

THE UNIVERSITY of EDINBURGH informatics **Compiler Intermediate Representations** SPLV 2020 – Michel Steuwer

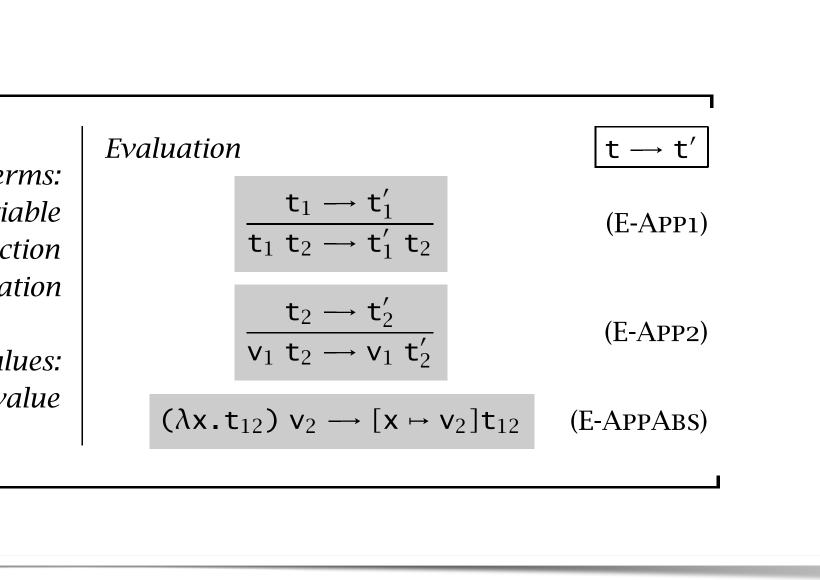
Outline of Lectures over the week

- **Tuesday:** Functional Intermediate Representations
 - Lambda Calculus and the Lambda Cube
 - Implementation Strategies for System F (ADTs across different PLs)
 - Compiler transformations as rewrite rules
- Wednesday: Imperative Intermediate Representations
 - Foundations of Single Static Assignment (SSA)
 - LLVM IR
 - Control-Flow Graphs
 - Data-flow analysis
- Thursday: Domain-Specific Intermediate Representations • MLIR — a compiler infrastructure for building domain-specific intermediate representations

 - Dataflow graphs TensorFlow
 - Pattern-based (and functional) RISE

Lamda Calculus

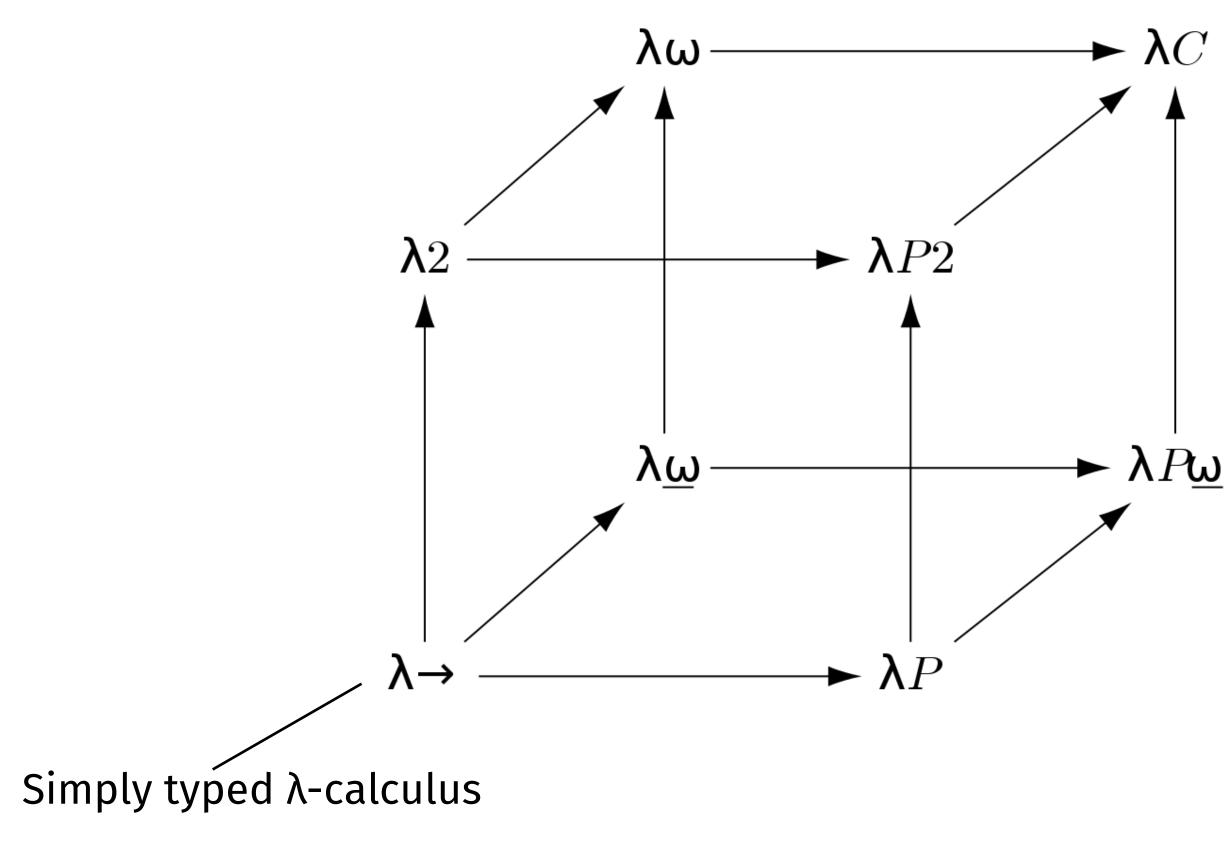
	\rightarrow (untyped)
	Syntax
i	t ::=
Va	X
abstr	$\lambda x.t$
appli	tt
ν	V ::=
abstraction	λ x.t



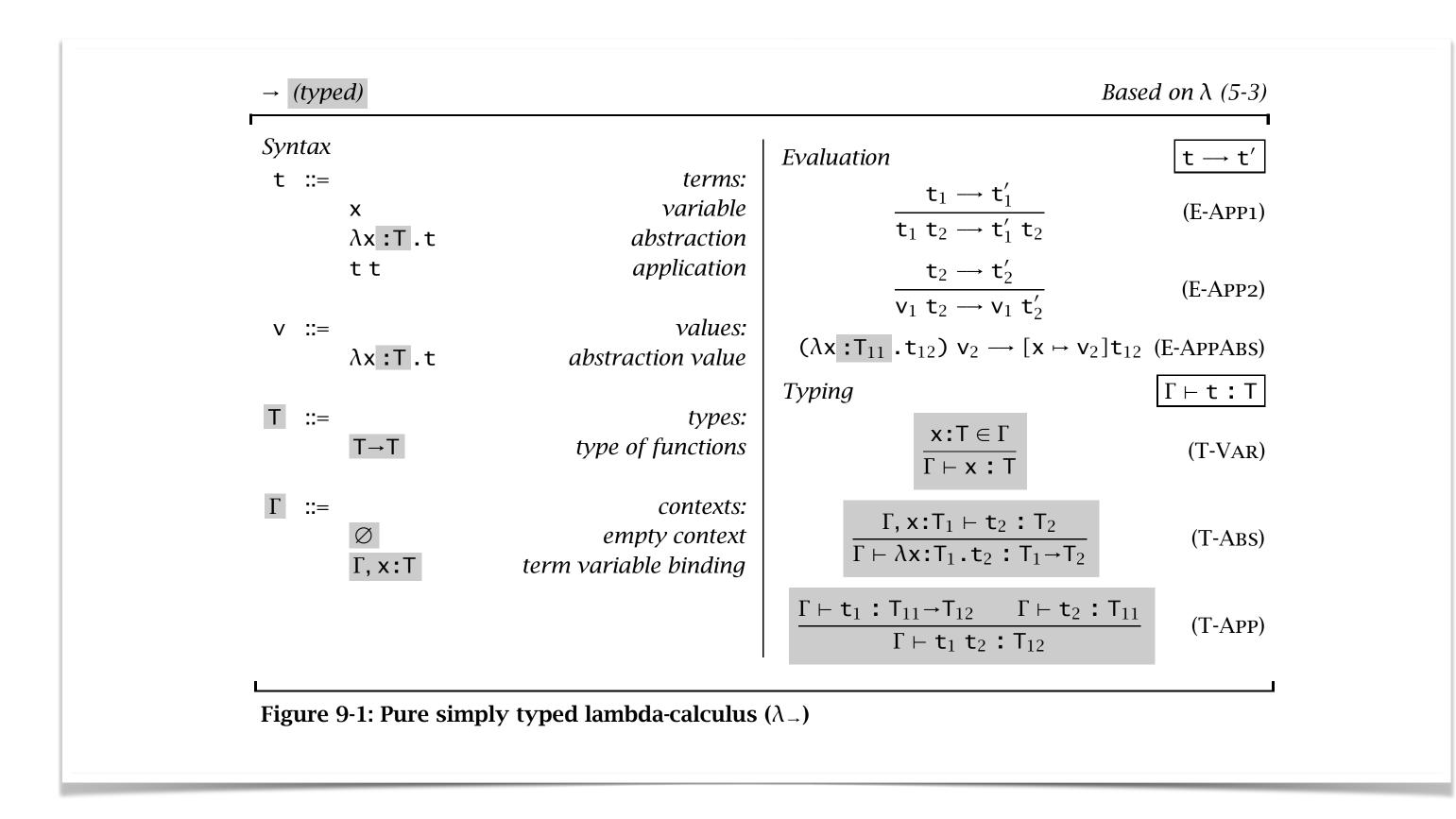
5 The Untyped Lambda-Calculus

Types and Programming Languages, B. Pierce

Typed Lambda Calculus What type system (or logical foundation) do you want?

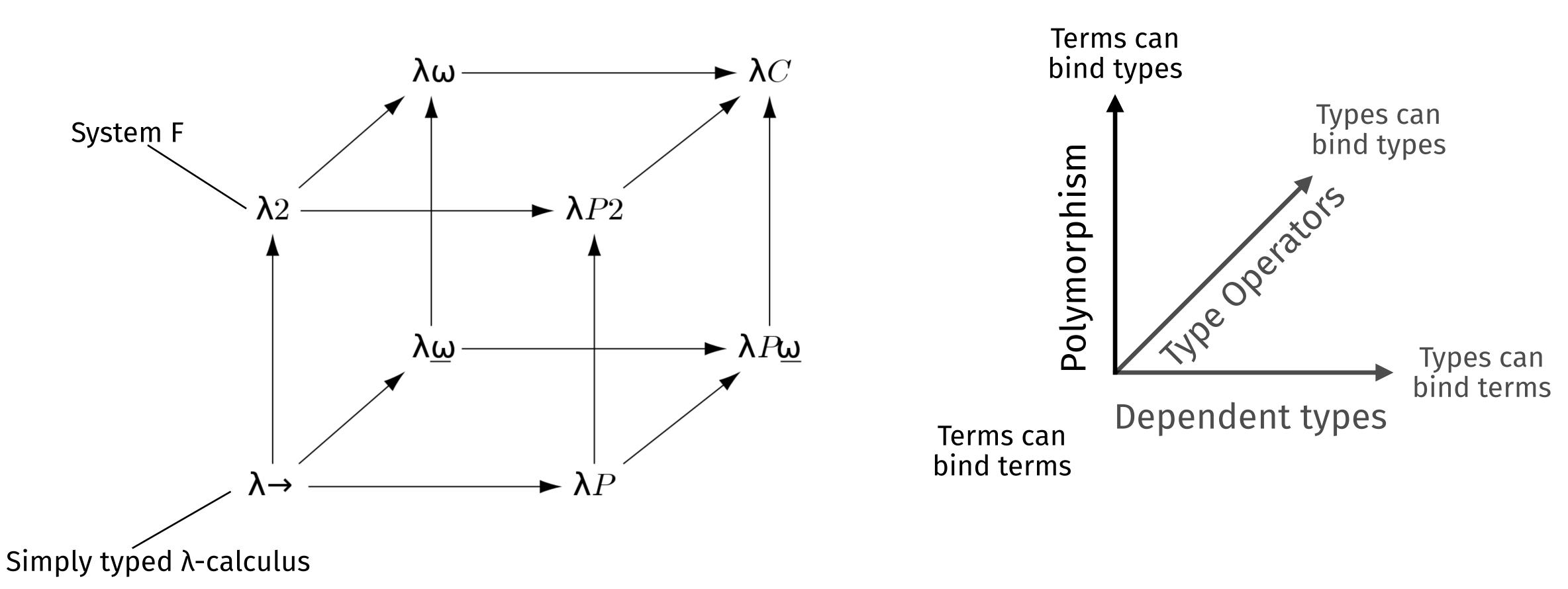


Simply Typed Lambda Calculus



Types and Programming Languages, B. Pierce

Typed Lambda Calculus What type system (or logical foundation) do you want?



λ2 (aka SystemF)

Syntax			Evaluation	$t \rightarrow t'$
t ::=	x λx:T.t	terms: variable abstraction	$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{t}_1 \mathtt{t}_2 \longrightarrow \mathtt{t}_1' \mathtt{t}_2}$	(E-App1)
	tt λX.t t[T]	application type abstraction type application	$\frac{t_2 \longrightarrow t_2'}{v_1 \ t_2 \longrightarrow v_1 \ t_2'}$	(E-App2)
	- [.]	<i>y p e e p p m e m p m e m m m m m m m m m m</i>	$(\lambda \mathbf{x}: T_{11}, t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$	2 (E-APPABS)
v ::=	λx:T.t λX.t	values: abstraction value type abstraction value	$\frac{t_1 \rightarrow t_1'}{t_1 \ [T_2] \rightarrow t_1' \ [T_2]}$	(Е-ТАРР)
-			$(\lambda X.t_{12}) [T_2] \rightarrow [X \mapsto T_2]t_{12}$ (B	E-TAPPTABS)
T ::=	X	types: type variable	Typing	$\Gamma \vdash t:T$
T→T ∀X. ⁻	T→T ∀X.T	type of functions universal type	$\frac{\mathbf{x}:T\in\Gamma}{\Gamma\vdash\mathbf{x}:T}$	(T-VAR)
Г ::=	Ø	contexts: empty context	$\frac{\Gamma, \mathbf{x}: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda \mathbf{x}: T_1 \cdot t_2 : T_1 \rightarrow T_2}$	(T-Abs)
_	Г, х:Т Г, Х	term variable binding type variable binding	$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{12}}{\Gamma \vdash t_1 \: t_2 : T_{12}}$	<u>1</u> (Т-Арр)
			$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X.t_2 : \forall X.T_2}$	(T-TABS)
			$\frac{\Gamma \vdash t_1 : \forall X.T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2]T_{12}}$	(T-TApp)

Types and Programming Languages, B. Pierce

Haskell Core is build on SystemF*

Haskell

map :: (a -> b) -> [a] -> [b]	
map [] = []	
map f (x:xs) = f x : map f xs	

Core

```
map :: forall a b. (a -> b) -> [a] -> [b]
map =
 \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
    case xs of _ {
     [] -> GHC.Types.[] @ b;
     : y ys \rightarrow GHC.Types.: @ b (f y) (map @ a @ b f ys)
```

* Haskell is actually build on an extension called System F_{C:} https://www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf

From <u>http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)</u>

Implementing SystemF

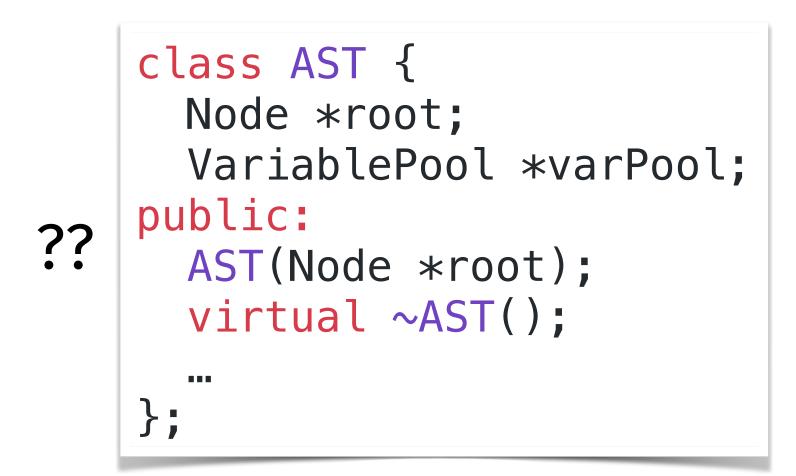
- GHC Core Implementation:
- Nice in-depth introductions into Haskell Core: https://www.youtube.com/watch?v=uR_VzYxvbxg <u>http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html</u>
- Many textbook implementations on GitHub
- E.g. <u>https://github.com/Zepheus/SystemF/blob/master/systemf.hs</u>

https://gitlab.haskell.org/ghc/ghc/-/blob/a1f34d37b47826e86343e368a5c00f1a4b1f2bce/compiler/GHC/Core.hs#L140

Algebraic Data Types across different PLs

data Term =
 -- Simply typed lambda calculus:
 Var Symbol |
 Lambda Symbol Type Term |
 App Term Term |
 -- System F
 TLambda Type Term |
 TApp Term Type
 deriving (Show,Eq)

Haskell



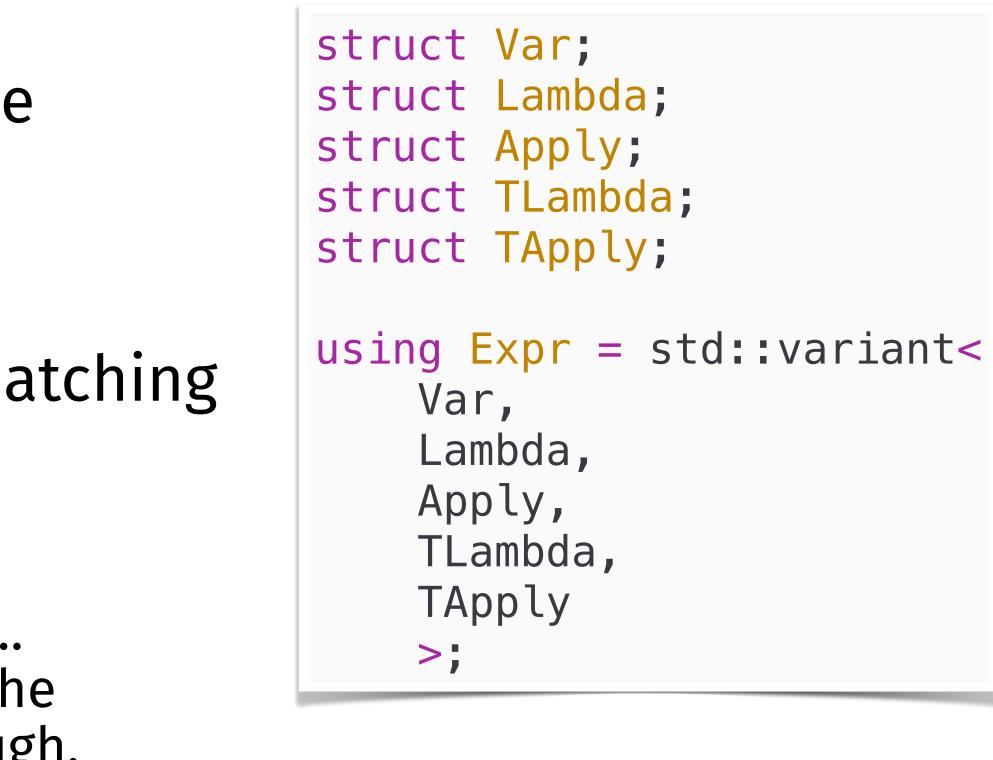
C++

From: <u>https://github.com/omelkonian/</u> <u>lambda-calculus-interpreter/blob/master/</u> <u>abstract_syntax_tree/AST.h</u>

System F in modern C++

- Use std::variant as our sum type
- Use structs as our product type
- Use std::visit to fake pattern matching

• Caveat: fairly inefficient implementation but it's fun (and useful) to see the functional concepts shine through.



<u>https://github.com/michel-steuwer/systemF_in_Cpp</u>

Compiler transformations as rewrite rules

{-# RULES "map/map" formal f map f (ma #-}

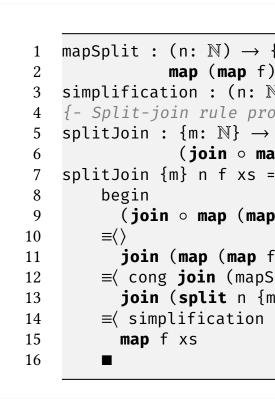
Playing by the Rules: Rewriting a practical optimisation technique in GHC, Simon P. Jones, Andrew Tolmach, Tony Hoare

map f (map g xs) = map (f . g) xs

Compiler transformations as rewrite rules

- In which order apply the rules?
- Will the rewriting terminate? Is it confluence?
- Are the rules correct?

Proofing of rewrite rules not too difficult:



Achieving High-Performance the Functional Way, B. Hagedorn, J. Lenfers, T. Koehler, X. Qin, S. Gorlatch, M. Steuwer

<u>https://github.com/XYUnknown/individual-project/blob/master/src/lift/</u>

Haskell doesn't check this.

mapSplit : (n: \mathbb{N}) \rightarrow {m: \mathbb{N} } \rightarrow {s t: Set} \rightarrow (f: s \rightarrow t) \rightarrow (xs: Vec s (m * n)) \rightarrow map (map f) (split n {m} xs) \equiv split n {m} (map f xs) simplification : (n: \mathbb{N}) \rightarrow {m: \mathbb{N} } \rightarrow {t: Set} \rightarrow (xs: Vec t (m*n)) \rightarrow (**join** \circ **split** n {m}) xs \equiv xs $\texttt{splitJoin} : \{\texttt{m}: \ \mathbb{N}\} \rightarrow \{\texttt{s}: \ \texttt{Set}\} \rightarrow \{\texttt{t}: \ \texttt{Set}\} \rightarrow (\texttt{n}: \ \mathbb{N}) \rightarrow (\texttt{f}: \ \texttt{s} \rightarrow \texttt{t}) \rightarrow (\texttt{xs}: \ \texttt{Vec} \ \texttt{s} \ (\texttt{m} \ \star \ \texttt{n})) \rightarrow \texttt{splitJoin}$ (join \circ map (map f) \circ split n {m}) xs \equiv map f xs $(join \circ map (map f) \circ split n \{m\}) xs$ join (map (map f) (split n {m} xs)) ≡ (cong **join** (mapSplit n {m} f xs) join (split n {m} (map f xs)) \equiv (simplification n {m} (map f xs))

References

- Benjamin Pierce, Types and Programming Language
- www.microsoft.com/en-us/research/wp-content/uploads/2007/01/tldi22-sulzmann-with-appendix.pdf
- Simon P Jones, Into the Core Squeezing Haskell into Nine Constructors https://www.youtube.com/watch?v=uR_VzYxvbxg
- David Terei, A Haskell Compiler <u>http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(1)</u>
- Ben Deane, CppCon 2016: Using Types Effectively <u>https://www.youtube.com/watch?v=ojZbFIQSdl8</u>
- https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
- B. Hagedorn, J. Lenfers, T. Koehler, X. Qin, S. Gorlatch, M. Steuwer, Achieving High-Performance the Functional Way https://bastianhagedorn.github.io/files/publications/2020/ICFP-2020.pdf

Martin Sulzmann, Manuel Chakravarty, Simon P. Jones, Kevin Donnelly, System F with Type Equality Coercions <u>https://</u>

Tamir Bahar, That `overloaded` Trick: Overloading Lambdas in C++17 https://dev.to/tmr232/that-overloaded-trick-overloading-lambdas-in-c17

Simon P. Jones, Andrew Tolmach, Tony Hoare, Playing by the Rules: Rewriting a practical optimisation technique in GHC