
FHNPC 2021

Michel Steuwer
University of Edinburgh

It’s all about Choices!

• I couldn’t agree more with Sven-Bodo about this statement

• I (of course) couldn’t disagree more with Sven-Bodo 
about all the choices made in SaC

Shouldn’t the consequence be not to make choices but to offer them?

😉

 ELEVATE A Programming Language
for describing Optimization Strategies

 􀈿 [ICFP 2020]

 RISE A Pattern-Based Intermediate Languages

 RISE + ELEVATE : Expose Optimization Choices

https://rise-lang.org 
https://elevate-lang.org

 RISE ELEVATE

 RISE

 􀈿 [CGO 2021]

Successor 
to Lift

https://rise-lang.org
https://elevate-lang.org

RISE

 ELEVATE allows to implement state-of-the art scheduling APIs from first principle

 RISE + ELEVATE : Results for Matrix Multiplication

RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Compilation via multiple intermediate languages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs ,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys , int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:3

2.1 Expressing Parallelisation Strategies in Functional Code
Here is an expression that describes the dot product of two vectors xs and ys:

reduce (+) 0 (map (�x . fst x ⇤ snd x) (zip xs ys)) (1)

�is expression can be read in two ways. Firstly, read mathematically, it is a declarative speci�cation of the
dot product. Secondly, it can be read as a strategy for computing dot products. Reading right-to-le�, we have a
pipeline arrangement. Let us make the following assumptions: i) zip is not materialised (it only a�ects how later
parts of the pipeline read their input); ii) map is executed in parallel across the array; and iii) reduce is executed
sequentially. �en we can read this expression as embodying a naive “parallel map, sequential reduce” strategy.

Such a naive strategy is not always best. If we try to execute one parallel job per element of the input arrays,
then depending on the underlying architecture we will either fail (e.g., on GPUs with a �xed number of execution
units), or generate so many threads that coordination of them will dominate the runtime (e.g., on CPUs). �e
overall strategy of “parallel, then sequential” is likely not the most e�cient, either.

We can give a more re�ned strategy given information about the underlying architecture. For instance, GPUs
support nesting of parallelism by organising threads into groups, or work-items into work-groups, using OpenCL
terminology. If we know that the input is of size n ⇥ 128 ⇥ 2048, we can explicitly control how parallelism can
be mapped to the GPU hierarchy. �e following expression distributes the work among n groups of 128 local
threads, each processing 2048 elements in one go, by directly reducing over the multiplied pairs of elements:

reduce (+) 0 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 2048 zs2)) zs1)
(split (2048 ⇤ 128) (zip xs ys)))))

(2)
Although this expression gives much more information about how to process the computation on the GPU, we
have not le� the functional paradigm, so we still have access to the straightforward mathematical reading of
this expression. We can use equational reasoning to prove that this is semantically equivalent to (1). Equational
reasoning can also be used to generate (2) from (1). Indeed Steuwer et al. (2015) have shown that stochastic search
techniques are e�ective at automatically discovering parallelisation strategies that match hand-coded ones.
However, even with a speci�ed parallelisation strategy we cannot execute this code directly. We need to

translate the functional code to an imperative language like OpenCL or CUDA in a way that preserves our chosen
strategy. �is paper presents a formal approach to solving this translation problem.

2.2 Strategy Preserving Translation to Imperative Code
What is the simplest way of converting a functional program to an imperative one? Starting with our zip-map-
reduce formulation of dot-product (1), we can turn it into an imperative program simply by assigning its result to
an output variable out:

out := reduce (+) 0 (map (�x . fst x ⇤ snd x) (zip xs ys))

Unfortunately, this is not suitable for compilation targets like OpenCL or CUDA. While assignment statements
are the bread-and-bu�er of such languages, their expression languages certainly do not include such modern
amenities as higher ordermap and reduce functions. To translate these away, we introduce a novel acceptor-
passing translationALEM� (out). �e key idea is that for any expression E producing data of type � , the translation
ALEM� (out) is an imperative program that has the same e�ect as the assignment out := E and is free from
higher-order combinators. �is translation is mutually de�ned with a continuation passing translation CLEM� (C)
that takes a parameterised command C that will consume the output, instead of taking an output variable.
�e de�nition of the translation is given in Section 4.1. We introduce it here by example. Applied to our

dot-product code, our translation �rst replaces the reduce by a corresponding imperative combinator reduceI.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Fu
nc
tio
na
l

Im
pe
ra
tiv
e

 DPIA

MLIR: Offer integration choices

• Focus on compiler intermediate languages rather than user facing languages

• Avoid flame war over functional programming

• Type systems (e.g. dependent types) can be complex to carry rich information

• Easy(er) to build fully integrated systems

 􀈿 [CC 2021]

MLIR: Offer integration choices

How to make choices?
• Fully manual via E LEVATE

• Fully automated via: 
 - Stochastic methods 􀈿 [ICFP 2015] 
 
 - Equality Saturation & E-graphs: 
 􀍉 Search “Optimizing Functional 
 Programs with Equality Saturation” 
 on YouTube 
 
 - Reinforcement Learning & 
 other machine learning methods

• Big open question: How can we mix both modes conveniently?

Team

Bastian 
Köpcke

Thomas 
Kœhler

Martin 
Lücke

Rongxiao 
Fu

Federico 
Pizzuti

Johannes 
Lenfers

Xueying Qin

Programming LanguagesCompilers

􀫔 PhD Student

􀫔 PhD Student

􀫔 PhD Student 􀫔 PhD Student

􀫔 PhD Student
􀫔 PhD Student

􀫔 PhD Student

