
snd (e0, e1) ! e1

(f) Tuple Normalisation Rules

ifold (fun a i ->
(f0 (fst a) i, f1 (snd a) i) ! (ifold f0 z0 n,

) (z0, z1) n ifold f1 z1 n)

(g) Loop Fission Rule

Fig. 8. Transformation Rules for F̃. Even though none of these rules are AD-specific, the rules of Figure 8f and
Figure 8g are more useful in the AD context.

Example 5. It is known that for a matrix M , the following equality holds (MT)
T
= M . We show

how we can derive the same equality in d̃f. In other words, we show that:

matrixTranspose (matrixTranspose M) = M

After let binding the inner expression, and inlining the definition of matrixTranpose and the
functions inside it, the following program is produced:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 97. Publication date: August 2019.

def funToLet(e: FSmooth): RewriteResult[FSmooth] = e match {
 case Application(Abstraction(Seq(x), e0, _), Seq(e1), _) !=> 
 Success(Let(x, e1, e0))
 case _ !=> Failure(funToLet)
} 
 
def additionZero(e: FSmooth): RewriteResult[FSmooth] = e match {
 case Application(`+`(_), Seq(e, ScalarValue(0)), _) !=> 
 Success(e)
 case Application(`+`(_), Seq(ScalarValue(0), e), _) !=> 
 Success(e)
 case _ !=> Failure(additionZero)
}
 
def trivialFold(e: FSmooth): RewriteResult[FSmooth] = e match {
 case Application(`ifold`(_), Seq(f, z, ScalarValue(0)), _) !=> 
 Success(z)
 case _ !=> Failure(trivialFold)
}
 
…

ELEVATE for optimising FSmooth programs

normalize( 
 buildGet !<+ 
 lengthBuild !<+ 
 letPartialEvaluation !<+ 
 conditionalPartialEvalution !<+ 
 conditionApplication !<+
 letApplication !<+
 funToLet !<+
 letFission !<+
 letInitDuplication
).apply( 
 fun(M !=> matrixTranspose(matrixTranspose(M))) 
)

Left choice combinator

ELEVATE 
A programming language for program optimizations

This is work in progress. 
No evaluation yet, and some open questions and challenges:

- How do we evaluate ELEVATE?

- How do we design a programming interface friendly to systems programmers?

- Can we use ELEVATE to help model stochastic searches in a design space?

- Can we automatically find good ELEVATE programs, 
e.g. using machine learning or program synthesis techniques?

Lift is open Source!

lift-project.org

Bastian Hagedorn:

Paper CGO Artifact Source Code

more info at:

b.hagedorn@wwu.de

Best Paper Award (CGO'18)

To be continued...

Naums Mogers Toomas Remmelg

Christophe Dubach

Bastian Hagedorn

Lu Li

Larisa Stoltzfus

Michel Steuwer

Federico Pizzuti

Artifacts

Thomas KoehlerBastian Köpcke

 Christof Schlaak

Andrej Ivanis

michel.steuwer.info

#UofGWorldChangers
@UofGlasgow

Michel Steuwer — michel.steuwer@glasgow.ac.uk

www.lift-project.org @LIFTlang

ELEVATE a language to write
composable program optimisations

mailto:michel.steuwer@glasgow.ac.uk
http://www.lift-project.org
https://twitter.com/Liftlang

