
MICHEL STEUWER • 22 NOVEMBER 2022

MODERN DSL COMPILER
DEVELOPMENT WITH MLIR
or: How to design the next 700 optimizing compilers

1

In collaboration with:
Martin Lücke, Mathieu Fehr, Michel Weber, Christian Ulmann, Alexander Lopoukhine, Tobias Grosser

Hardware

Software

General purpose Specialized

General purpose Specialized

Halide Devito

How do we build compilers to (automatically) optimise
specialised software for specialized hardware?

2

How Do We Currently Build Specialized Compilers?
Example 1: TensorFlow

 >2,500,000 lines of code

 >500 different types of expressions represented in the TF IR

 >50 different types of expression represented in the XLA IR

 Compiler implemented in Python & C++ makes it hard to contribute

 Great Performance & Support for custom hardware: TPU

XLA

Hughe effort to build and maintain, but delivering great performance

Popular machine learning framework
developed by Google (and others)

3

How can we benefit from the investment
in ML compilers and reuse

intermediate representations & optimizations
across compilers?

4

MLIR — Multi-Level Intermediate Representation
A LLVM subproject for building reusable and extensible compiler infrastructure

• MLIR is a (fairly) novel framework to facilitate the
sharing of compiler intermediate representations (IRs)
and optimizations

• Common abstractions are bundled in Dialects that can
easily be combined to express programs at various levels

• Examples of dialects are:

• tf - Tensor Flow abstractions

• affine - Polyhedral abstractions

• gpu - GPU abstractions

MLIR

!
"
#

$

%

&

Hardware Targets
' ()

Dialects

5

MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>,
 %B: memref<?x?xf32>,
 %C: memref<?x?xf32>) {
 %n = dim %A, 0 : memref<?x?xf32>

 affine.for %i = 0 to %n {
 affine.for %j = 0 to %n {
 store 0, %C[%i, %j] : memref<?x?xf32>
 affine.for %k = 0 to %n {
 %a = load %A[%i, %k] : memref<?x?xf32>
 %b = load %B[%k, %j] : memref<?x?xf32>
 %prod = mulf %a, %b : f32
 %c = load %C[%i, %j] : memref<?x?xf32>
 %sum = addf %c, %prod : f32
 store %sum, %C[%i, %j] : memref<?x?xf32>
 }
 }
 }
 return
}

6

MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>,
 %B: memref<?x?xf32>,
 %C: memref<?x?xf32>) {
 %n = dim %A, 0 : memref<?x?xf32>

 affine.for %i = 0 to %n {
 affine.for %j = 0 to %n {
 store 0, %C[%i, %j] : memref<?x?xf32>
 affine.for %k = 0 to %n {
 %a = load %A[%i, %k] : memref<?x?xf32>
 %b = load %B[%k, %j] : memref<?x?xf32>
 %prod = mulf %a, %b : f32
 %c = load %C[%i, %j] : memref<?x?xf32>
 %sum = addf %c, %prod : f32
 store %sum, %C[%i, %j] : memref<?x?xf32>
 }
 }
 }
 return
}

Operations
represent computations

Attributes
represent additional

static information

Types
ensure consistency

of the overall program

Regions & Blocks
allow sequencing

and nesting of operations

7

MLIR — Multi-Level Intermediate Representation
Progressive Lowering from Application Domain to Hardware

%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
 : (tensor!<*xf32>, tensor!<*xf32>) !-> tensor!<*xf32>

affine.for %i = 0 to %n {
 …
 %sum = addf %a, %b : f32
 …
}

gpu.launch(%gx,%gy,%c1,%lx,%c1,%c1) {
 ^bb0(%bx: index, %by: index, %bz: index,
 %tx: index, %ty: index, %tz: index,
 %num_bx: index, %num_by: index, %num_bz: index,
 %num_tx: index, %num_ty: index, %num_tz: index)
 …
 %sum = addf %a, %b : f32
 …
}

MLIR

!
"
#

$

%

&

Hardware Targets
' ()

8

How Do We Currently Build Specialized Compilers?
Example 2: Devito

 < 50,000 lines of code

 Compiler implemented in Python makes it easy to contribute

 Support for GPUs via OpenACC

 Reimplementation of many classical loop optimizations

 No support for hardware accelerators

Small team delivering great usability and performance,
but limited support of advanced optimizations and hardware

Popular HPC DSL
developed by academics (and others)

Devito

9

Problem: Isolated Compiler Ecosystems
Each DSL reimplements the same IRs and optimizations

• Today, Devito and Tensor Flow share no code

• But, there is a huge opportunity for HPC DSLs:

• They have some common IRs

• They perform similar optimizations

• They could benefit from the current
investment in ML compilers

MLIR

!
"
#

$

%

&

Hardware Targets
' ()

*

+

,

Devito
Compiler

10

xDSL: a Sidekick to MLIR
Making the MLIR ecosystem accessible and extensible from Python

• xDSL is a Python framework we develop at the
University of Edinburgh, it shares the same IR
format and dialects with MLIR

• This allows for many possible use cases:

•Python-native end-to-end compilers

•Prototyping new compiler design ideas

• Building tools for analysing the compilation flow

•Pairing high-level Python DSLs with
existing low-level MLIR dialects and optimizations

!
"

#$
%

&

MLIR

'
(
)

*

+

,

Analysis
Results

-

.
/

Hardware Targets
0 12

xDSL

•

11

https:!//github.com/xdslproject/xdsl/

https://github.com/xdslproject/xdsl/

xDSL Boosts Developers Productivity
Much shorter install times | Much faster recompilation times

pip install xdsl

12

xDSL xDSL xDSL xDSL

xDSL

xDSL Has Reasonable Overheads Compared to MLIR
About 1 order of magnitude slower for parsing & printing
 Comparable performance for constant folding

13

xDSL
xDSL

xDSL

Use Case 1
Teaching compilation with ChocoPy

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Undergraduate students familiar with Python

• Needs:

• Quick and easy installation and build systems

• Compile time performance is less important

• Existing Workflows:

• Students design ad-hoc IRs, data structures, and optimization passes

• The xDSL Approach:

• Students learn core concepts of SSA-based compilers and
can easy transition to MLIR afterwards

14

Use Case 2
Data-driven compiler design

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Compiler engineers trying to understand their code base

• Needs:

• Scripting languages with good data science workflows

• Existing Workflows:

• Lack of an integrated environment to build analysis tools

• The xDSL Approach:

• xDSL makes MLIR dialects easily accessible from Python

• Provides a good environment to integrate with data science frameworks

15

Use Case 2
Data-driven compiler design

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Compiler engineers trying to understand their code base

• Needs:

• Scripting languages with good data science workflows

• Existing Workflows:

• Lack of an integrated environment to build analysis tools

• The xDSL Approach:

• xDSL makes MLIR dialects easily accessible from Python

• Provides a good environment to integrate with data science frameworks

16

With xDSL we quickly analysed the test coverage of operations of various MLIR dialects

Use Case 2

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Compiler engineers trying to understand their code base

• Needs:

• Scripting languages with good data science workflows

• Existing Workflows:

• Lack of an integrated environment to build analysis tools

• The xDSL Approach:

• xDSL makes MLIR dialects easily accessible from Python

• Provides a good environment to integrate with data science frameworks

17

Analysis of dependencies between MLIR dialects in the MLIR test suite

Data-driven compiler design

Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Domain experts, e.g., computational scientists or database experts

• Needs:

• Productivity is (often) more
important than compilation speed

• Existing Workflows:

• Build isolated compiler ecosystem (such as Devito)

• The xDSL Approach:

• Embed high-level DSL in Python for ease of use

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR

18

Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Domain experts, e.g., computational scientists or database engineers

• Needs:

• Productivity and familiarity is (often) more
important than compilation speed

• Existing Workflows:

• Build isolated compiler ecosystem (such as Devito)

• The xDSL Approach:

• Build high-level DSL interface in Python

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR

19

+

We implemented a database DSL
using xDSL outperforming the
in-memory database DuckDB

Reduction of basetable
column accesses implemented

as a compiler optimization pass
in Python with xDSL

We currently work
with colleagues from
Imperial to integrate

Devito & MLIR
with xDSL

+

Use Case 4
Prototyping new MLIR features

!
"

#$
%

& '
(
)

*

+

,

-

.
/

0 12

• User:

• Compiler researchers and engineers

• Needs:

• Prototyping many design; quick incremental build times

• Existing Workflows:

• Directly modify MLIR and LLVM which is time consuming

• The xDSL Approach:

• Prototype new ideas in Python with xDSL

• Integrate with MLIR for realistic tests and benchmarks

20

How To Optimize Programs in MLIR Today?

• MLIR provides an infrastructure to express program transformations as Pattern Rewrites

• Such rewrites are performed once a pattern has matched in the code

• Example: splitting a loop:

21

Pattern Rewrite in MLIR
Example: Loop splitting

22

Pattern Rewrite in MLIR
Example: Loop splitting

23

1. Implement C++ class inheriting from Pattern Rewriter interface

2. Match
operation

3. Create
replacement

4. Erase
matched
operation

Composing Rewrites?
How to perform a sequence of rewrites?

24

• Example: splitting a loop + unrolling the second (+ vectorizing first) + …

 In MLIR no way to describe locations of rewrites; Usually greedily applied everywhere

 What if a rewrite fails halfway through? Mutating rewrites make backtracking difficult

ELEVATE — a Language for Composing Rewrites
Based on ICFP 2020 Paper: Achieving high-performance the functional way:
 a functional pearl on expressing high-performance optimizations as rewrite strategies
by Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, Michel Steuwer

• We think of a Rewrite as function with a specific type:
Either returning the transformed IR of the input program, or returning a Failure.

• The rewrite must be immutable, i.e., they don’t modify directly the input program

• Immutable rewrites with this type compose nicely into larger rewrites!

• To prototype ELEVATE in MLIR: we implemented an immutable version of the MLIR IR in xDSL

• We describe individual rewrite rules in a declarative MLIR dialect itself!

25

type Rewrite = IR !=> IR | Failure

ELEVATE Rewrite in MLIR

26

1. We use the (extended) pdl
 dialect to match the input %op

2. The created replacement
 replaces the matched
 root operation

3. If %cst2 has no uses
 it will be automatically
 removed

Example 1: Simple arithmetic rewrite

x * 2 x !>> 1

ELEVATE Rewrite in MLIR
Example 2: Loop Splitting

27

Rewrite Computational IR

ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

28

Optimization implemented in the Open Earth Compiler (https://github.com/spcl/open-earth-compiler/)

https://github.com/spcl/open-earth-compiler/

ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…

29

Matching of two successive stencil operations

ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…

Our declarative rewrite replaces about 400 lines of imperative C++ code!
https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp

30

https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp

Combinators and Traversals in ELEVATE

• Combinators allow to build more complex strategies from simple once, e.g.:

• s1;s2 (Sequential Composition): apply second strategy s1 to result of the first s2

• try {s1} else {s2} (Left Choice): apply second strategy s2 if first strategy s1 fails

• Traversals allow to describe precise locations in the IR, e.g.:

• top_to_bottom {s}: apply strategy s to the IR line by line, top to bottom

• regionN[n]{s}, blockN[n]{s}, opN[n]{s}: apply strategy s to n-th region/block/op

31

Composing Rewrites in ELEVATE

rewrite.strategy @split_and_unroll_snd() {
 rewrite.apply @split_loop
 rewrite.top_to_bottom {
 rewrite.skip 1 {
 rewrite.if "scf.for" {
 rewrite.apply @unroll_loop
 }
 }
}

32

sequential composition

traversals & predicates to describe locations

Use Cases for Composable Rewrites
Detection of Layers in ML models

• Enables experts to optimize ML layers specially

• Many slightly different cases could easily be
described by composing individual rewrites

• Imperative C++ or Python matching code written
by expert compiler engineers, e.g., at Microsoft

33

Detect
Attention

Layer

200 lines of arbitrary
imperative Python code

%FuseAttentionLayer : !strategy = elevate.strategy() ["strategy_name"="FuseAttentionLayer"] {
 ^strategy(%op : !operation):
 %pattern : !pattern = match.pattern() {
 // input to the attention layer
 %layer_norm_cst_0 : !value = pdl.operand()
 %layer_norm_cst_weight : !value = pdl.operand()
 %layer_norm_cst_bias : !value = pdl.operand() []

 (%add2, %add2_result) = pdl.operation() ["name"="onnx.Add"]
 (%layer_norm1, %layer_norm1_result) = pdl.operation(%add2_result, %layer_norm_cst_weight, %layer_norm_cst_bias) ["name"="onnx.Custom", "function_name" = "LayerNormalization"]

 // detect mask nodes
 %input_mask = pdl.operand() []
 (%unsqueeze1_mask, %unsqueeze1_mask_result) = pdl.operation(%input_mask : !value) ["name"="onnx.Unsqueeze"]
 (%unsqueeze0_mask, %unsqueeze0_mask_result) = pdl.operation(%unsqueeze1_mask_result : !value) ["name"="onnx.Unsqueeze"]
 (%cast_mask, %cast_mask_result) = pdl.operation(%unsqueeze0_mask_result : !value) ["name"="onnx.Cast"]
 %sub_cst = pdl.operand() []

< 100 lines of declarative dialect
could easily be generated

• Declarative rewrite written by PhD student

Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020 paper demonstrates how to use
combinators and traversals to build a Schedule
describing a specific way to optimize a program

• Gives performance experts precise control over
the optimizations applied to a program

 ICFP 2020

34

ELEVATE

Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020 expresses equivalent TVM schedules
purely as compositions of rewrites in ELEVATE

• Demonstrate same performance as TVM compiler

35

 ICFP 2020

What’s Next for ELEVATE in MLIR?
Bring all of ELEVATE capabilities to MLIR for expressing rewrites as compositions

36

• We have a working prototype implementation in xDSL, we are interested in a C++ MLIR implementation

• xDSL is a great prototyping framework!

• Overheads of immutable rewriting are reasonable for many use cases

• Rewriting with an immutable IR is much more efficient than naive cloning for supporting backtracking

Summary
xDSL — a Python Sidekick to MLIR | ELEVATE — a language for composing rewrites

37

• MLIR provides great opportunities to share compiler infrastructure

• Many DSL developers prefer Python and are not part of the MLIR ecosystem

• xDSL — a sidekick of MLIR enables many deeply integrated use cases leveraging MLIR

• ELEVATE — a language for composing rewrites allows describing complex optimizations easily
 and opens up interesting use cases by providing control over the rewrite process

Michel Steuwer — Modern DSL Compiler Development With MLIR
xDSL — a Python Sidekick to MLIR | ELEVATE — a language for composing rewrites

38

michel.steuwer@ed.ac.uk

https:!//github.com/xdslproject/xdsl/ https://elevate-lang.org

https://michel.steuwer.info

!
"

#$
%

&

MLIR

'
(
)

*

+

,

Analysis
Results

-

.
/

Hardware Targets
0 12

xDSL ICFP 2020

rewrite.strategy @split_and_unroll_snd() {
 rewrite.apply @split_loop
 rewrite.top_to_bottom {
 rewrite.skip 1 {
 rewrite.if "scf.for" {
 rewrite.apply @unroll_loop
 }
 }
}

mailto:michel.steuwer@ed.ac.uk
https://github.com/xdslproject/xdsl/
https://elevate-lang.org
https://michel.steuwer.info

