
BASTIAN HAGEDORN, JOHANNES LENFERS, THOMAS KOEHLER, XUEYING QIN, RONGXIAO FU,
SERGEI GORLATCH (University of Münster, Germany), ORNELA DARDHA (University of Glasgow), MICHEL STEUWER (University of Edinburgh)

Achieving High-Performance the Functional Way
Expressing High-Performance Optimizations as Rewrite Strategies

1

92

Achieving High-Performance the Functional Way
A Functional Pearl on Expressing High-Performance Optimizations as Rewrite Strategies

BASTIAN HAGEDORN, University of Münster, Germany

JOHANNES LENFERS, University of Münster, Germany

THOMAS KŒHLER, University of Glasgow, UK

XUEYING QIN, University of Glasgow, UK

SERGEI GORLATCH, University of Münster, Germany

MICHEL STEUWER, University of Glasgow, UK

Optimizing programs to run e!ciently on modern parallel hardware is hard but crucial for many applications.
The predominantly used imperative languages - like C or OpenCL - force the programmer to intertwine the
code describing functionality and optimizations. This results in a portability nightmare that is particularly
problematic given the accelerating trend towards specialized hardware devices to further increase e!ciency.

Many emerging DSLs used in performance demanding domains such as deep learning or high-performance
image processing attempt to simplify or even fully automate the optimization process. Using a high-level - often
functional - language, programmers focus on describing functionality in a declarative way. In some systems
such as Halide or TVM, a separate schedule speci"es how the program should be optimized. Unfortunately,
these schedules are not written in well-de"ned programming languages. Instead, they are implemented as a
set of ad-hoc prede"ned APIs that the compiler writers have exposed.

In this functional pearl, we show how to employ functional programming techniques to solve this challenge
with elegance. We present two functional languages that work together - each addressing a separate concern.
RISE is a functional language for expressing computations using well known functional data-parallel patterns.
ELEVATE is a functional language for describing optimization strategies. A high-level RISE program is trans-
formed into a low-level form using optimization strategies written in ELEVATE. From the rewritten low-level
program high-performance parallel code is automatically generated. In contrast to existing high-performance
domain-speci"c systems with scheduling APIs, in our approach programmers are not restricted to a set of
built-in operations and optimizations but freely de"ne their own computational patterns in RISE and optimiza-
tion strategies in ELEVATE in a composable and reusable way. We show how our holistic functional approach
achieves competitive performance with the state-of-the-art imperative systems Halide and TVM.

CCS Concepts: • Software and its engineering→ Functional languages; Compilers; • Theory of com-
putation→ Rewrite systems.

Additional Key Words and Phrases: Rewrite Rules, Optimization Strategies, Strategy Languages, ELEVATE

ACM Reference Format:
Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer.
2020. Achieving High-Performance the Functional Way: A Functional Pearl on Expressing High-Performance
Optimizations as Rewrite Strategies. Proc. ACM Program. Lang. 4, ICFP, Article 92 (August 2020), 29 pages.
https://doi.org/10.1145/3408974

Authors’ addresses: Bastian Hagedorn, University of Münster, Germany, b.hagedorn@wwu.de; Johannes Lenfers, University
of Münster, Germany, j.le@wwu.de; Thomas Kœhler, University of Glasgow, UK, t.koehler.1@research.gla.ac.uk; Xueying
Qin, University of Glasgow, UK, 2335466q@student.gla.ac.uk; Sergei Gorlatch, University of Münster, Germany, gorlatch@
wwu.de; Michel Steuwer, University of Glasgow, UK, michel.steuwer@glasgow.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART92
https://doi.org/10.1145/3408974

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://michel.steuwer.info/files/publications/2020/ICFP-2020.pdf

Why do we care about “High-Performance”?

Training modern machine learning models is crazily (computational) expensive

3

Why do we care about “High-Performance”?

4

The Boom of Machine Learning Accelerators

Who is going to program (and optimize for) all of these hardware devices?

5

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

6

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

Compiler heuristics are optimized for average cases

often delivering suboptimal performance

7

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

• Write low-level code

Straightforward matrix multiplication Optimized matrix multiplication
(321 lines of code in total)

10-100x
performance

30x
lines of code

8

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

• Write low-level code

Straightforward matrix multiplication Optimized matrix multiplication
(321 lines of code in total)

10-100x
performance

30x
lines of code

Low-level code is error prone, hard to debug

& specific for a single device or architecture

9

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

• Write low-level code

• Scheduling APIs

Halide

Fireiron

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimization Schedule

Halide 
compiler

Optimised Code

10

How do we control optimizations for performance sensitive code?

• Rely on compiler heuristics

• Write low-level code

• Scheduling APIs

Halide

Fireiron

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimization Schedule

Halide 
compiler

Optimised Code

Detailed control of

optimizations

Clear separation between

computation & optimizations

11

Problems with Scheduling APIs

12

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimization Schedule

Halide 
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

We should aim for more principled ways to describe and apply optimisations

Only fixed built-in
optimisations

Not well defined
semantics

No clear separationHinders reuse

Hinders understanding

No extensibility

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Our goals:

13

1. Separate concerns
Computations should be expressed at a high abstraction level only.
They should not be changed to express optimizations;

2. Facilitate reuse
Optimization strategies should be defined clearly separated from the computational
program facilitating reusability of computational programs and strategies;

3. Enable composability
Computations and strategies should be written as compositions of user-defined
building blocks (possibly domain-specific ones); both languages should facilitate the
creation of higher-level abstractions;

4. Allow reasoning
Computational patterns, but also especially strategies, should have a precise, well-
defined semantics allowing reasoning about them;

5. Be explicit
Implicit default behavior should be avoided to empower users to be in control.

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Our goals:

14

1. Separate concerns
Computations should be expressed at a high abstraction level only.
They should not be changed to express optimizations;

2. Facilitate reuse
Optimization strategies should be defined clearly separated from the computational
program facilitating reusability of computational programs and strategies;

3. Enable composability
Computations and strategies should be written as compositions of user-defined
building blocks (possibly domain-specific ones); both languages should facilitate the
creation of higher-level abstractions;

4. Allow reasoning
Computational patterns, but also especially strategies, should have a precise, well-
defined semantics allowing reasoning about them;

5. Be explicit
Implicit default behavior should be avoided to empower users to be in control.

Fundamentally we argue that a more principled high-performance

code generation approach should be holistic by considering
computation and optimization strategies equally important.

As a consequence, a strategy language should be built with the

same standards as a language describing computation.

“The Functional Way” for Achieving High-Performance

15

ELEVATE — A Language for Describing Optimisation Strategies

• In ELEVATE Optimisation Strategies are encoded as functions

• Rewrite rules are examples of basic strategies

16

type Strategy[P]: P ->- RewriteResult[P]
Rewritten Program

Failure
or

def mapFusion: Strategy = (p) =>= p match {
 case app(app(map, f),
 app(app(map, g), xs)) =
 Success(map(fun(x =>= f(g(x))), xs))
 case _ = Failure()
}

mapFusion() =

Strategy Combinators

• Sequential composition (;):

• Left choice (<<+):

• Try:

• Repeat:

def seq[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P]
 = fs =>= ss =>= p =>= fs(p) >>>== (q =>= ss(p))

def lChoice[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P]
 = fs =>= ss =>= p =>= fs(p) <|<|> ss(p)

def try[P]: Strategy[P] =>= Strategy[P] = s =>= p =>= (s <<+ id)(p)

def repeat[P]: Strategy[P] =>= Strategy[P] = s =>= p =>= try(s ; repeat(s))(p)

17

Traversal Strategies

• Where to apply a rewrite strategy?

Two possible locations for applying

within the same expression

def mapFusion: Strategy = …

18

Traversal Strategies

body(mapFusion)(threemaps) vs body(argument(mapFusion))(threemaps)

19

Complex Traversals + Normalization

• With three basic generic traversals

• we define more complex traversals:

• With these traversals we define normal forms, e.g. 𝛽𝜂-normal-form:

20

Tiling defined as an optimisation strategy

21

def tile: Int ->- Int ->- Strategy =
 (dim) =>= (n) =>= dim match {
 case 1 = function(splitJoin(n))

 case 2 = fmap(function(splitJoin(n))) ;
 function(splitJoin(n)) ; interchange(2)
 case i = fmap(tile(dim-1, n)) ;
 function(splitJoin(n)) ; interchange(n)
 }

Tiling defined as composition of rewrites not a built-in!

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

• We attempt to express the same optimizations described in the TVM tutorial:

22

100x

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy

Clear separation of concerns

Implicit behaviorBe explicit
Enable composability

23

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy

User-defined vs. build inFacilitate reuse

No clear separation
of concerns

24

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy

Clear separation of concerns No clear separation of concernsvs

Facilitate reuse

25

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Number of successful rewrite steps

26

Rewrite based approach scales to complex optimizations

Rewriting took less than 2 seconds with our unoptimised implementation

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Performance of generated code

27

Competitive performance compared to TVM compiler

Types for ELEVATE ?

• Can types help to write ELEVATE strategies?

• We are developing a row-polymorphic version of ELEVATE
joined work with Rongxiao Fu and Ornela Dardha

28

Fundamentally we argue that a more principled high-performance

code generation approach should be holistic by considering
computation and optimization strategies equally important.

As a consequence, a strategy language should be built with the

same standards as a language describing computation.

Datatypes in a row

type Point = {X: Int | Y: Int | Z: Int | *}Record:

type Color = <Red: {*} | Green: {*} | Blue: {*} | *>Variant:

row

*

Tag: Type | row Variant := <row>

Record := {row}

24

29

Rows are a generalisation of record and variant types

Datatypes in a row

type Point = {X: Int | Y: Int | Z: Int | *}Record:

type Color = <Red: {*} | Green: {*} | Blue: {*} | *>Variant:

shiftX: (n: Int) -> (p: Point) -> Point

setRed: (p: ColorfulPoint) -> ColorfulPoint

type ColorfulPoint = {X: Int | Y: Int | Z: Int | Color: Color | *}

26

30

How do we make Point and ColorfulPoint compatible?

31

type ColorfulPoint = {X: Int | Y: Int | Z: Int | Color: Color | *}

Datatypes in a row

type Point = {X: Int | Y: Int | Z: Int | r}Record:

type Color = <Red: {*} | Green: {*} | Blue: {*} | *>Variant:

shiftX: (n: Int) -> (p: Point) -> Point

setRed: (p: ColorfulPoint) -> ColorfulPoint

28

Types are compatible not via subtyping
but by instantiating row variables

32

Datatypes in a row

type Primitive = forall [p]. <Map: {*} | Reduce: {*} | Slide: {*} | p>

type Rise = forall [p]. e as <Id: {Name: Nat | *} |

Lam: {Param: Nat | Body: e | *} | App: {Fun: e | Arg: e | *} |

Primitive: Primitive[p] | *>

row

*

Tag: Type | row

Variant := <row>

Record := {row}

r

Recursive Variant := a as <row>

31

We represent computational expressions using a variant type

33

RISE AST as a recursive row-polymorphic variant type:

Encoding Representation of Programs in Types

34

Representing Programs in Types — Example

:

TypeDesuggared expression:

Suggared expression:

35

Types of Strategies

36

Map Fusion Strategy

:

Inferred TypeStrategy Implementation

37

Map Fusion Strategy — With Syntactic Sugar

:

Inferred TypeStrategy Implementation

38

Strategy Combinators and Types

Can not fail

Returns program p unchanged

Always fails

Combines types of first and
second strategy

Possibility of failure
depends on the second strategy

39

Safe Compositions

seq mapFusion mapFusion :

Inferred Type

Input program must be the composition of three maps

40

Future Applications for Strategy Types

- Verification of correctness of program transformations

Types (of strategies) as propositions

- Synthesizing program transformations

Types as specifications

Achieving High-Performance the Functional Way
• I have presented a new functional way to achieve high-performance:

• Computations are expressed using functional patterns

• Optimization strategies are build in a novel strategy language

• We achieve performance similar to existing machine learning systems

• We are looking into how row-polymorphic types might help to write strategies

ICFP Paper at: https://michel.steuwer.info/files/publications/2020/ICFP-2020.pdf

41

https://michel.steuwer.info/files/publications/2020/ICFP-2020.pdf

RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

42

Rewriting

Code Generation

A framework for systematically optimising domain-specific applications for specialised hardware

