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Outline of Lectures over the week

• Tuesday: Functional Intermediate Representations 
• Lambda Calculus and the Lambda Cube 
• Implementation Strategies for System F (ADTs across different PLs) 
• Compiler transformations as rewrite rules 

• Wednesday: Imperative Intermediate Representations 
• Foundations of Single Static Assignment (SSA) 
• LLVM IR 
• Control-Flow Graphs 
• Data-flow analysis 

• Thursday: Domain-Specific Intermediate Representations 
• MLIR — a compiler infrastructure for building domain-specific intermediate representations 
• Dataflow graphs — TensorFlow 
• Pattern-based (and functional) — RISE
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Lamda Calculus

72 5 The Untyped Lambda-Calculus

→ (untyped)

Syntax

t ::= terms:

x variable

λx.t abstraction

t t application

v ::= values:

λx.t abstraction value

Evaluation t !→ t′

t1 !→ t′1
t1 t2 !→ t′1 t2

(E-App1)

t2 !→ t′2
v1 t2 !→ v1 t

′
2

(E-App2)

(λx.t12) v2 !→ [x" v2]t12 (E-AppAbs)

Figure 5-3: Untyped lambda-calculus (λ)

Operational Semantics

The operational semantics of lambda-terms is summarized in Figure 5-3. The

set of values here is more interesting than we saw in the case of arithmetic

expressions. Since (call-by-value) evaluation stops when it reaches a lambda,

values can be arbitrary lambda-terms.

The evaluation relation appears in the right-hand column of the figure.

As in evaluation for arithmetic expressions, there are two sorts of rules: the

computation rule E-AppAbs and the congruence rules E-App1 and E-App2.

Notice how the choice of metavariables in these rules helps control the

order of evaluation. Since v2 ranges only over values, the left-hand side of

rule E-AppAbs can match any application whose right-hand side is a value.

Similarly, rule E-App1 applies to any application whose left-hand side is not

a value, since t1 can match any term whatsoever, but the premise further

requires that t1 can take a step. E-App2, on the other hand, cannot fire until

the left-hand side is a value so that it can be bound to the value-metavariable

v. Taken together, these rules completely determine the order of evaluation

for an application t1 t2: we first use E-App1 to reduce t1 to a value, then

use E-App2 to reduce t2 to a value, and finally use E-AppAbs to perform the

application itself.

5.3.6 Exercise [##]: Adapt these rules to describe the other three strategies for

evaluation—full beta-reduction, normal-order, and lazy evaluation. $

Note that, in the pure lambda-calculus, lambda-abstractions are the only

possible values, so if we reach a state where E-App1 has succeeded in reducing

t1 to a value, then this value must be a lambda-abstraction. This observation

Types and Programming Languages, B. Pierce
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Typed Lambda Calculus
What type system (or logical foundation) do you want?

Simply typed λ-calculus
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Simply Typed Lambda Calculus

9.2 The Typing Relation 103

→ (typed) Based on λ (5-3)

Syntax

t ::= terms:

x variable

λx :T .t abstraction

t t application

v ::= values:

λx :T .t abstraction value

T ::= types:

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Evaluation t !→ t′

t1 !→ t′1

t1 t2 !→ t′1 t2

(E-App1)

t2 !→ t′2

v1 t2 !→ v1 t
′
2

(E-App2)

(λx :T11 .t12) v2 !→ [x" v2]t12 (E-AppAbs)

Typing Γ # t : T

x:T ∈ Γ

Γ # x : T
(T-Var)

Γ , x:T1 # t2 : T2

Γ # λx:T1.t2 : T1→T2

(T-Abs)

Γ # t1 : T11→T12 Γ # t2 : T11

Γ # t1 t2 : T12

(T-App)

Figure 9-1: Pure simply typed lambda-calculus (λ→)

x:Bool ∈ x:Bool
T-Var

x:Bool # x : Bool
T-Abs

# λx:Bool.x : Bool→Bool
T-True

# true : Bool
T-App

# (λx:Bool.x) true : Bool

9.2.2 Exercise [# $]: Show (by drawing derivation trees) that the following terms

have the indicated types:

1. f:Bool→Bool # f (if false then true else false) : Bool

2. f:Bool→Bool # λx:Bool. f (if x then false else x) : Bool→Bool %

9.2.3 Exercise [#]: Find a context Γ under which the term f x y has type Bool. Can

you give a simple description of the set of all such contexts? %

Types and Programming Languages, B. Pierce
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Typed Lambda Calculus
What type system (or logical foundation) do you want?

Terms can 
bind types

Types can 
bind terms

Types can 
bind types

Po
ly

m
or

ph
is

m

Dependent types
Typ

e O
pera

tors

Simply typed λ-calculus

System F

6

Terms can 
bind terms



λ2 (aka SystemF)
23.3 System F 343

→∀ Based on λ→ (9-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

λX.t type abstraction

t [T] type application

v ::= values:

λx:T.t abstraction value

λX.t type abstraction value

T ::= types:

X type variable

T→T type of functions

∀X.T universal type

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X type variable binding

Evaluation t !→ t′

t1 !→ t′1

t1 t2 !→ t′1 t2

(E-App1)

t2 !→ t′2

v1 t2 !→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 !→ [x" v2]t12 (E-AppAbs)

t1 !→ t′1
t1 [T2] !→ t′1 [T2]

(E-TApp)

(λX.t12) [T2] !→ [X" T2]t12 (E-TappTabs)

Typing Γ $ t : T

x:T ∈ Γ

Γ $ x : T
(T-Var)

Γ , x:T1 $ t2 : T2

Γ $ λx:T1.t2 : T1→T2

(T-Abs)

Γ $ t1 : T11→T12 Γ $ t2 : T11

Γ $ t1 t2 : T12

(T-App)

Γ , X $ t2 : T2

Γ $ λX.t2 : ∀X.T2

(T-TAbs)

Γ $ t1 : ∀X.T12

Γ $ t1 [T2] : [X" T2]T12

(T-TApp)

Figure 23-1: Polymorphic lambda-calculus (System F)

is to keep track of scopes and make sure that the same type variable is not

added twice to a context. In later chapters, we will annotate type variables

with information of various kinds, such as bounds (Chapter 26) and kinds

(Chapter 29).

Figure 23-1 shows the complete definition of the polymorphic lambda-

calculus, with differences from λ→ highlighted. As usual, this summary de-

fines just the pure calculus, omitting other type constructors such as records,

Types and Programming Languages, B. Pierce



Haskell Core is build on SystemF*

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

map :: forall a b. (a -> b) -> [a] -> [b]
map =
  \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
    case xs of _ {
      []     -> GHC.Types.[] @ b;
      : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys)
    }

map :: (a -> b) -> [a] -> [b]
map _ []     = []
map f (x:xs) = f x : map f xs

8

Haskell

Core

* Haskell is actually build on an extension called System FC: 
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf

http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf


Implementing SystemF

• GHC Core Implementation: 
https://gitlab.haskell.org/ghc/ghc/-/blob/a1f34d37b47826e86343e368a5c00f1a4b1f2bce/compiler/GHC/Core.hs#L140 

• Nice in-depth introductions into Haskell Core: 
https://www.youtube.com/watch?v=uR_VzYxvbxg 
http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html 

• Many textbook implementations on GitHub 

• E.g. https://github.com/Zepheus/SystemF/blob/master/systemf.hs

https://gitlab.haskell.org/ghc/ghc/-/blob/a1f34d37b47826e86343e368a5c00f1a4b1f2bce/compiler/GHC/Core.hs#L140
https://www.youtube.com/watch?v=uR_VzYxvbxg
http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html
https://github.com/Zepheus/SystemF/blob/master/systemf.hs


Algebraic Data Types across different PLs 

data Term = 
  -- Simply typed lambda calculus: 
  Var Symbol | 
  Lambda Symbol Type Term | 
  App Term Term | 
  -- System F 
  TLambda Type Term | 
  TApp Term Type 
  deriving (Show,Eq) 

Haskell C++

class AST { 
  Node *root; 
  VariablePool *varPool; 
public: 
  AST(Node *root); 
  virtual ~AST(); 
  … 
};

??

From: https://github.com/omelkonian/
lambda-calculus-interpreter/blob/master/
abstract_syntax_tree/AST.h

https://github.com/omelkonian/lambda-calculus-interpreter/blob/master/abstract_syntax_tree/AST.h
https://github.com/omelkonian/lambda-calculus-interpreter/blob/master/abstract_syntax_tree/AST.h
https://github.com/omelkonian/lambda-calculus-interpreter/blob/master/abstract_syntax_tree/AST.h


System F in modern C++

• Use std:::variant as our sum type 

• Use structs as our product type 

• Use std:::visit to fake pattern matching 

• Caveat: fairly inefficient implementation … 
             … but it’s fun (and useful) to see the 
                 functional concepts shine through.

https://github.com/michel-steuwer/systemF_in_Cpp
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struct Var; 
struct Lambda; 
struct Apply; 
struct TLambda; 
struct TApply; 

using Expr = std::variant< 
    Var, 
    Lambda, 
    Apply, 
    TLambda, 
    TApply 
    >;

https://github.com/michel-steuwer/systemF_in_Cpp


Compiler transformations as rewrite rules

map f (map g xs) === map (f . g) xs

{-# RULES 
 “map/map” formal f g xs. 
           map f (map g xs) = map (f . g) XS 
#-}

Playing by the Rules: Rewriting a practical optimisation technique in GHC, Simon P. Jones, Andrew Tolmach, Tony Hoare

12



Compiler transformations as rewrite rules

13

• In which order apply the rules? 

• Will the rewriting terminate? Is it confluence? 

• Are the rules correct?
92:10 B. Hagedorn, J. Lenfers, T. Kœhler, X. Qin, S. Gorlatch, and M. Steuwer

1 mapSplit : (n: N) → {m: N} → {s t: Set} → (f: s → t) → (xs: Vec s (m * n)) →
2 map (map f) (split n {m} xs) ≡ split n {m} (map f xs)
3 simplification : (n: N) → {m: N} → {t: Set} → (xs: Vec t (m*n)) → (join ◦ split n {m}) xs ≡ xs
4 {- Split-join rule proof -}
5 splitJoin : {m: N} → {s: Set} → {t: Set} → (n: N) → (f: s → t) → (xs: Vec s (m * n)) →
6 (join ◦ map (map f) ◦ split n {m}) xs ≡ map f xs
7 splitJoin {m} n f xs =
8 begin
9 (join ◦ map (map f) ◦ split n {m}) xs
10 ≡〈〉
11 join (map (map f) (split n {m} xs))
12 ≡〈 cong join (mapSplit n {m} f xs) 〉
13 join (split n {m} (map f xs))
14 ≡〈 simplification n {m} (map f xs) 〉
15 map f xs
16 !

Listing 3. Proof of correctness of the splitJoin rewrite rule in Agda

Figure 6 shows rewrite rules that are used as basic building blocks in this paper for expressing
optimizations such as tiling, discussed later in Section 5. One advantage of the functional rewrite
approach is that these rules are intuitive and that there is a clear pathway to prove their correct-
ness. We have formally proven correctness in Agda, a dependently typed programming language
originally developed by Norell [2007]. We encoded the semantics of the RISE patterns in Agda and
expressed the rewrite rules as types following the propositions-as-types interpretation [Wadler
2015]. Providing a well-de!ned semantics allows precise reasoning about the rewrite rules and
their composition as strategies - one of the key aims that we set out for our approach.
Listing 3 shows the proof for the splitJoin rewrite rule in Agda. The proof makes use of

two lemmas shown at the top. The mapSplit lemma says that the split primitive splitting a one-
dimensional array into a two-dimensional one can either be applied before two nested maps or after
a single one. The simplification lemma states that split and its opposite pattern join cancel each
other out. In the future, we want to directly generate implementations from Agda for rewrite rules
which integrate with our Scala DSL, guaranteeing that we only use proven rules.

4.4 Strategy Combinators

An idea that ELEVATE inherits from Stratego [Visser 2004] is to describe strategies as compositions –
one of the key aims that we set out for our approach. Therefore, we introduce strategy combinators.
The seq combinator is given two strategies fs and ss and applies the !rst strategy to the input

program p. Afterward, the second strategy is applied to the result.

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] = fs => ss => p => fs(p) »= (q => ss(q))

The seq strategy is successful when it applied both strategies successfully in succession; otherwise,
seq fails. In our combinator’s implementation, we use the monadic interface of RewriteResult and
use the standard Haskell operators »= for monadic bind, <|> for mplus, and <$> for fmap.

The lChoice combinator is given two strategies and applies the second one only if the !rst failed.

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] = fs => ss => p => fs(p) <|> ss(p)

We use <+ as an in!x operator for lChoice and ‘;‘ for seq. Additionally, the try combinator applies
a strategy and, in case of failure, applies the identity strategy. Therefore, try never fails.

def try[P]: Strategy[P] => Strategy[P] = s => p => (s <+ id)(p)

repeat applies a strategy until it is no longer applicable.

def repeat[P]: Strategy[P] => Strategy[P] = s => p => try(s ‘;‘ repeat(s) )(p)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 92. Publication date: August 2020.

Achieving High-Performance the Functional Way, B. Hagedorn, J. Lenfers, T. Koehler, X. Qin, S. Gorlatch, M. Steuwer

https://github.com/XYUnknown/individual-project/blob/master/src/lift/

Haskell doesn’t check this.

Proofing of rewrite rules 
not too difficult:

https://github.com/XYUnknown/individual-project/blob/master/src/lift/


References

• Benjamin Pierce, Types and Programming Language 

• Martin Sulzmann, Manuel Chakravarty, Simon P. Jones, Kevin Donnelly, System F with Type Equality Coercions https://
www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf  

• Simon P Jones , Into the Core - Squeezing Haskell into Nine Constructors https://www.youtube.com/watch?v=uR_VzYxvbxg 

• David Terei, A Haskell Compiler http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(1) 

• Ben Deane, CppCon 2016: Using Types Effectively https://www.youtube.com/watch?v=ojZbFIQSdl8  

• Tamir Bahar, That `overloaded` Trick: Overloading Lambdas in C++17 https://dev.to/tmr232/that-overloaded-trick-overloading-lambdas-in-c17  

• Simon P. Jones, Andrew Tolmach, Tony Hoare, Playing by the Rules: Rewriting a practical optimisation technique in GHC 
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf 

• B. Hagedorn, J. Lenfers, T. Koehler, X. Qin, S. Gorlatch, M. Steuwer, Achieving High-Performance the Functional Way 
https://bastianhagedorn.github.io/files/publications/2020/ICFP-2020.pdf 

14

https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf
https://www.youtube.com/watch?v=uR_VzYxvbxg
http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(1)
https://www.youtube.com/watch?v=ojZbFIQSdl8
https://dev.to/tmr232/that-overloaded-trick-overloading-lambdas-in-c17
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://bastianhagedorn.github.io/files/publications/2020/ICFP-2020.pdf

