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How do we build compilers to (automatically) optimise 
specialised software for specialized hardware?
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How Do We Currently Build Specialized Compilers?
Example 1: TensorFlow

 >2,500,000 lines of code 

 >500 different types of expressions represented in the TF IR 

 >50 different types of expression represented in the XLA IR 

 Compiler implemented in Python & C++ makes it hard to contribute 

 Great Performance & Support for custom hardware: TPU

XLA

Hughe effort to build and maintain, but delivering great performance

Popular machine learning framework 
developed by Google (and others)
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How can we benefit from the investment 
in ML compilers and reuse 

intermediate representations & optimizations 
across compilers?
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MLIR — Multi-Level Intermediate Representation
A LLVM subproject for building reusable and extensible compiler infrastructure

• MLIR is a (fairly) novel framework to facilitate the 
sharing of compiler intermediate representations (IRs) 
and optimizations 

• Common abstractions are bundled in Dialects that can 
easily be combined to express programs at various levels 

• Examples of dialects are: 

• tf - Tensor Flow abstractions 

• affine - Polyhedral abstractions 

• gpu - GPU abstractions

MLIR
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MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>, 
                    %B: memref<?x?xf32>, 
                    %C: memref<?x?xf32>) { 
  %n = dim %A, 0 : memref<?x?xf32> 
 
  affine.for %i = 0 to %n { 
    affine.for %j = 0 to %n { 
      store 0, %C[%i, %j]       : memref<?x?xf32> 
      affine.for %k = 0 to %n { 
        %a    = load %A[%i, %k] : memref<?x?xf32> 
        %b    = load %B[%k, %j] : memref<?x?xf32> 
        %prod = mulf %a, %b     : f32 
        %c    = load %C[%i, %j] : memref<?x?xf32> 
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      } 
    } 
  } 
  return 
}
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MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>, 
                    %B: memref<?x?xf32>, 
                    %C: memref<?x?xf32>) { 
  %n = dim %A, 0 : memref<?x?xf32> 
 
  affine.for %i = 0 to %n { 
    affine.for %j = 0 to %n { 
      store 0, %C[%i, %j]       : memref<?x?xf32> 
      affine.for %k = 0 to %n { 
        %a    = load %A[%i, %k] : memref<?x?xf32> 
        %b    = load %B[%k, %j] : memref<?x?xf32> 
        %prod = mulf %a, %b     : f32 
        %c    = load %C[%i, %j] : memref<?x?xf32> 
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      } 
    } 
  } 
  return 
}

Operations 
represent computations

Attributes 
represent additional 

static information

Types 
ensure consistency 

of the overall program

Regions & Blocks 
allow sequencing 

and nesting of operations
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MLIR — Multi-Level Intermediate Representation
Progressive Lowering from Application Domain to Hardware

%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}  
      : (tensor!<*xf32>, tensor!<*xf32>) !-> tensor!<*xf32>

affine.for %i = 0 to %n { 
  … 
  %sum  = addf %a, %b : f32 
  … 
}

gpu.launch(%gx,%gy,%c1,%lx,%c1,%c1) { 
  ^bb0(%bx: index, %by: index, %bz: index, 
       %tx: index, %ty: index, %tz: index, 
       %num_bx: index, %num_by: index, %num_bz: index, 
       %num_tx: index, %num_ty: index, %num_tz: index) 
  … 
  %sum  = addf %a, %b : f32 
  … 
}
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How Do We Currently Build Specialized Compilers?
Example 2: Devito

 < 50,000 lines of code 

 Compiler implemented in Python makes it easy to contribute 

 Support for GPUs via OpenACC 

 Reimplementation of many classical loop optimizations 

 No support for hardware accelerators

Small team delivering great usability and performance, 
but limited support of advanced optimizations and hardware

Popular HPC DSL  
developed by academics (and others)

Devito
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Problem: Isolated Compiler Ecosystems
Each DSL reimplements the same IRs and optimizations

• Today, Devito and Tensor Flow share no code 

• But, there is a huge opportunity for HPC DSLs: 

• They have some common IRs 

• They perform similar optimizations 

• They could benefit from the current 
investment in ML compilers

MLIR
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xDSL: a Sidekick to MLIR
Making the MLIR ecosystem accessible and extensible from Python

• xDSL is a Python framework we develop at the 
University of Edinburgh, it shares the same IR 
format and dialects with MLIR 

• This allows for many possible use cases: 

•Python-native end-to-end compilers  

•Prototyping new compiler design ideas 

• Building tools for analysing the compilation flow 

•Pairing high-level Python DSLs with 
existing low-level MLIR dialects and optimizations 
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xDSL

•
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https:!//github.com/xdslproject/xdsl/

https://github.com/xdslproject/xdsl/


xDSL Boosts Developers Productivity
Much shorter install times                         |            Much faster recompilation times

pip install xdsl
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xDSL xDSL xDSL xDSL

xDSL



xDSL Has Reasonable Overheads Compared to MLIR
About 1 order of magnitude slower for parsing & printing 
                                                              Comparable performance for constant folding
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xDSL
xDSL
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Use Case 1
Teaching compilation with ChocoPy
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• User: 

• Undergraduate students familiar with Python 

• Needs: 

• Quick and easy installation and build systems 

• Compile time performance is less important 

• Existing Workflows: 

• Students design ad-hoc IRs, data structures, and optimization passes 

• The xDSL Approach: 

• Students learn core concepts of SSA-based compilers and 
can easy transition to MLIR afterwards
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Use Case 2
Data-driven compiler design
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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Use Case 2
Data-driven compiler design
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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With xDSL we quickly analysed the test coverage of operations of various MLIR dialects 



Use Case 2
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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Analysis of dependencies between MLIR dialects in the MLIR test suite

Data-driven compiler design



Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects
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• User: 

• Domain experts, e.g., computational scientists or database experts 

• Needs: 

• Productivity is (often) more 
important than compilation speed 

• Existing Workflows: 

• Build isolated compiler ecosystem (such as Devito) 

• The xDSL Approach: 

• Embed high-level DSL in Python for ease of use 

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR

18



Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects
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• User: 

• Domain experts, e.g., computational scientists or database engineers 

• Needs: 

• Productivity and familiarity is (often) more 
important than compilation speed 

• Existing Workflows: 

• Build isolated compiler ecosystem (such as Devito) 

• The xDSL Approach: 

• Build high-level DSL interface in Python 

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR
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We implemented a database DSL 
using xDSL outperforming the 
in-memory database DuckDB 

Reduction of basetable 
column accesses implemented 

as a compiler optimization pass 
in Python with xDSL

We currently work 
with colleagues from 
Imperial to integrate 

Devito & MLIR 
with xDSL
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Use Case 4
Prototyping new MLIR features 
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• User: 

• Compiler researchers and engineers 

• Needs: 

• Prototyping many design; quick incremental build times 

• Existing Workflows: 

• Directly modify MLIR and LLVM which is time consuming 

• The xDSL Approach: 

• Prototype new ideas in Python with xDSL 

• Integrate with MLIR for realistic tests and benchmarks
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How To Optimize Programs in MLIR Today?

• MLIR provides an infrastructure to express program transformations as Pattern Rewrites 

• Such rewrites are performed once a pattern has matched in the code 

• Example: splitting a loop:
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Pattern Rewrite in MLIR
Example: Loop splitting

22



Pattern Rewrite in MLIR
Example: Loop splitting
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1. Implement C++ class inheriting from Pattern Rewriter interface

2. Match 
operation

3. Create 
replacement

4. Erase 
matched 
operation



Composing Rewrites?
How to perform a sequence of rewrites? 
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• Example: splitting a loop + unrolling the second (+ vectorizing first) + … 

 In MLIR no way to describe locations of rewrites; Usually greedily applied everywhere  

 What if a rewrite fails halfway through? Mutating rewrites make backtracking difficult



ELEVATE — a Language for Composing Rewrites
Based on  ICFP 2020 Paper: Achieving high-performance the functional way: 
                                                        a functional pearl on expressing high-performance optimizations as rewrite strategies 
by Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, Michel Steuwer

• We think of a Rewrite as function with a specific type: 
Either returning the transformed IR of the input program, or returning a Failure. 
 
 

• The rewrite must be immutable, i.e., they don’t modify directly the input program 

• Immutable rewrites with this type compose nicely into larger rewrites! 

• To prototype ELEVATE in MLIR: we implemented an immutable version of the MLIR IR in xDSL 

• We describe individual rewrite rules in a declarative MLIR dialect itself!
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type Rewrite = IR !=> IR | Failure



ELEVATE Rewrite in MLIR
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1. We use the (extended) pdl 
    dialect to match the input %op 

2. The created replacement 
     replaces the matched 
     root operation

3. If %cst2 has no uses 
     it will be automatically 
     removed

Example 1: Simple arithmetic rewrite

x * 2  x !>> 1



ELEVATE Rewrite in MLIR
Example 2: Loop Splitting
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Rewrite Computational IR



ELEVATE Rewrite in MLIR
Example 3: Stencil inlining
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Optimization implemented in the Open Earth Compiler (https://github.com/spcl/open-earth-compiler/ )

https://github.com/spcl/open-earth-compiler/


ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…
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Matching of two successive stencil operations



ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…

Our declarative rewrite replaces about 400 lines of imperative C++ code!
https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp
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https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp


Combinators and Traversals in ELEVATE

• Combinators allow to build more complex strategies from simple once, e.g.: 

• s1;s2 (Sequential Composition): apply second strategy s1 to result of the first s2 

• try {s1} else {s2} (Left Choice): apply second strategy s2 if first strategy s1 fails 

• Traversals allow to describe precise locations in the IR, e.g.: 

• top_to_bottom {s}: apply strategy s to the IR line by line, top to bottom 

• regionN[n]{s}, blockN[n]{s}, opN[n]{s}: apply strategy s to n-th region/block/op
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Composing Rewrites in ELEVATE

rewrite.strategy @split_and_unroll_snd() { 
  rewrite.apply @split_loop 
  rewrite.top_to_bottom { 
  rewrite.skip 1 { 
    rewrite.if "scf.for" { 
      rewrite.apply @unroll_loop 
    } 
  } 
}

32

sequential composition

traversals & predicates to describe locations



Use Cases for Composable Rewrites
Detection of Layers in ML models

• Enables experts to optimize ML layers specially 

• Many slightly different cases could easily be 
described by composing individual rewrites 

• Imperative C++ or Python matching code written 
by expert compiler engineers, e.g., at Microsoft
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Detect 
Attention 

Layer

200 lines of arbitrary 
imperative Python code

%FuseAttentionLayer : !strategy = elevate.strategy() ["strategy_name"="FuseAttentionLayer"] {
    ^strategy(%op : !operation):
    %pattern : !pattern = match.pattern() {
      // input to the attention layer
      %layer_norm_cst_0 : !value = pdl.operand()
      %layer_norm_cst_weight : !value = pdl.operand()
      %layer_norm_cst_bias : !value = pdl.operand() []

      (%add2, %add2_result) = pdl.operation() ["name"="onnx.Add"]
      (%layer_norm1, %layer_norm1_result) = pdl.operation(%add2_result, %layer_norm_cst_weight, %layer_norm_cst_bias) ["name"="onnx.Custom", "function_name" = "LayerNormalization"]

      // detect mask nodes
      %input_mask = pdl.operand() []
      (%unsqueeze1_mask, %unsqueeze1_mask_result) = pdl.operation(%input_mask : !value) ["name"="onnx.Unsqueeze"]
      (%unsqueeze0_mask, %unsqueeze0_mask_result) = pdl.operation(%unsqueeze1_mask_result : !value) ["name"="onnx.Unsqueeze"]
      (%cast_mask, %cast_mask_result) = pdl.operation(%unsqueeze0_mask_result : !value) ["name"="onnx.Cast"]
      %sub_cst = pdl.operand() []

< 100 lines of declarative dialect 
could easily be generated

• Declarative rewrite written by PhD student



Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020  paper demonstrates how to use 
combinators and traversals to build a Schedule 
describing a specific way to optimize a program 

• Gives performance experts precise control over 
the optimizations applied to a program

 ICFP 2020
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ELEVATE



Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020  expresses equivalent TVM schedules 
purely as compositions of rewrites in ELEVATE 

• Demonstrate same performance as TVM compiler

35
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What’s Next for ELEVATE in MLIR?
Bring all of ELEVATE capabilities to MLIR for expressing rewrites as compositions
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• We have a working prototype implementation in xDSL, we are interested in a C++ MLIR implementation 

• xDSL is a great prototyping framework! 

• Overheads of immutable rewriting are reasonable for many use cases 

• Rewriting with an immutable IR is much more efficient than naive cloning for supporting backtracking



Summary
xDSL — a Python Sidekick to MLIR  |  ELEVATE — a language for composing rewrites
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• MLIR provides great opportunities to share compiler infrastructure 

• Many DSL developers prefer Python and are not part of the MLIR ecosystem 

• xDSL — a sidekick of MLIR enables many deeply integrated use cases leveraging MLIR 

• ELEVATE — a language for composing rewrites allows describing complex optimizations easily 
                         and opens up interesting use cases by providing control over the rewrite process



Michel Steuwer — Modern DSL Compiler Development With MLIR
xDSL — a Python Sidekick to MLIR  |  ELEVATE — a language for composing rewrites
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michel.steuwer@ed.ac.uk

https:!//github.com/xdslproject/xdsl/ https://elevate-lang.org

https://michel.steuwer.info
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xDSL  ICFP 2020

rewrite.strategy @split_and_unroll_snd() { 
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    } 
  } 
}
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