

HOW TO DESIGN THE NEXT 700 **OPTIMIZING COMPILERS**

A framework for designing optimising domain-specific compilers for specialised hardware in the era of ML and Al

Michel Steuwer

THE UNIVERSITY of EDINBURGH

General purpose

TensorFlow

and S

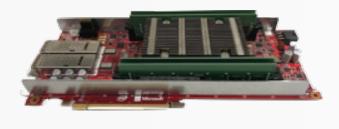
General purpose

7

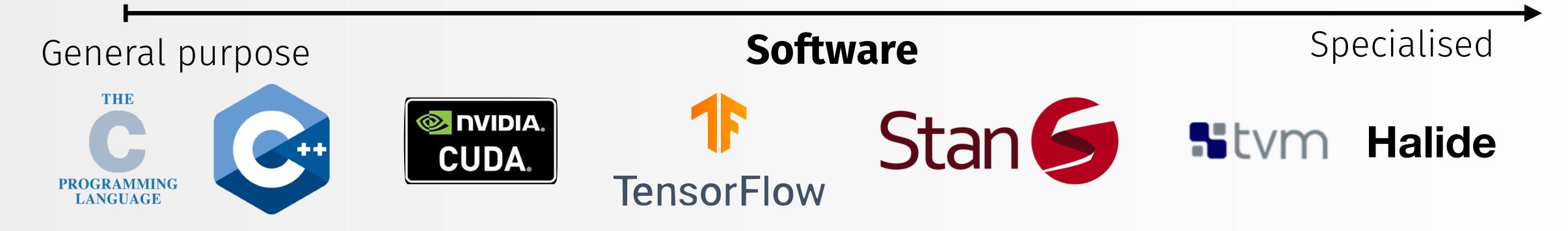
Software

Specialised

Stan Stan Halide

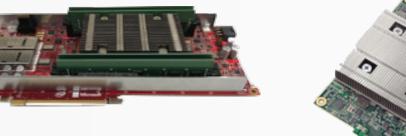


Specialised



How do we build compilers to (automatically) optimise specialised software for specialised hardware?

General purpose



Specialised

Hardware

COMPUTATION OPTIMISATION

Domain Specific Example: TensorFlow

- > 500 different type of nodes in the TF IR
- > 50 different type of nodes in the XLA IR
- > 2.500.000 lines of code
- Support for custom hardware: TPU

• Hughe effort to build still highly specialised

• Problem solved?

YIA IR

TensorFlow

Paul Barham Google Brain

Abstract

In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas.

We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on highperformance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress.

We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.

ACM Reference Format:

Paul Barham and Michael Isard. 2019. Machine Learning Systems are Stuck in a Rut. In Workshop on Hot Topics in Operating Systems (HotOS '19), May 13-15, 2019, Bertinoro, Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3317550. 3321441

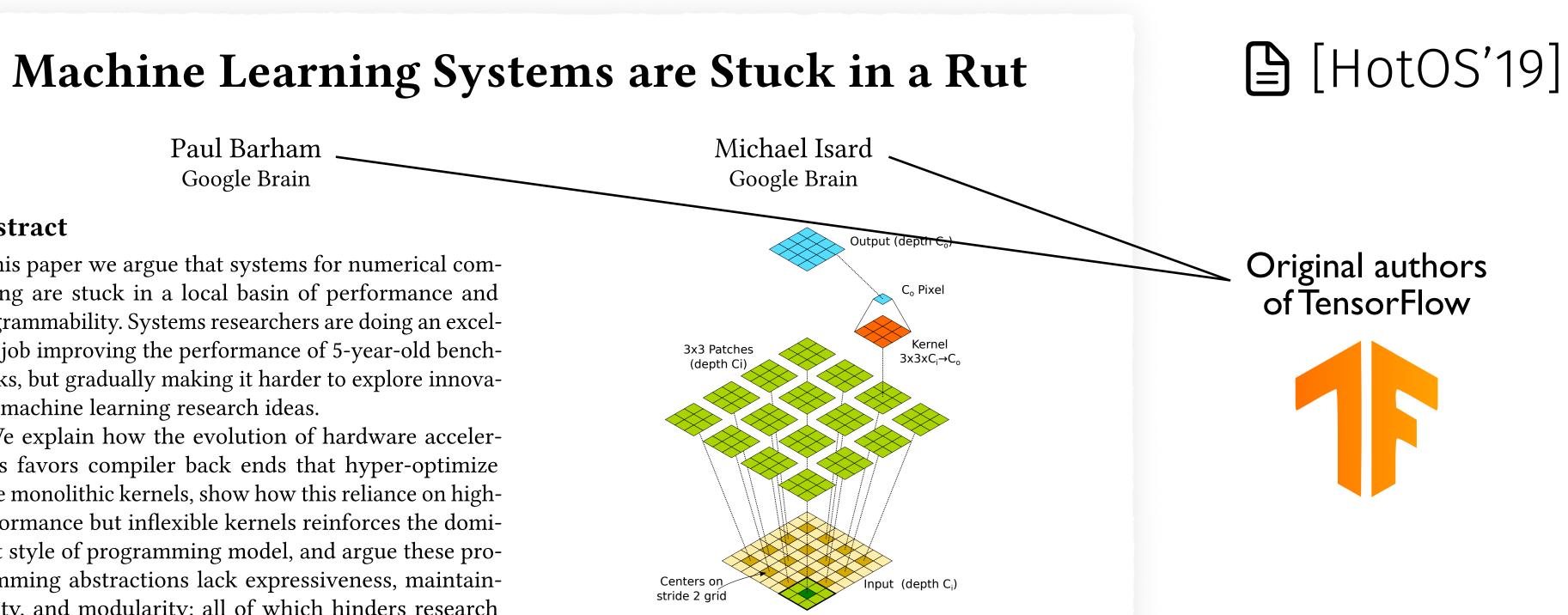


Figure 1. Conv2D operation with 3×3 kernel, stride=2

with 16 times fewer training parameters than the convolutional neural network (CNN) we were comparing it to, implementations in both TensorFlow[2] and PyTorch[3] were much slower and ran out of memory with much smaller models. We wanted to understand why.

1.1 New ideas often require new primitives

We won't discuss the full details of Capsule networks in this paper¹, but for our purposes it is sufficient to consider a simplified form of the inner loop, which is

Machine Learning Systems are Stuck in a Rut

Paul Barham Google Brain

Abstract

In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas.

We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on highperformance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards

high-performance general purpose numerical computing systems on modern accelerators.

ACM Reference Format:

Paul Barham and Michael Isard. 2019. Machine Learning Systems are Stuck in a Rut. In *Workshop on Hot Topics in Operating* Systems (HotOS '19), May 13-15, 2019, Bertinoro, Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3317550. 3321441

Michael Isard Google Brain

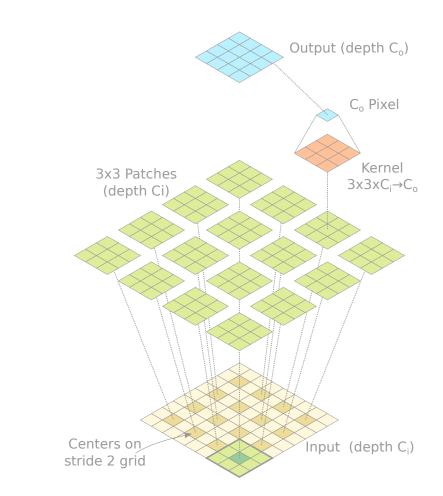


Figure 1. Conv2D operation with 3×3 kernel, stride=2

with 16 times fewer training parameters than the convolutional neural network (CNN) we were comparing it to, implementations in both TensorFlow[2] and PyTorch[3] were much slower and ran out of memory with much smaller models. We wanted to understand why.

1.1 New ideas often require new primitives

We won't discuss the full details of Capsule networks in this paper¹, but for our purposes it is sufficient to consider a simplified form of the inner loop, which is

Machine Learning Systems are Stuck in a Rut

Paul Barham Google Brain

Abstract

In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas.

We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on highperformance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress.

We conclude by noting promising directions in the field, and advocate steps to advance progress towards

We should aim for more principled higher level intermediate representations

tems are Stuck in a Rut. In *Workshop on Hot Topics in Operating Systems (HotOS '19), May 13–15, 2019, Bertinoro, Italy.* ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3317550. 3321441

Michael Isard Google Brain

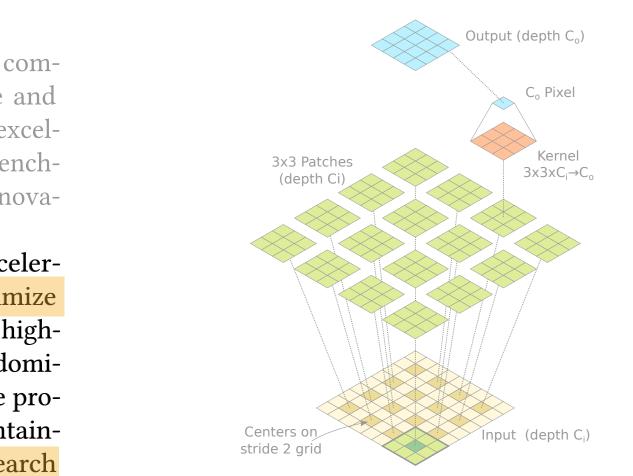


Figure 1. Conv2D operation with 3×3 kernel, stride=2 ne ds with 16 times fewer training parameters than the convo-

1.1 New ideas often require new primitives

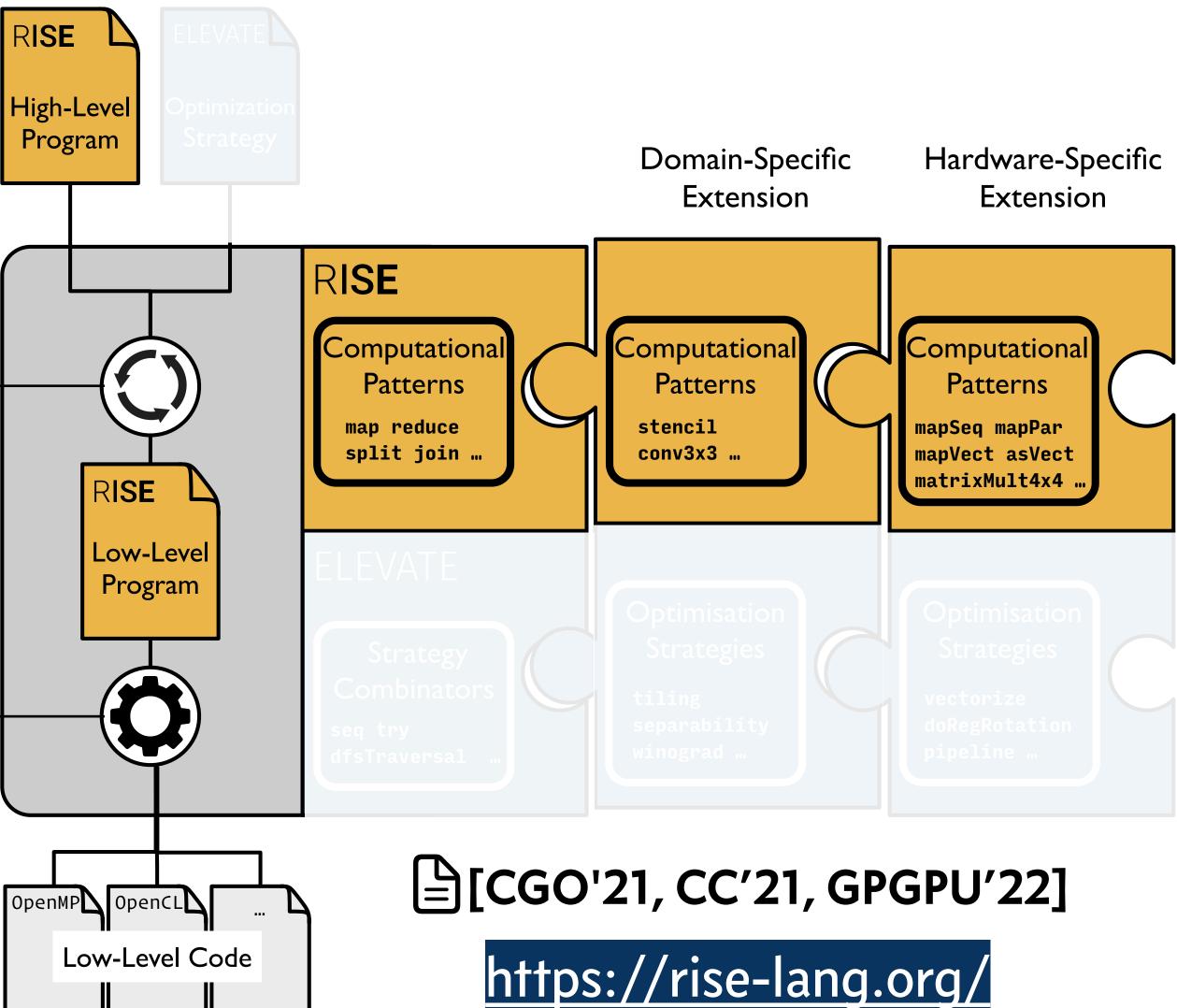
We won't discuss the full details of Capsule networks in this paper¹, but for our purposes it is sufficient to consider a simplified form of the inner loop, which is

COMPUTATION

RISE & Shine an extensible compiler design

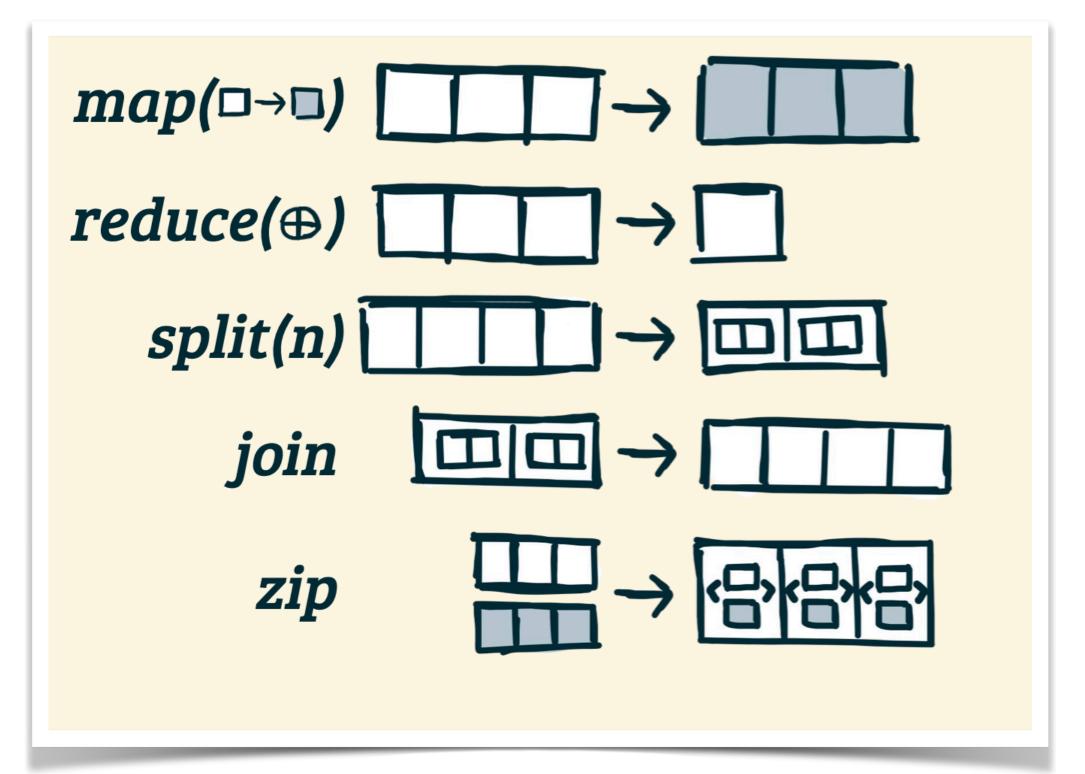
Rewriting

- Spiritual successor to the LIFT project
- Functional language as foundation
- Computations are expressed by computational Code Generation patterns



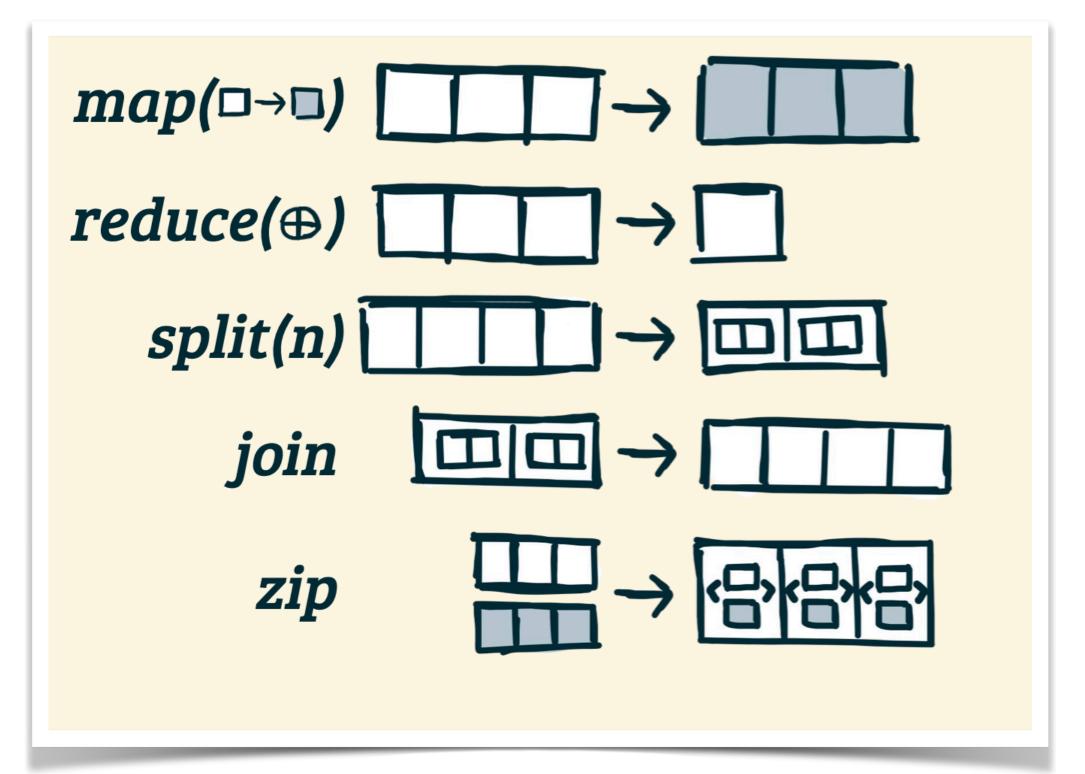
Computational Patterns

Data parallel patterns



Computational Patterns

Data parallel patterns

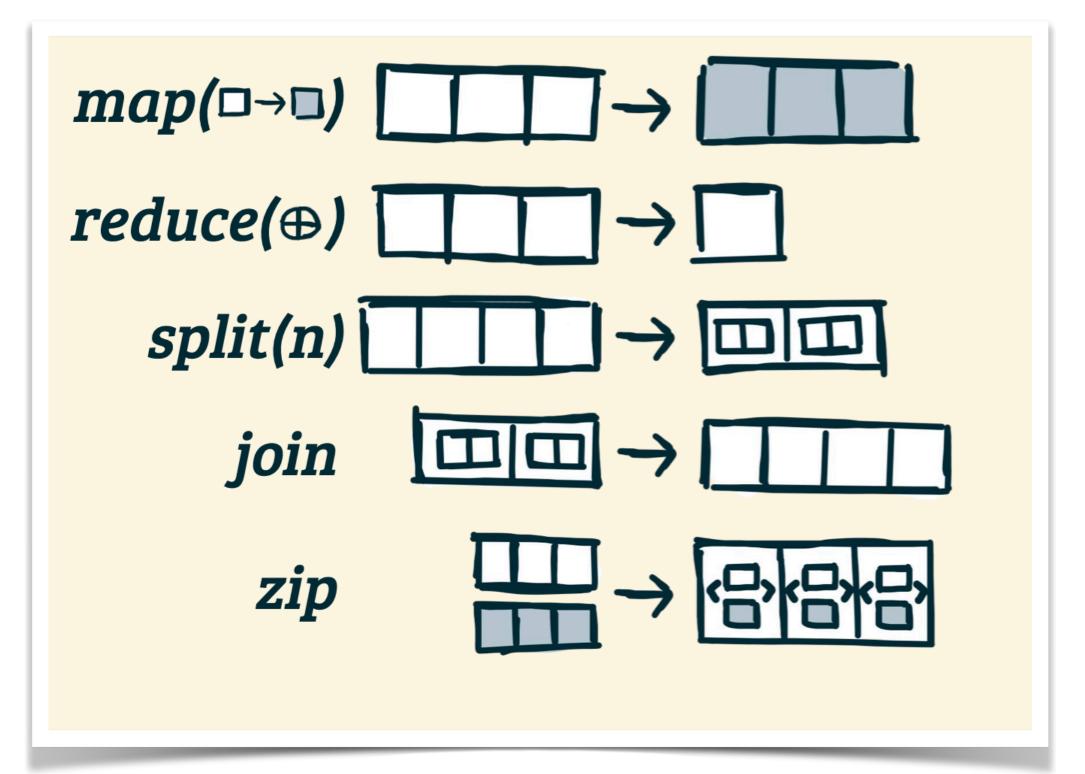


Dot product

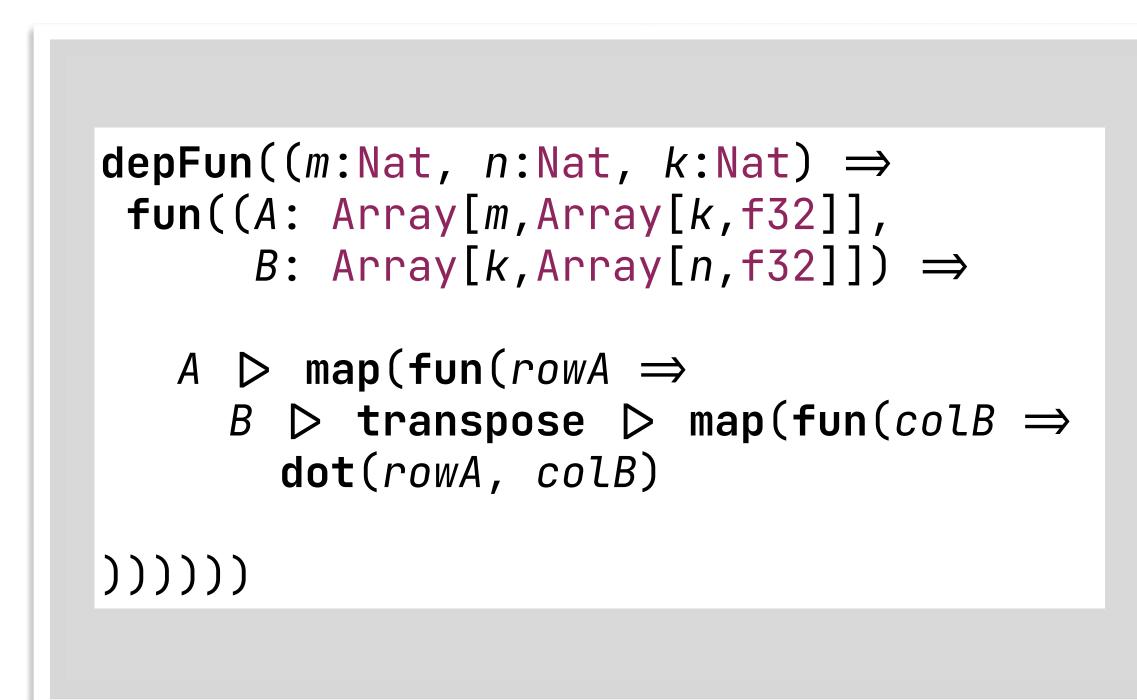


Computational Patterns

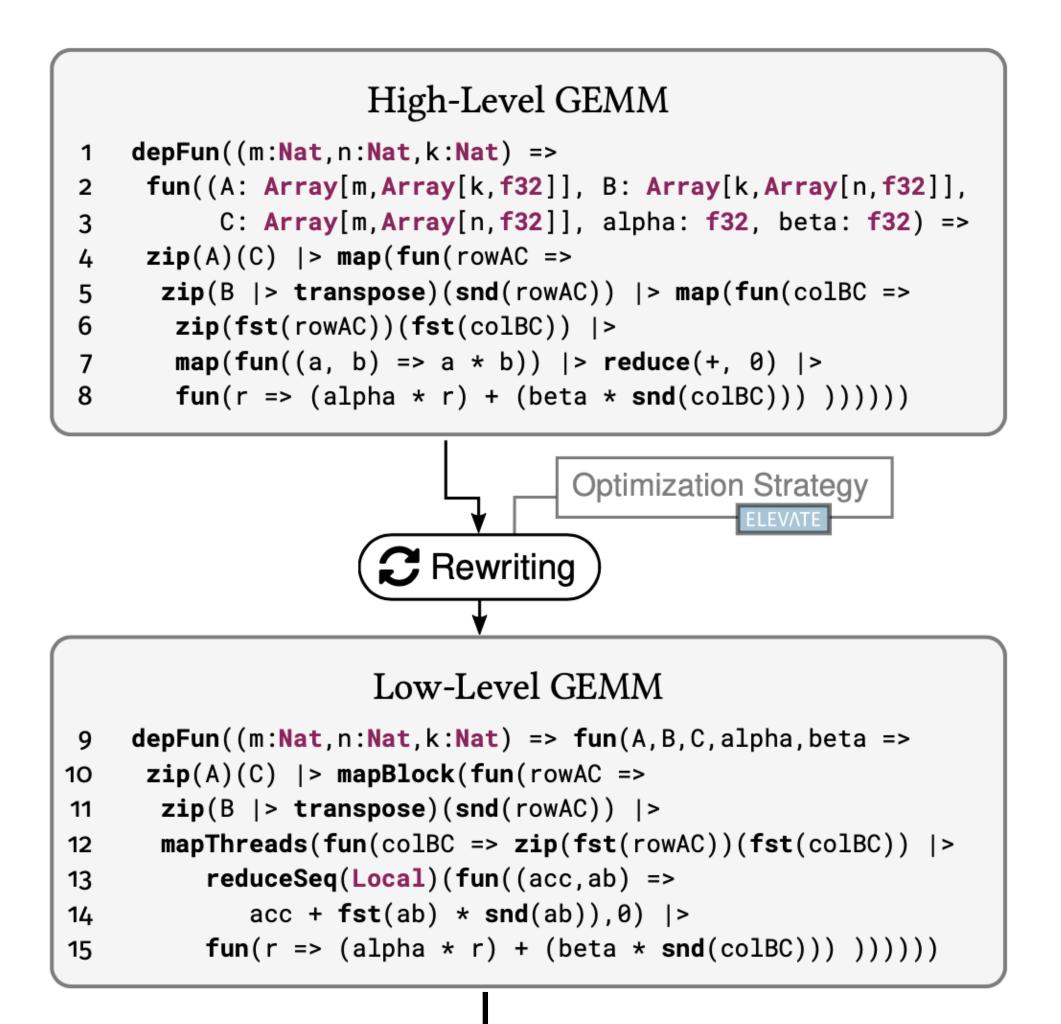
Data parallel patterns

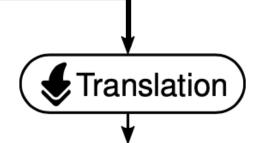


Matrix multiply



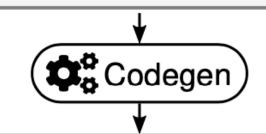
GEMM in RISE



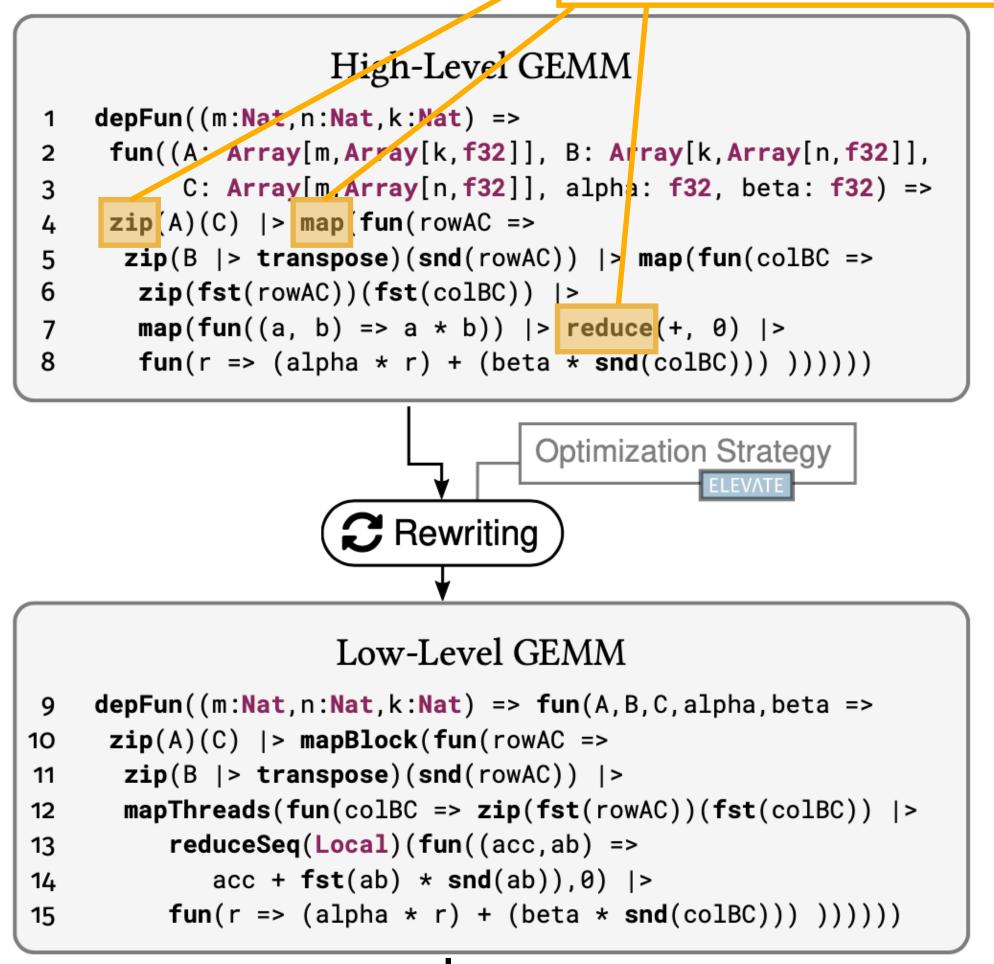


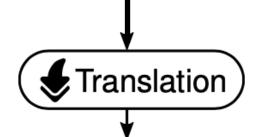
Imperative GEMM

```
depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
18
     parForBlock(m, Array[n, f16], output, fun(rowIdx, outRow =>
      parForThreads(n, f16, outRow, fun(colIdx,outElem =>
19
       new(Local,f32, fun((accumExp, accumAcc) =>
20
        accumAcc = 0.0f;
21
        for(k, fun(i => accumAcc = accumExp +
22
         fst(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
23
          fst(idx(colIdx, zip(transpose(B),
24
           snd(idx(rowIdx, zip(A,C))))))) *
25
         snd(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
26
          fst(idx(colIdx, zip(transpose(B),
27
           snd(idx(rowIdx, zip(A,C)))))))));
28
        outElem = alpha * accumExp + beta *
29
         snd(idx(colIdx, zip(transpose(B),
30
          snd(idx(rowIdx, zip(A,C))))))));
31
      syncThreads()))))
32
```



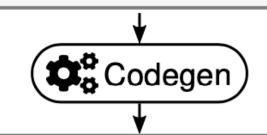
```
__global__ void gemm_kernel(float* __restrict__ output,
33
      int m, int n, int k, const __half* __restrict__ A,
34
      const __half* __restrict__ B
35
      const float* __restrict__ C, float alpha, float beta) {
36
       for(int rowIdx=blockIdx.x;
37
           blockIdx.x<m; rowIdx += gridDim.x) {</pre>
38
39
        for(int colldx=threadIdx.x;
            threadIdx.x<n; rowIdx += blockDim.x) {</pre>
40
         float accum = 0;
41
         for (int i = 0; i < k; i++) {</pre>
42
           accum = accum + A[i + rowIdx*k] * B[colIdx + i*n];
43
44
         output[colIdx + rowIdx * n] =
45
          alpha * accum + beta * C[colIdx + rowIdx*n];
46
47
        __syncthreads(); }}
48
```

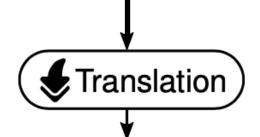


Imperative GEMM

```
depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
17
18
     parForBlock(m, Array[n, f16], output, fun(rowIdx, outRow =>
      parForThreads(n, f16, outRow, fun(colIdx,outElem =>
19
       new(Local,f32, fun((accumExp, accumAcc) =>
20
        accumAcc = 0.0f;
21
        for(k, fun(i => accumAcc = accumExp +
22
         fst(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
23
          fst(idx(colIdx, zip(transpose(B),
24
           snd(idx(rowIdx, zip(A,C))))))) *
25
         snd(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
26
          fst(idx(colIdx, zip(transpose(B),
27
           snd(idx(rowIdx, zip(A,C)))))))));
28
        outElem = alpha * accumExp + beta *
29
         snd(idx(colIdx, zip(transpose(B),
30
          snd(idx(rowIdx, zip(A,C))))))));
31
      syncThreads()))))
32
```

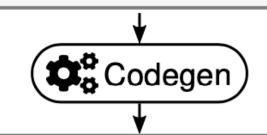


```
__global__ void gemm_kernel(float* __restrict__ output,
33
      int m, int n, int k, const __half* __restrict__ A,
34
      const __half* __restrict__ B
35
      const float* __restrict__ C, float alpha, float beta) {
36
       for(int rowIdx=blockIdx.x;
37
           blockIdx.x<m; rowIdx += gridDim.x) {</pre>
38
        for(int colldx=threadIdx.x;
39
            threadIdx.x<n; rowIdx += blockDim.x) {</pre>
40
         float accum = 0;
41
         for (int i = 0; i < k; i++) {</pre>
42
43
           accum = accum + A[i + rowIdx*k] * B[colIdx + i*n];
44
         output[colIdx + rowIdx * n] =
45
          alpha * accum + beta * C[colIdx + rowIdx*n];
46
47
        __syncthreads(); }}
48
```

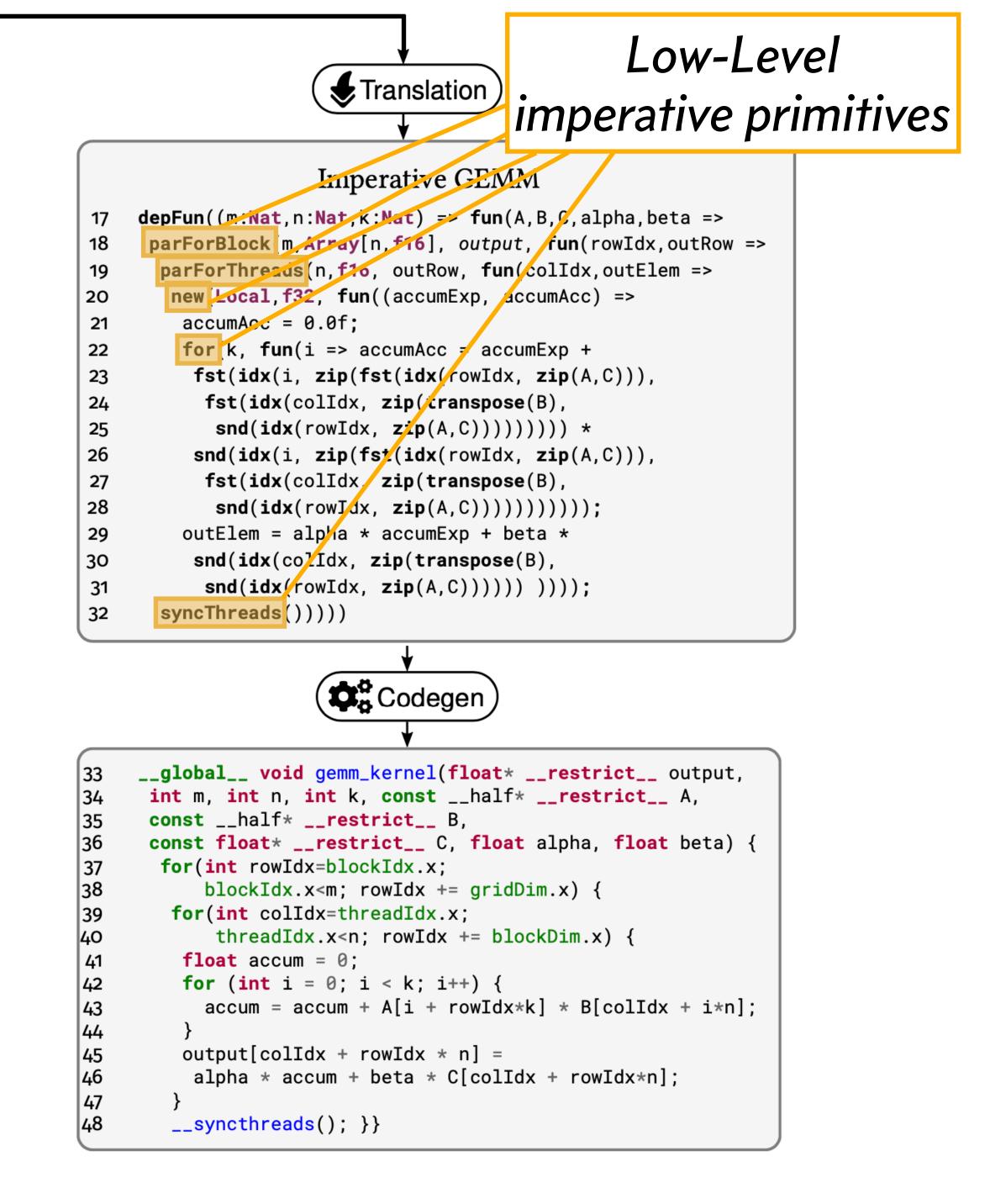



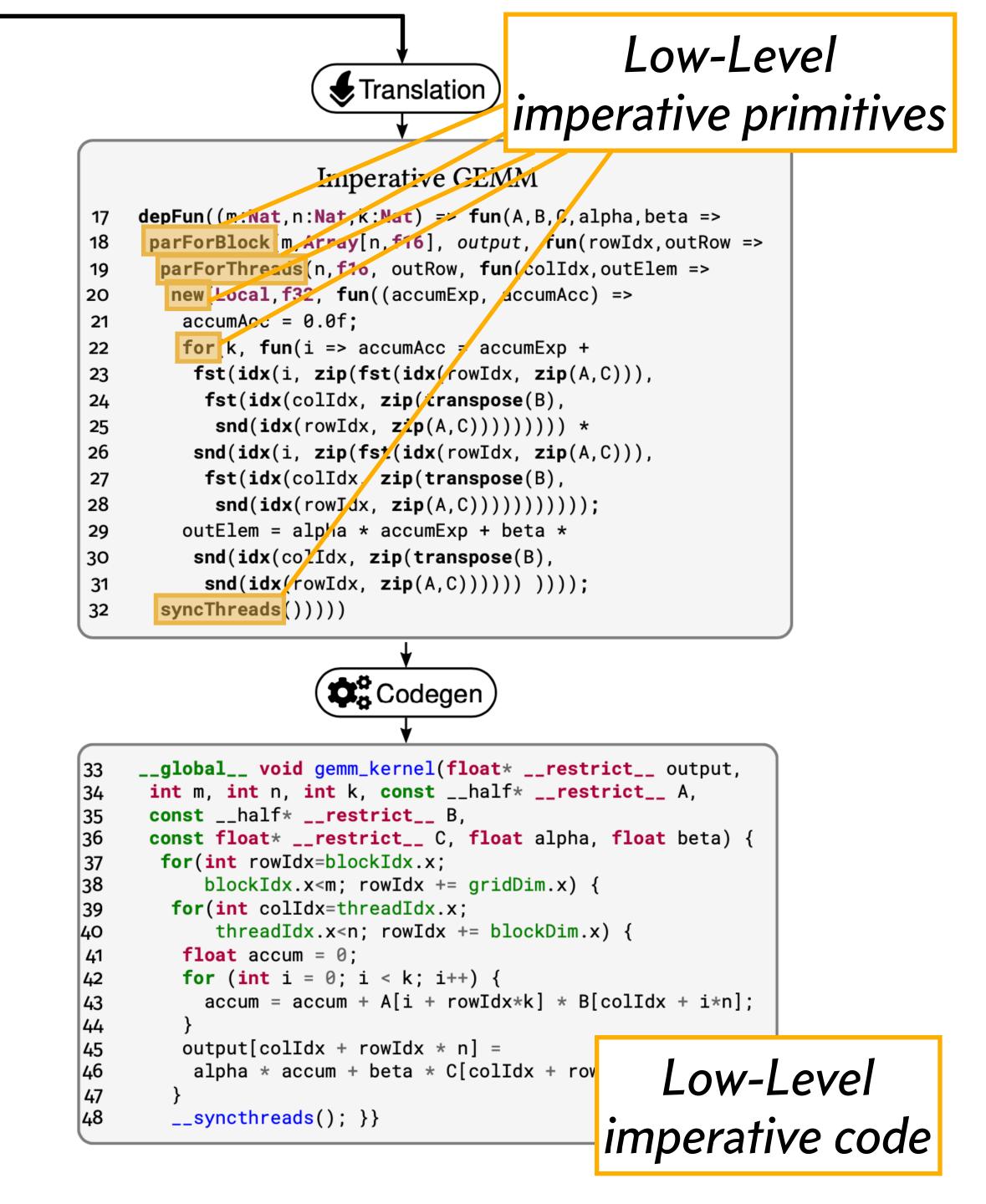
Imperative GEMM

```
depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
18
     parForBlock(m, Array[n, f16], output, fun(rowIdx, outRow =>
      parForThreads(n, f16, outRow, fun(colIdx,outElem =>
19
       new(Local,f32, fun((accumExp, accumAcc) =>
20
        accumAcc = 0.0f;
21
        for(k, fun(i => accumAcc = accumExp +
22
         fst(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
23
          fst(idx(colIdx, zip(transpose(B),
24
           snd(idx(rowIdx, zip(A,C))))))) *
25
         snd(idx(i, zip(fst(idx(rowIdx, zip(A,C))),
26
          fst(idx(colIdx, zip(transpose(B),
27
           snd(idx(rowIdx, zip(A,C)))))))));
28
        outElem = alpha * accumExp + beta *
29
         snd(idx(colIdx, zip(transpose(B),
30
          snd(idx(rowIdx, zip(A,C))))))));
31
      syncThreads()))))
32
```



```
__global__ void gemm_kernel(float* __restrict__ output,
33
      int m, int n, int k, const __half* __restrict__ A,
34
      const __half* __restrict__ B
35
      const float* __restrict__ C, float alpha, float beta) {
36
       for(int rowIdx=blockIdx.x;
37
           blockIdx.x<m; rowIdx += gridDim.x) {</pre>
38
        for(int colldx=threadIdx.x;
39
            threadIdx.x<n; rowIdx += blockDim.x) {</pre>
40
         float accum = 0;
41
         for (int i = 0; i < k; i++) {</pre>
42
43
           accum = accum + A[i + rowIdx*k] * B[colIdx + i*n];
44
         output[colIdx + rowIdx * n] =
45
          alpha * accum + beta * C[colIdx + rowIdx*n];
46
47
        __syncthreads(); }}
48
```



GEMM in RISE

RISE

High-Level GEMM

1 depFun((m:Nat,n:Nat,k:Nat) =>

```
3 C: Array[m, Array[n, f32]], alpha: f32, beta: f32) =>
```

4 zip(A)(C) |> map(fun(rowAC =>

5

6

8

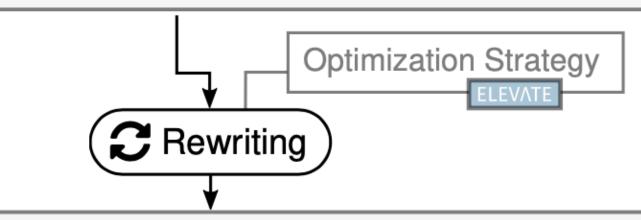
13

14

15

```
zip(B |> transpose)(snd(rowAC)) |> map(fun(colBC =>
```

- zip(fst(rowAC))(fst(colBC)) |>
- **map(fun**((a, b) => a * b)) |> **reduce**(+, 0) |>
- **fun**(r => (alpha * r) + (beta * **snd**(colBC))))))))



Low-Level GEMM

```
9 depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
```

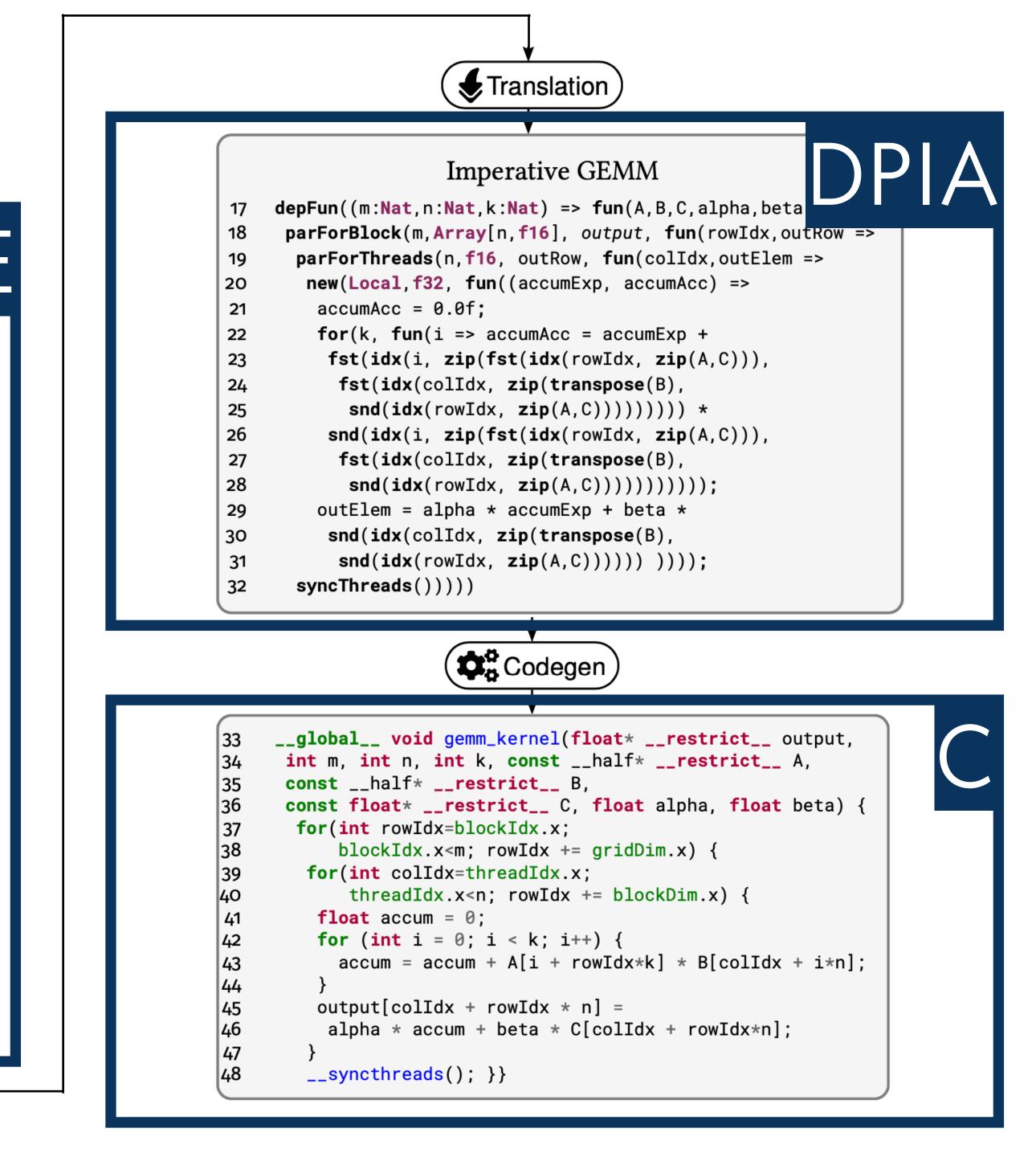
```
10 zip(A)(C) |> mapBlock(fun(rowAC =>
```

11 zip(B |> transpose)(snd(rowAC)) |>

```
12 mapThreads(fun(colBC => zip(fst(rowAC))(fst(colBC)) |>
```

- reduceSeq(Local)(fun((acc,ab) =>
- acc + **fst**(ab) * **snd**(ab)),0) |>

```
fun(r => (alpha * r) + (beta * snd(colBC))) ))))))
```



GEMM in RISE

RISE

High-Level GEMM

- 1 depFun((m:Nat,n:Nat,k:Nat) =>
 2 fun((A: Array[m,Array[k,f32]], E
- fun((A: Array[m,Array[k,f32]], B: Array[k,Array[n,f32]], C: Array[m,Array[n,f32]], alpha: f32, beta: f32) =>
- 3 C: Array[m, Array[n, f32]]
 4 zip(A)(C) |> map(fun(rowAC =>

5

6

8

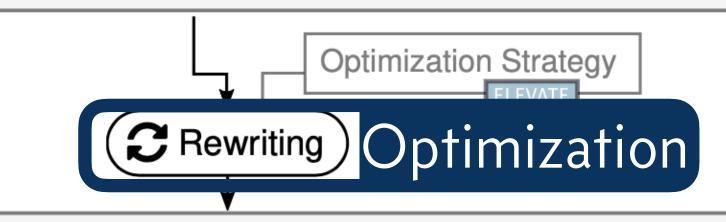
13

14

15

```
zip(B |> transpose)(snd(rowAC)) |> map(fun(colBC =>
```

- zip(fst(rowAC))(fst(colBC)) |>
- **map(fun**((a, b) => a * b)) |> **reduce**(+, 0) |>
- **fun**(r => (alpha * r) + (beta * **snd**(colBC))))))))



Low-Level GEMM

```
9 depFun((m:Nat,n:Nat,k:Nat) => fun(A,B,C,alpha,beta =>
```

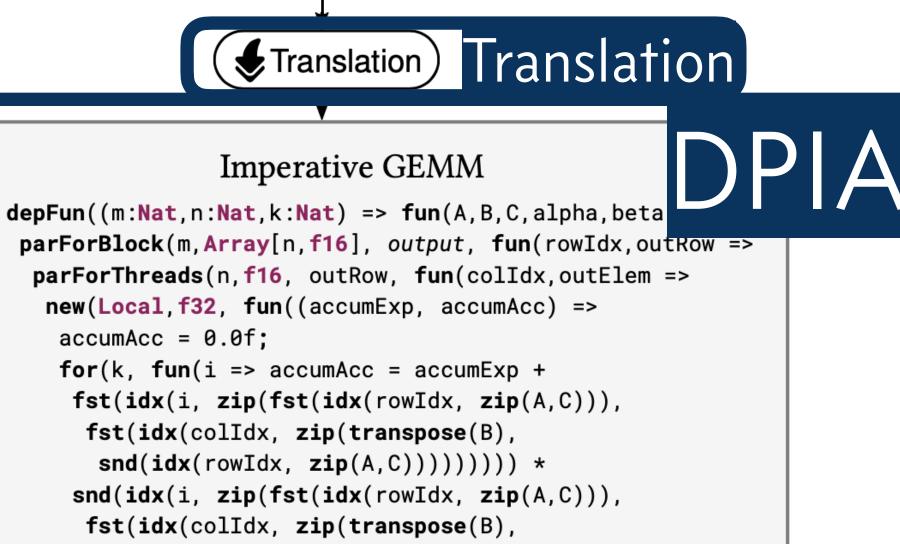
```
10 zip(A)(C) |> mapBlock(fun(rowAC =>
```

11 zip(B |> transpose)(snd(rowAC)) |>

```
12 mapThreads(fun(colBC => zip(fst(rowAC))(fst(colBC)) |>
```

- reduceSeq(Local)(fun((acc,ab) =>
- acc + **fst**(ab) * **snd**(ab)),0) |>

```
fun(r => (alpha * r) + (beta * snd(colBC))) ))))))
```



```
snd(idx(rowIdx, zip(A,C)))))))));
```

```
outElem = alpha * accumExp + beta *
snd(idx(colIdx, zip(transpose(B),
```

```
snd(idx(rowIdx, zip(A,C))))) )));
```

```
syncThreads()))))
```

18

19

20

21

22

23

24

25

26

27

28

29

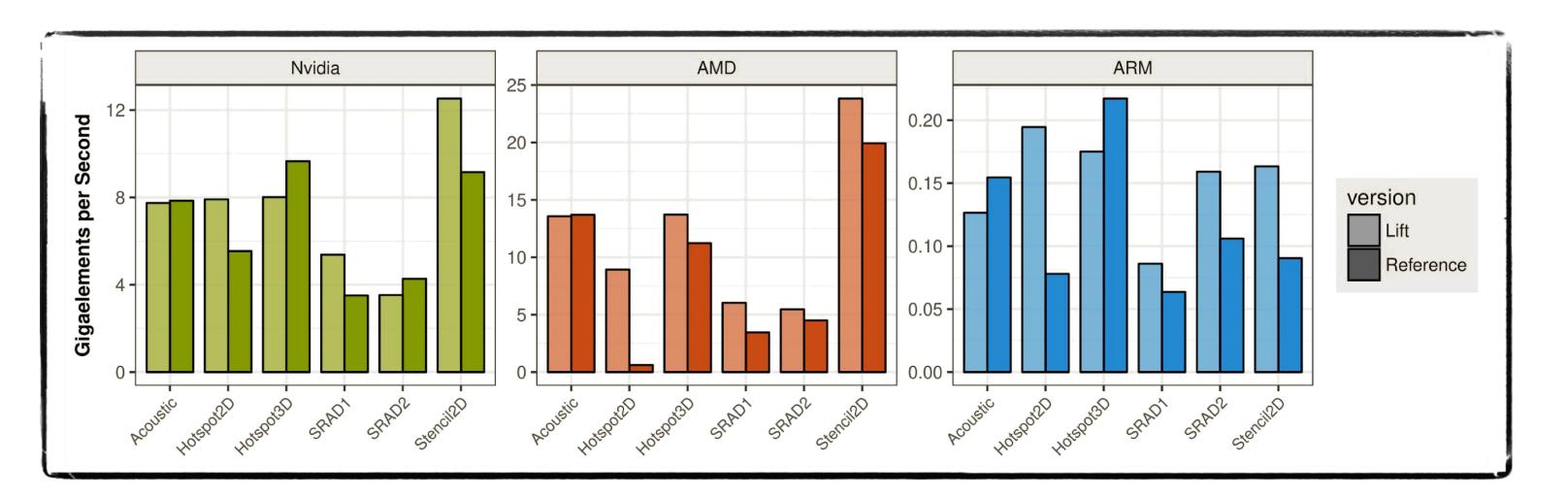
30

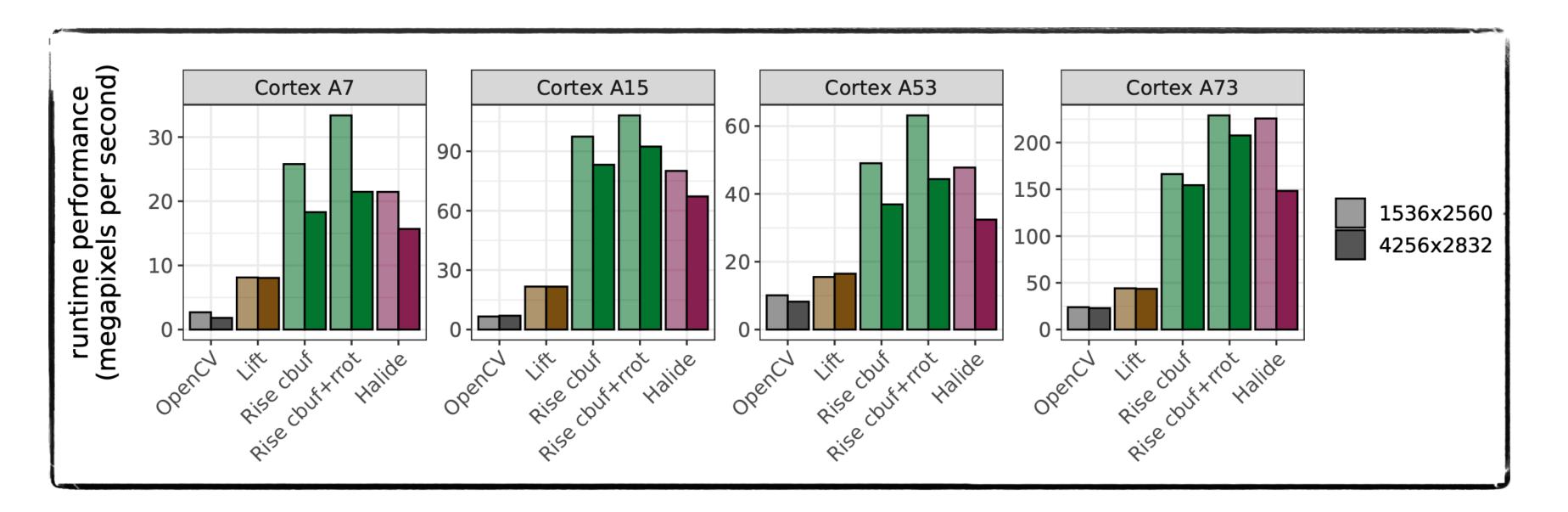
31

32


```
__global__ void gemm_kernel(float* __restrict__ output,
33
      int m, int n, int k, const __half* __restrict__ A,
34
      const __half* __restrict__ B,
35
      const float* __restrict__ C, float alpha, float beta) {
36
       for(int rowIdx=blockIdx.x;
37
           blockIdx.x<m; rowIdx += gridDim.x) {</pre>
38
        for(int colldx=threadIdx.x;
39
            threadIdx.x<n; rowIdx += blockDim.x) {</pre>
40
         float accum = 0;
41
         for (int i = 0; i < k; i++) {</pre>
42
          accum = accum + A[i + rowIdx*k] * B[colIdx + i*n];
43
44
         output[colIdx + rowIdx * n] =
45
          alpha * accum + beta * C[colIdx + rowIdx*n];
46
47
        __syncthreads(); }}
48
```


Performance Results





Same performance as hand-optimised code!

[CGO 2018]

Outperform Halide with two optimizations added as new patterns.

[CGO 2021]

Extensibility!

- New patterns can be added at each abstraction layer:
- void mma_sync(fragment<...> &D, const fragment<...> &A, const fragment<...> &B, const fragment<...> &C); void store_matrix_sync(T* tile, const fragment<...> &A, void fill_fragment(
- Low-level imperative primitives to capture a hardware details
- Low-level functional primitives to lift these abstractions into the functional world
- High-level functional primitives to make these abstractions available to rewriting

Low-level imperative primitives

```
template<typename FragmKind, int m, int n, int k,</pre>
typename T, typename Layout=void> class fragment;
void load_matrix_sync(fragment<...> &A,
 const T* tile, unsigned l_dim, layout_t layout);
 unsigned l_dim, layout_t layout);
 fragment<...> &A, const T& value);
```

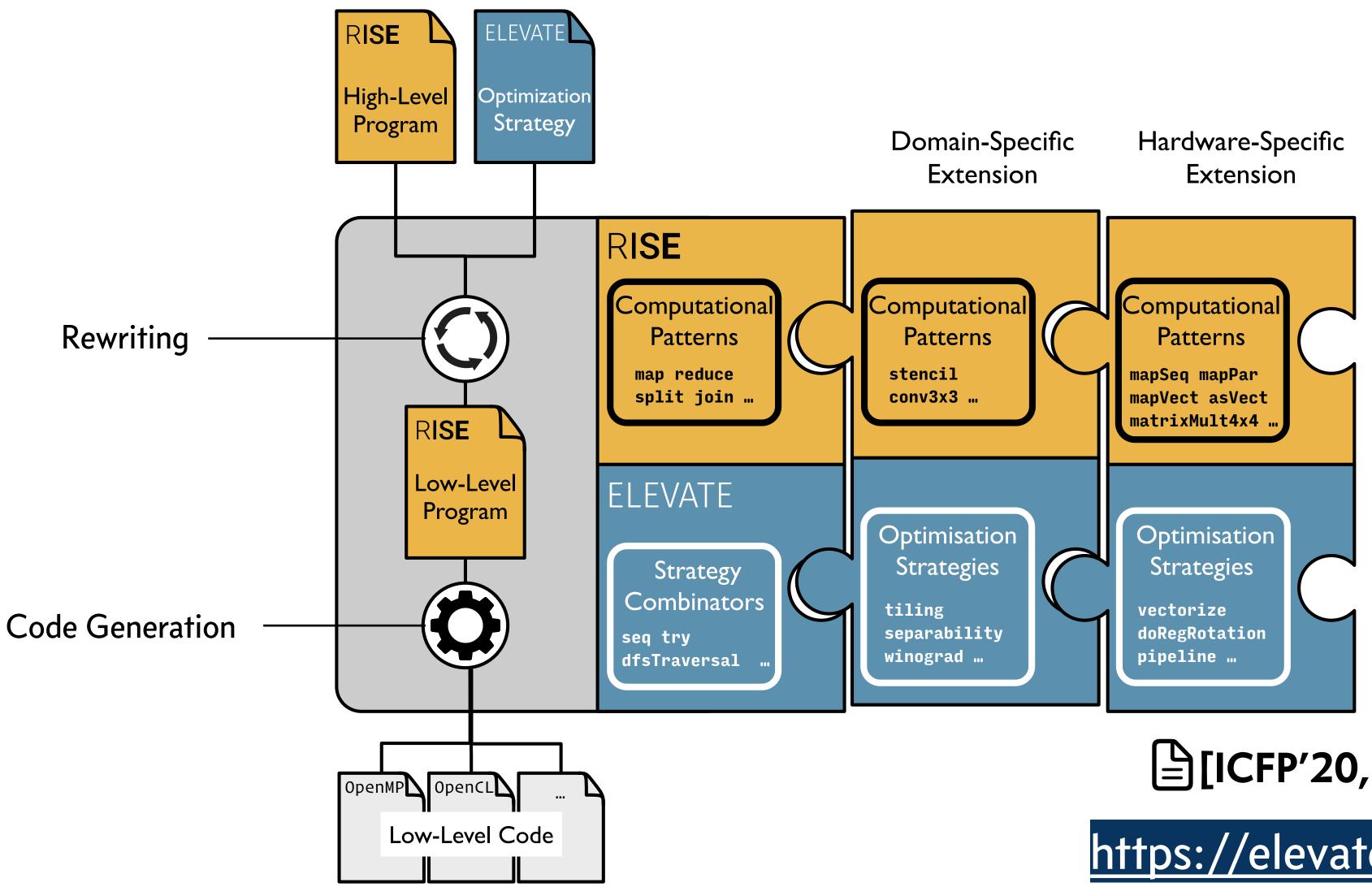
```
Fragment[m: Nat, n: Nat, k: Nat, t: DataType, f: FragmKind]
def mmaFragment(m:Nat, n:Nat, k:Nat, s:DataType, t:DataType,
  A: Exp[Fragment[m,k,n,s,AMatrix], Rd],
  B: Exp[Fragment[k,n,m,s,BMatrix], Rd],
  C: Exp[Fragment[m,n,k,t,Accum], Rd],
  D: Acc[Fragment[m,n,k,t,Accum]]): Comm
def loadFragment(f:FragmKind, m:Nat, n:Nat, k:Nat, t:DataType,
  tile: Exp[Array[m,Array[n,t]], Rd], A: Acc[Fragment[m,n,k,t,f]]): Comm
def storeFragment(m:Nat, n:Nat, k:Nat, t:DataType,
  A: Exp[Fragment[m,n,k,t,Accum],Rd], tile: Acc[Array[m,Array[n,t]]]): Comm
def fillFragment(f:FragmKind, m:Nat, n:Nat, k:Nat, t:DataType,
  A: Acc[Fragment[m,n,k,t,f]], value: Exp[t, Rd]): Comm
```

Low-level functional primitives

```
tensorMatMulAdd: {m: Nat} -> {n: Nat} -> {k: Nat} ->
 {s: DataType} -> {t: DataType} ->
 Fragment[m,k,n,s, AMatrix] ->
 Fragment[k,m,n,s, BMatrix] ->
 Fragment[m,n,k,t, Accum] -> Fragment[m,n,k,t, Accum]
asFragment: {m: Nat} -> {n: Nat} -> {k: Nat} ->
 {t: DataType} -> {f: FragmKind} ->
 Array[m, Array[n, t]] -> Fragment[m,n,k,t, f]
asMatrix: {m: Nat} -> {n: Nat} -> {k: Nat} -> {t: DataType} ->
 Fragment[m,n,k,t, Accum] -> Array[m, Array[n, t]]
generateFragment: {m: Nat} -> {n: Nat} -> {k: Nat} ->
    {t: DataType} -> {f: FragmKind} ->
   t -> Fragment[m,n,k,t, f]
```

GPGPU'22]

Extensible Optimizations via Rewriting



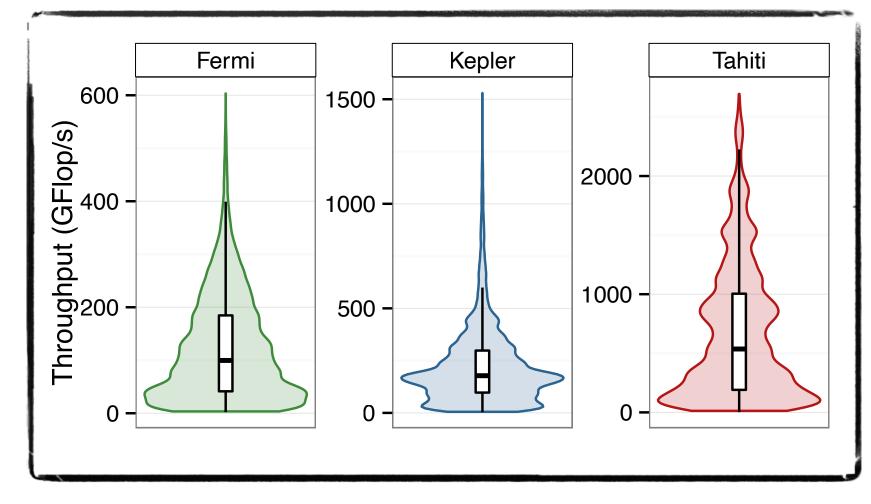
[][ICFP'20, arXiv'22]

https://elevate-lang.org/

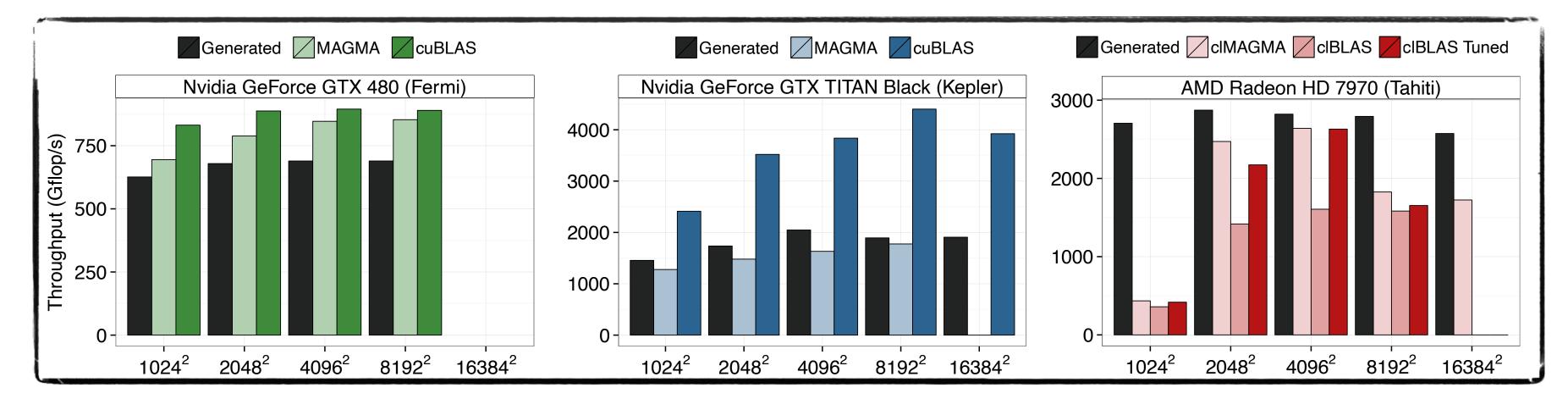
Tradeoffs when optimizing with rewriting

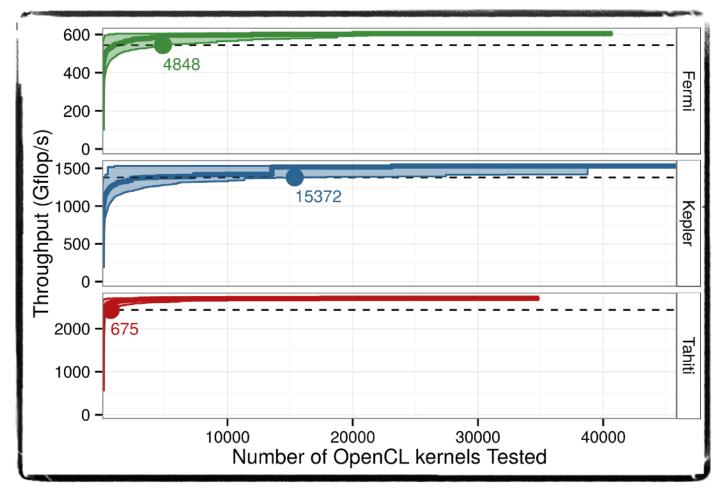
Manual rewriting

Automatic Rewriting for Matrix Multiplication



Only few generated code with very good performance





Still: One can expect to find a good performing kernel quickly!

Performance close or better than hand-tuned library code

Tradeoffs when optimizing with rewriting

- No human needed in optimization process
- **Costly & Lengthy search process**
- **Objective** Does not (yet) scale to complex programs

Manual rewriting

26

Tradeoffs when optimizing with rewriting

Automatic rewriting

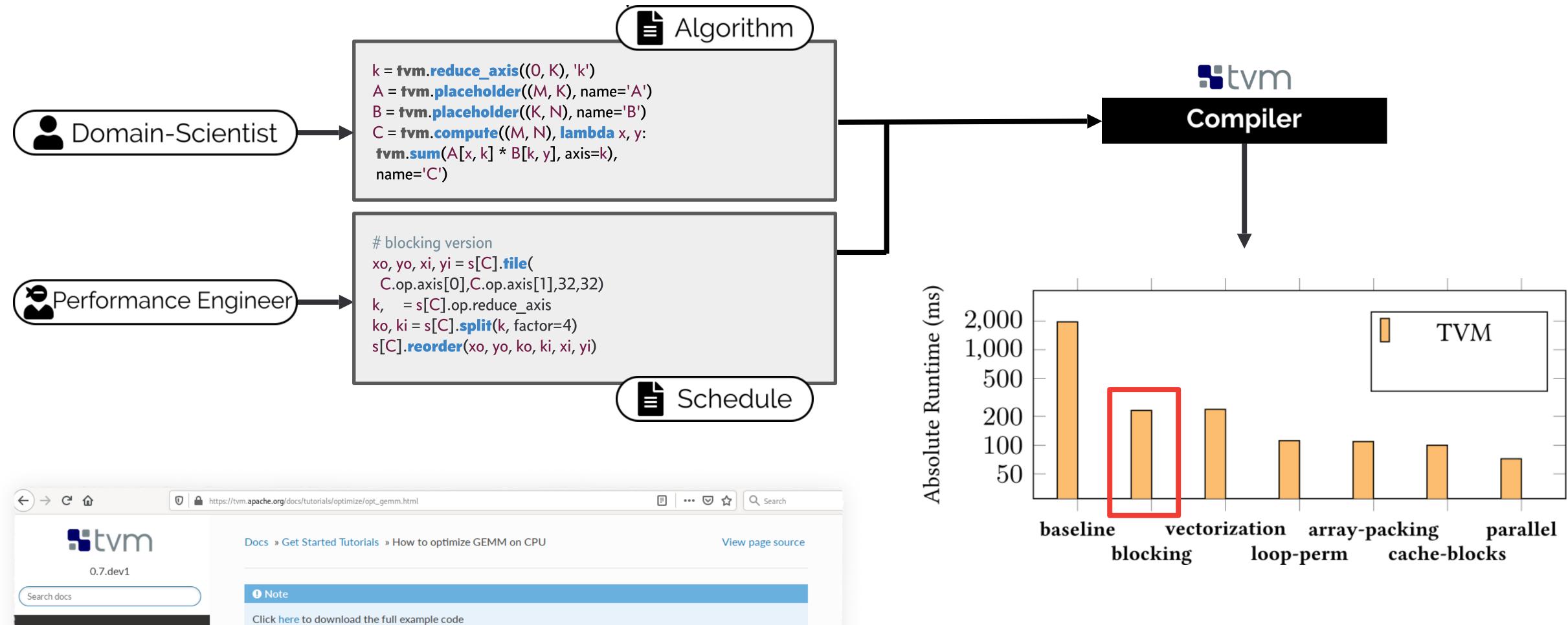
- No human needed in optimization process
- Costly & Lengthy search process
- Does not (yet) scale to all programs

Manual rewriting

Extensive human effort needed

Expert is in control, no search required

Compilers with scheduling APIs



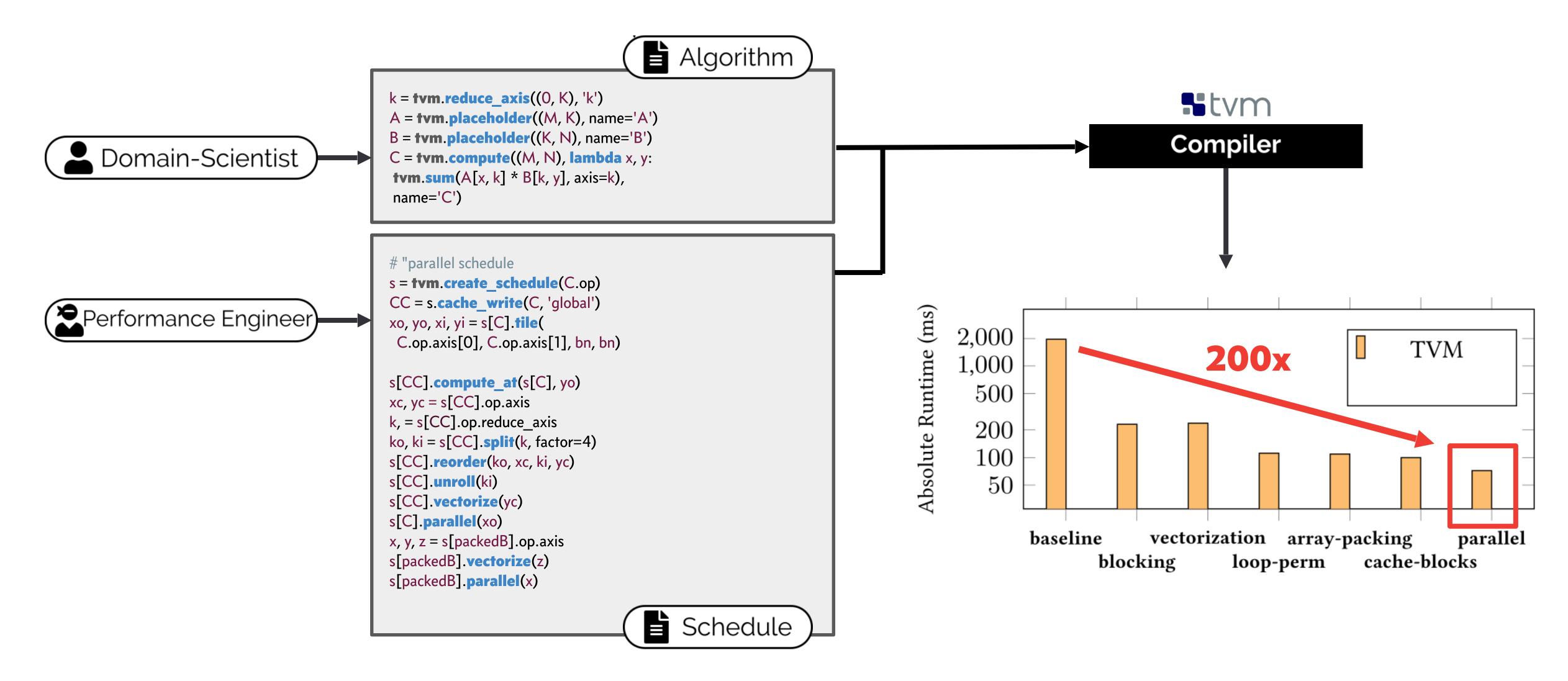
ноw то

Installation Contribute to TVM Deploy and Integration Developer How-To Guide

How to optimize GEMM on CPU

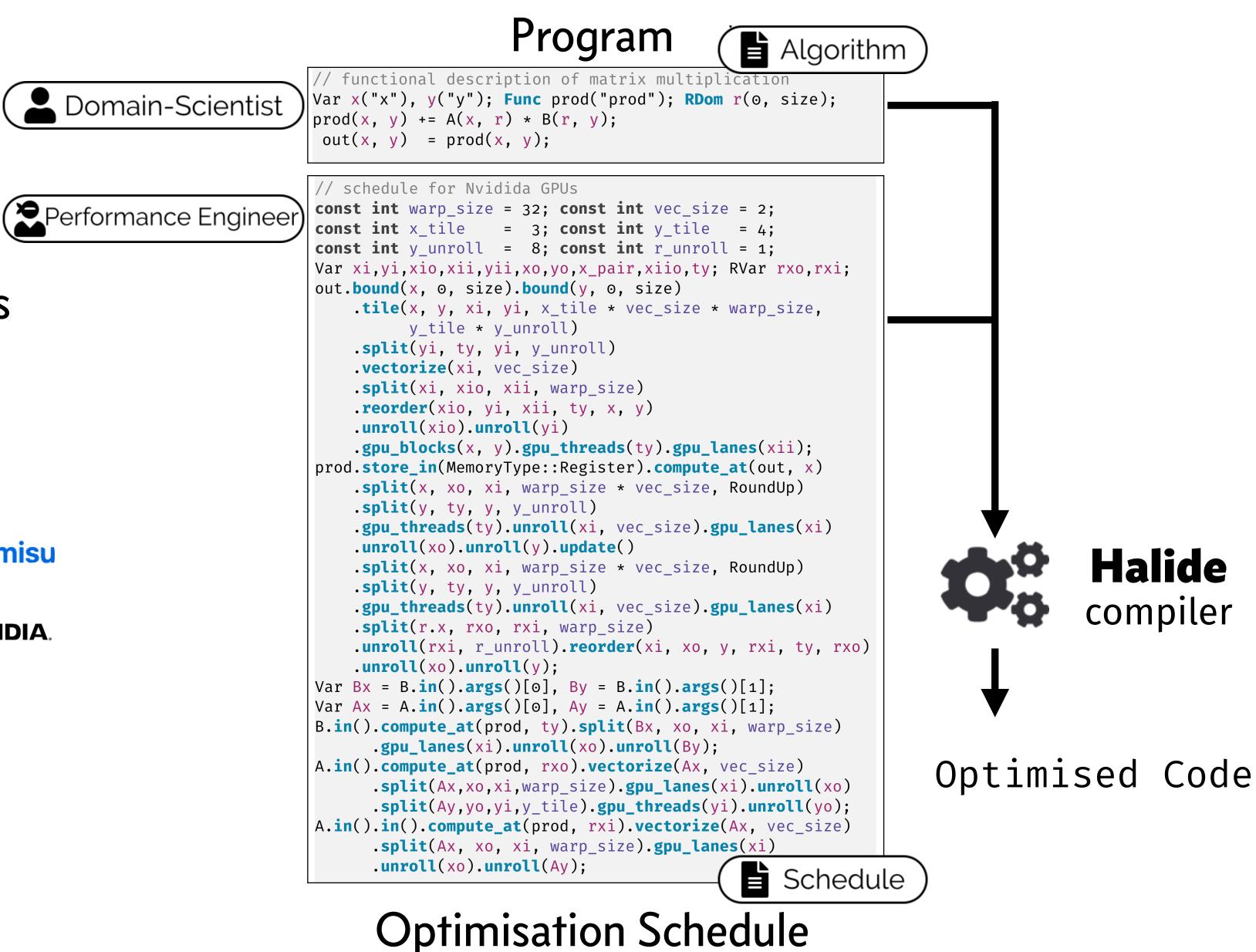
Author: Jian Weng, Ruofei Yu

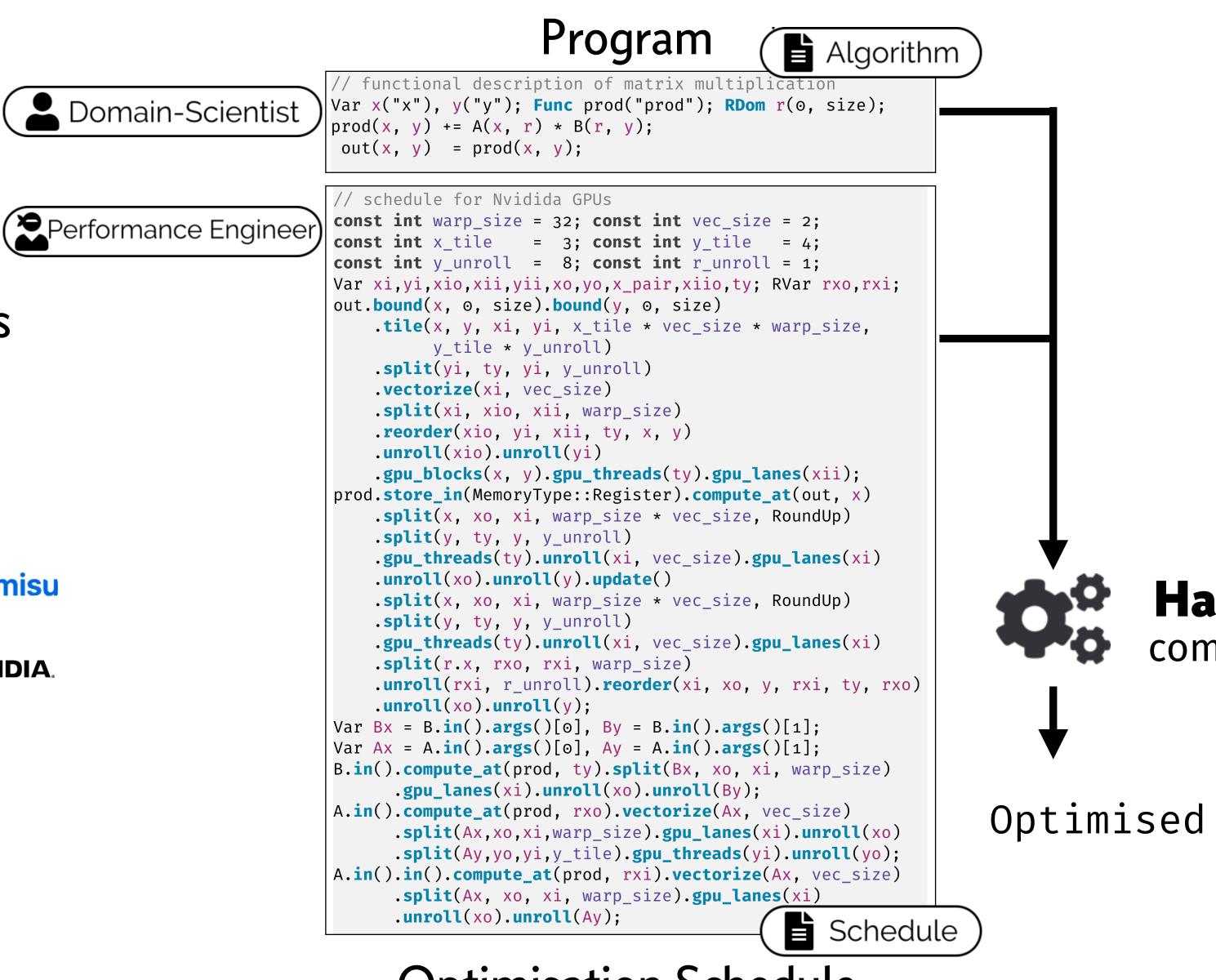
Compilers with scheduling APIs



29

Compilers with scheduling APIs





Compilers with scheduling APIs

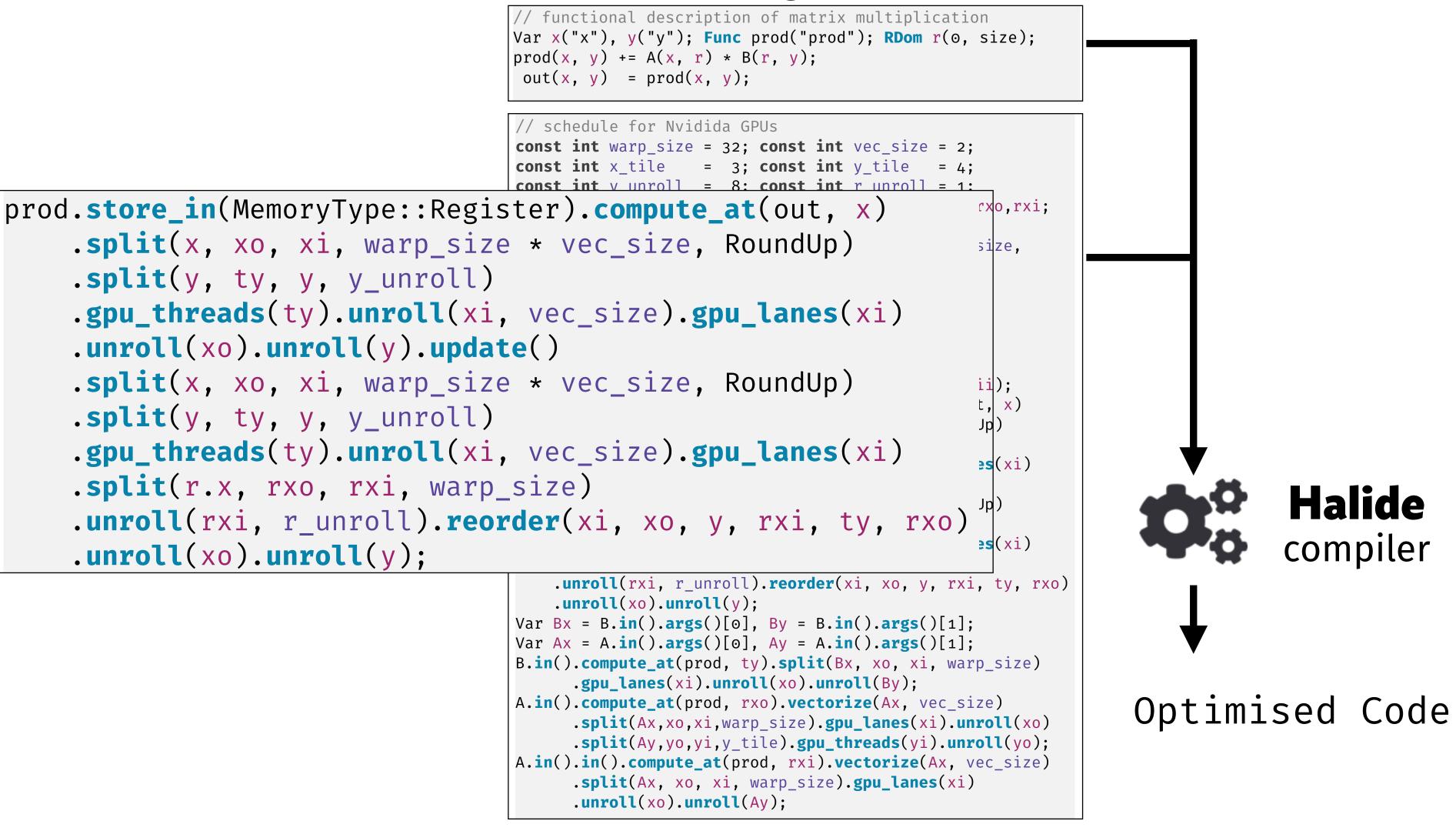
Halide **S**tvm

Tiramisu-Compiler / tiramisu

Fireiron


```
.split(y, ty, y, y_unroll)
.unroll(xo).unroll(y).update()
.split(y, ty, y, y_unroll)
.split(r.x, rxo, rxi, warp_size)
.unroll(xo).unroll(y);
```

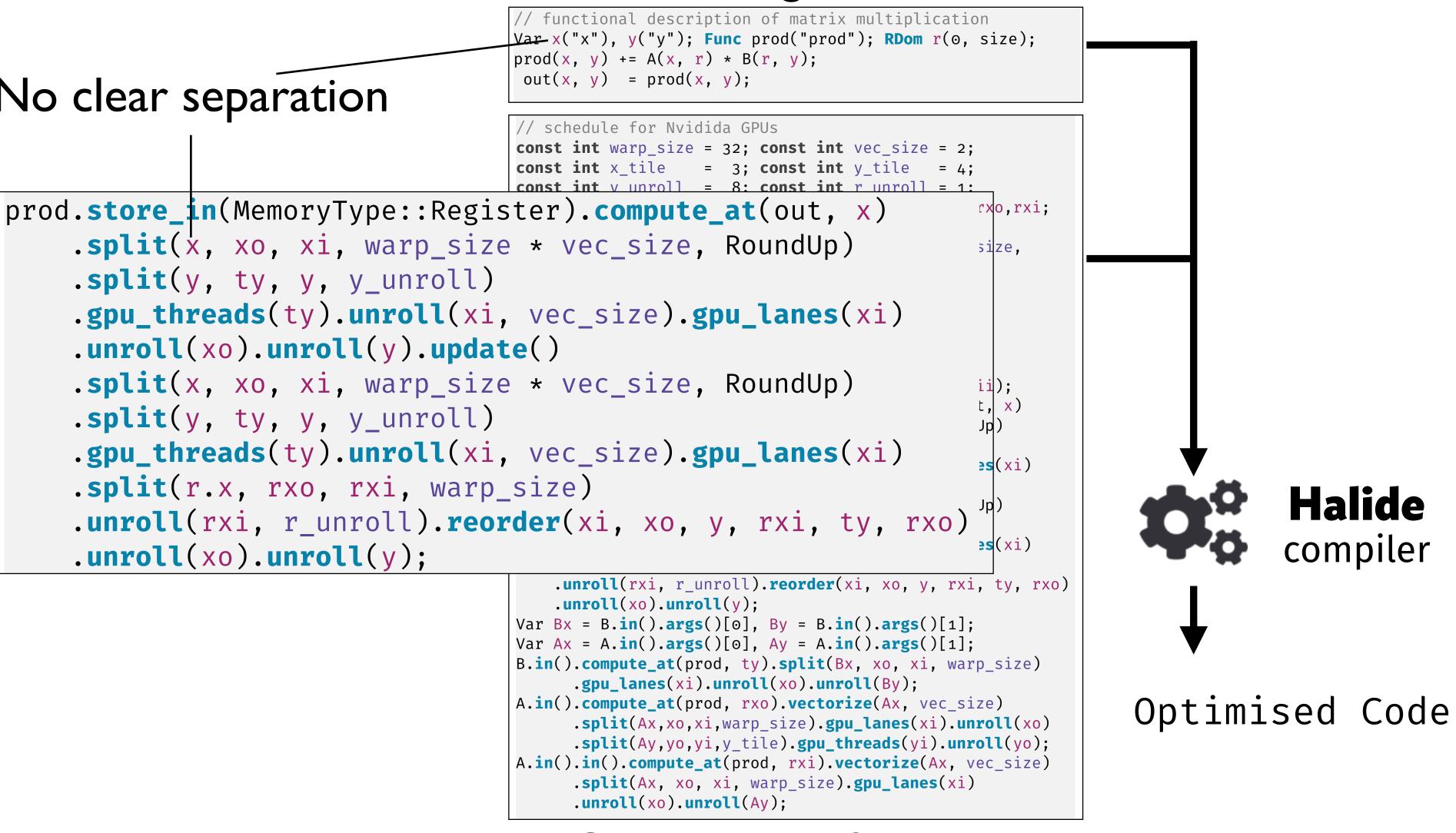
Program

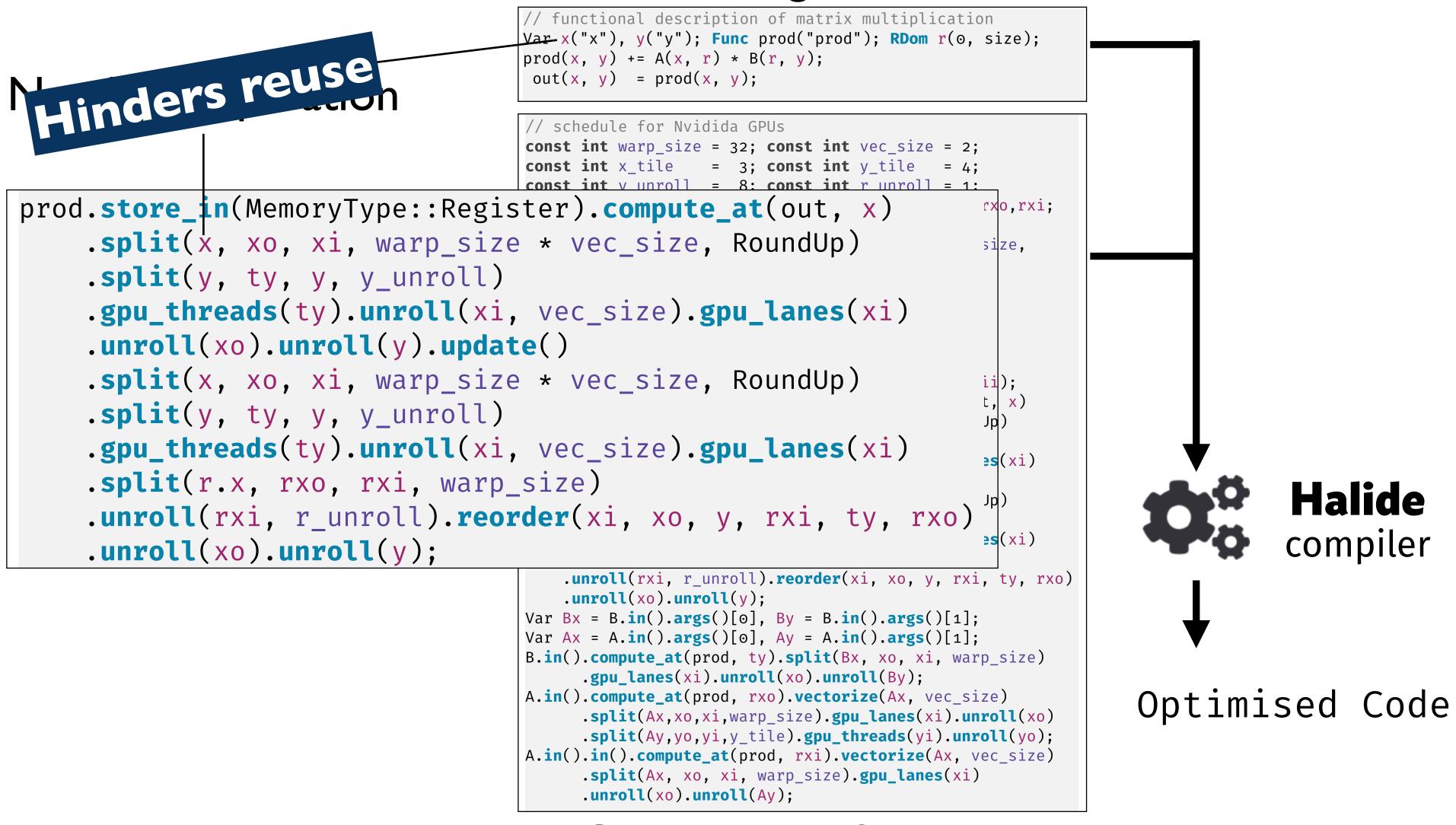


No clear separation

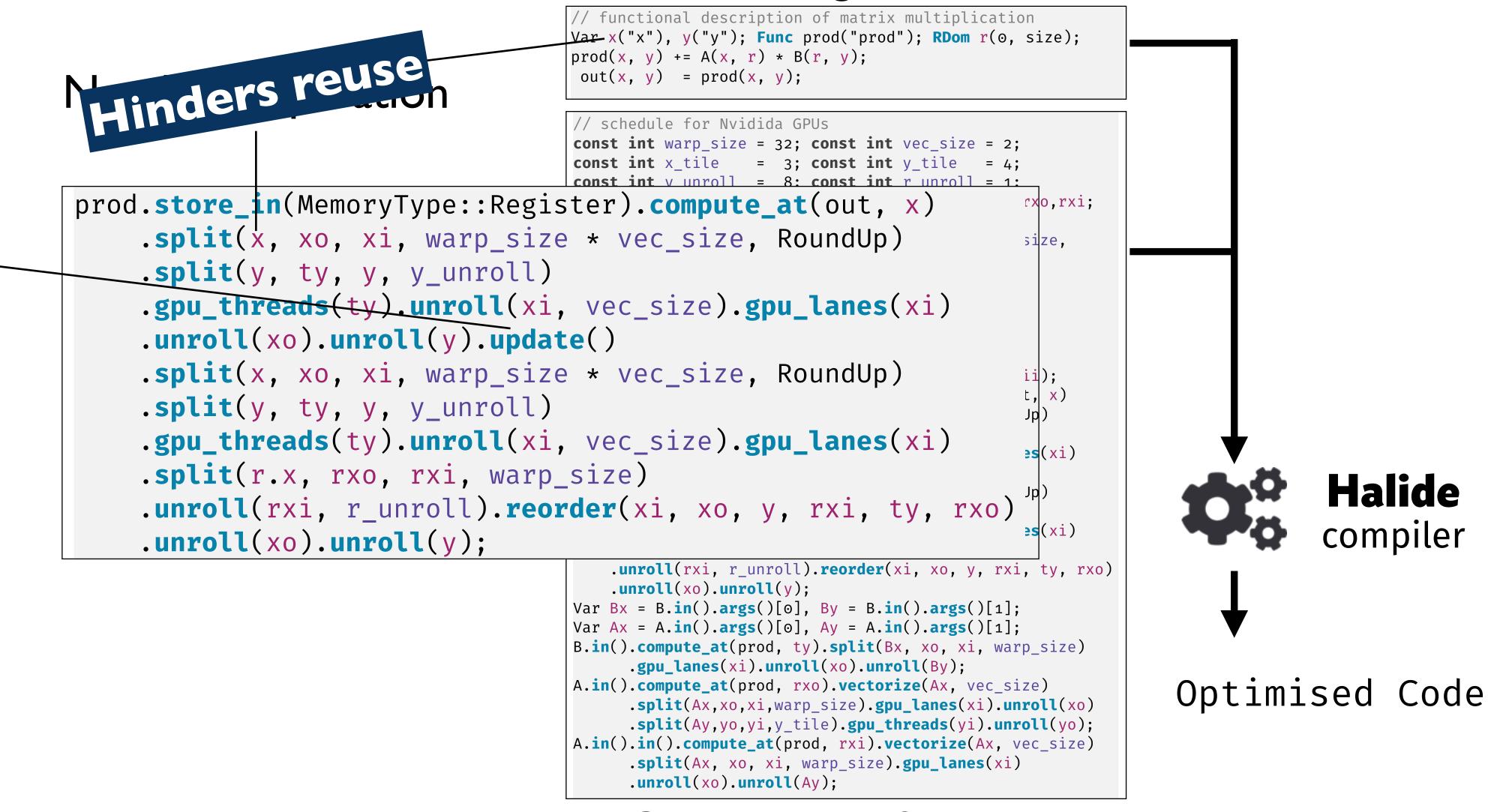
.split(y, ty, y, y_unroll) .unroll(xo).unroll(y).update() .split(y, ty, y, y_unroll) .split(r.x, rxo, rxi, warp_size) .unroll(xo).unroll(y);

Program





Program



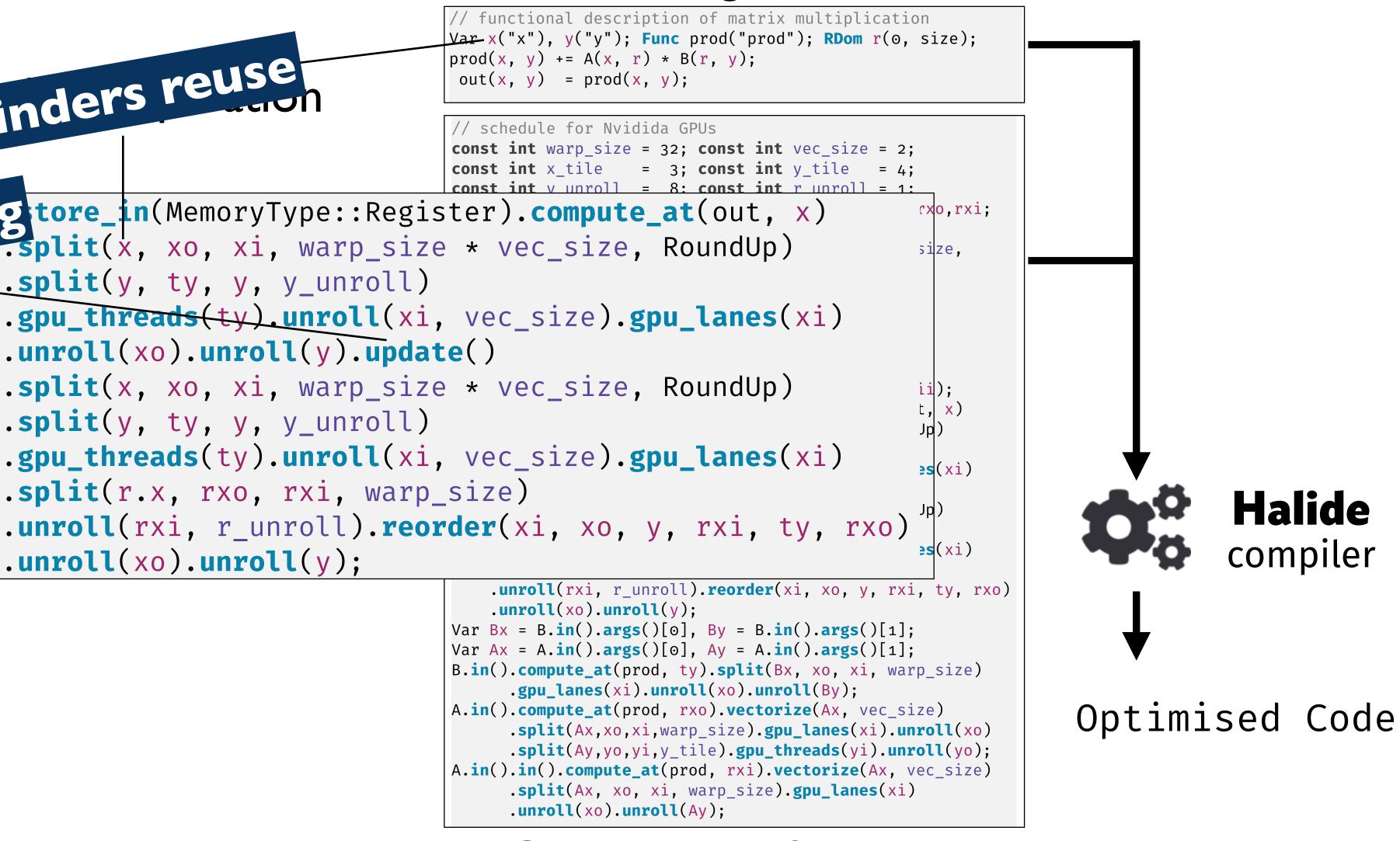
semantics	<pre>.split(y, ty, y, y_unro</pre>
	.gpu_threads(ty).unroll
	.unroll(xo).unroll(y).u
	<pre>.split(x, xo, xi, warp_</pre>
	<pre>.split(y, ty, y, y_unro</pre>
	<pre>.gpu_threads(ty).unroll</pre>
	.split(r.x, rxo, rxi, w
	.unroll(rxi, r_unroll).
	$unroll(v_0)$ $unroll(v_1)$

Not well defined

Program

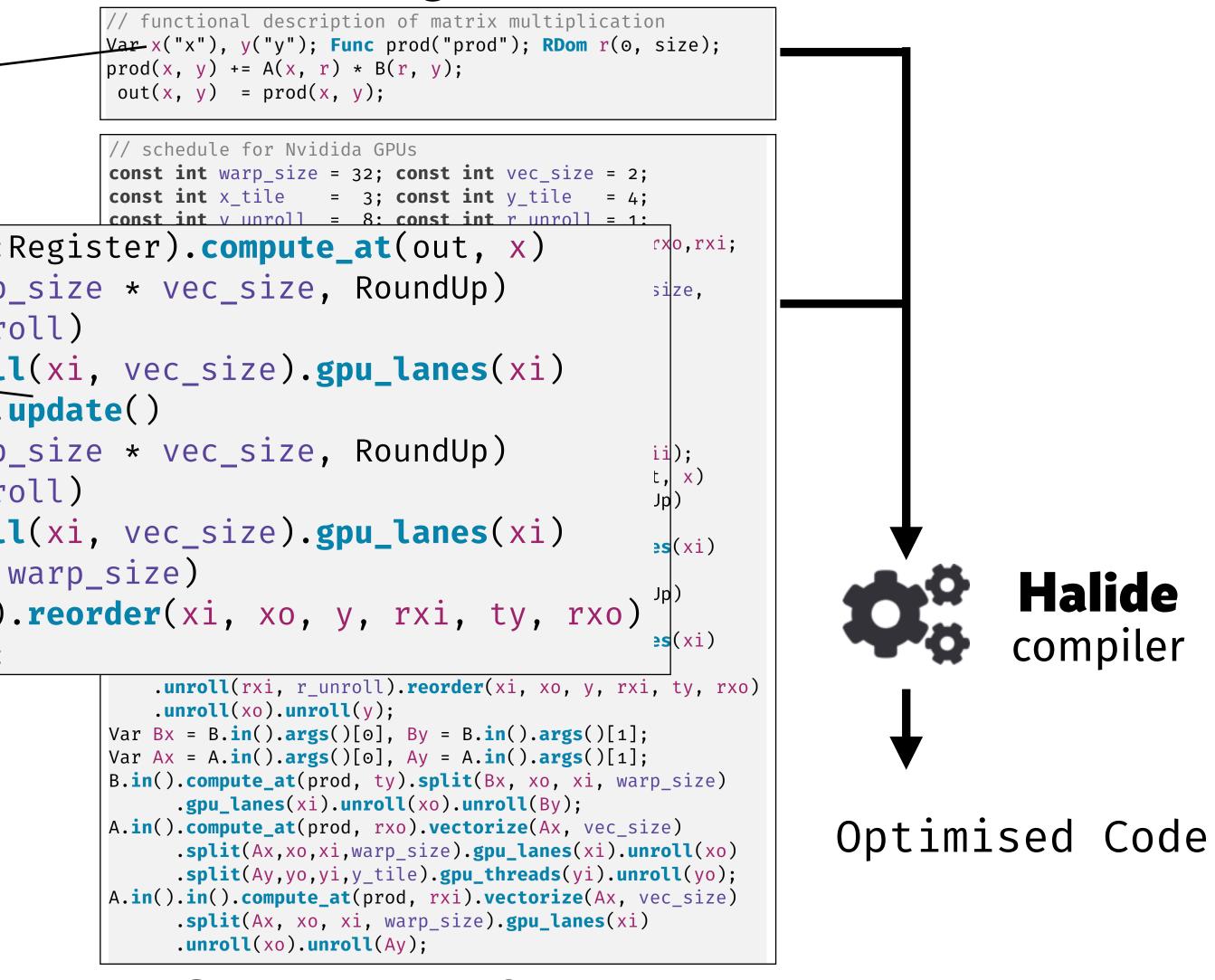
Problems with Scheduling APIs Hinders reuse Not well derstanding tore_in(MemoryType::Register).compute_at(out, x) Hinders understanding tore_in(MemoryType::Register).compute_at(out, x) .unroll(xo).unroll(y).update() .split(y, ty, y, y_unroll) .split(r.x, rxo, rxi, warp_size) .unroll(xo).unroll(y);

Program

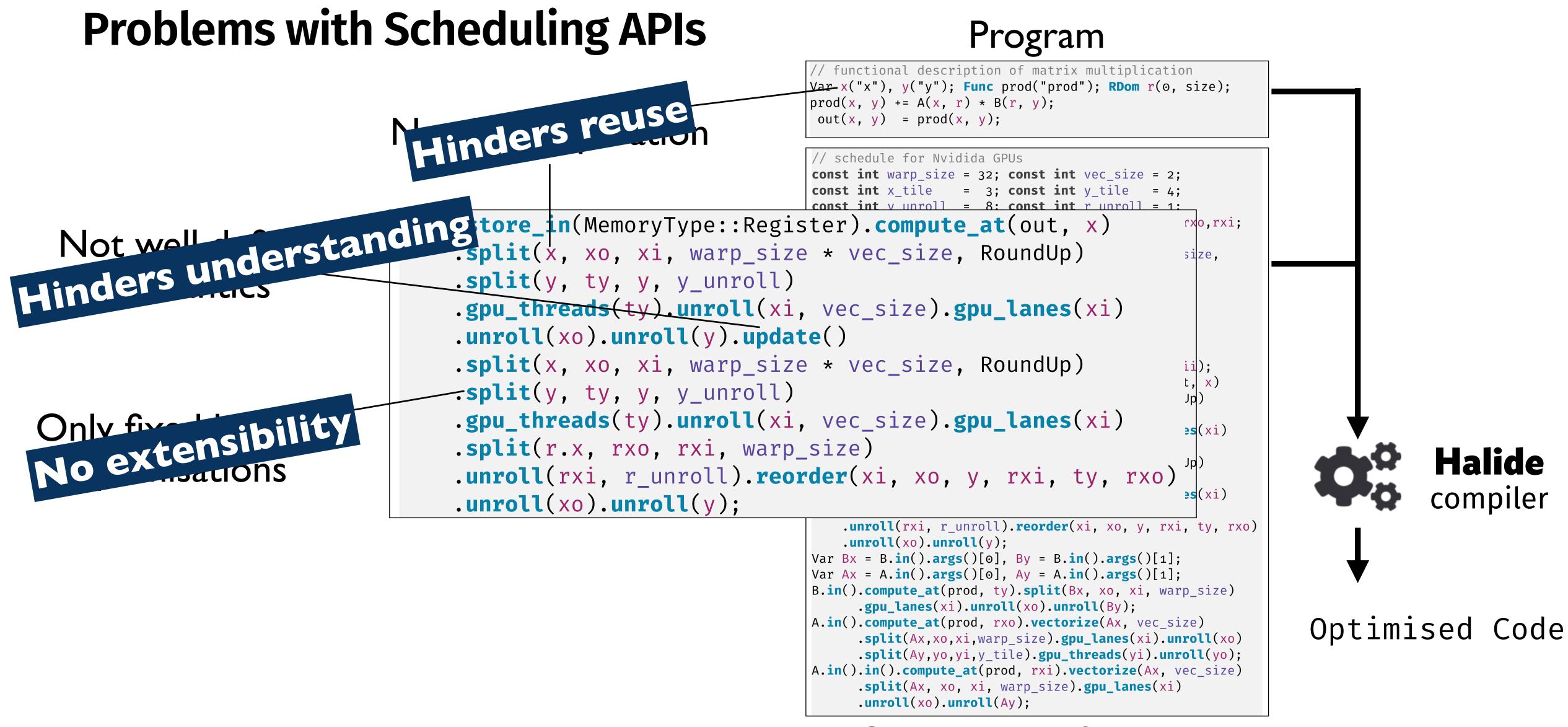


Problems with	Scheduling APIs
	Minders reuse
Not well here understand hinders under states	<pre>ding tore_in(MemoryType::F .split(x, xo, xi, warp_ .split(y, ty, y, y_unro .gpu_threads(ty).unrol .unroll(xo).unroll(y).u .split(x, xo, xi, warp_</pre>
Only fixed built-in optimisations	<pre>.split(y, xo, xi, warp_ .split(y, ty, y, y_unro .gpu_threads(ty).unrol .split(r.x, rxo, rxi, w .unroll(rxi, r_unroll). .unroll(xo).unroll(y);</pre>

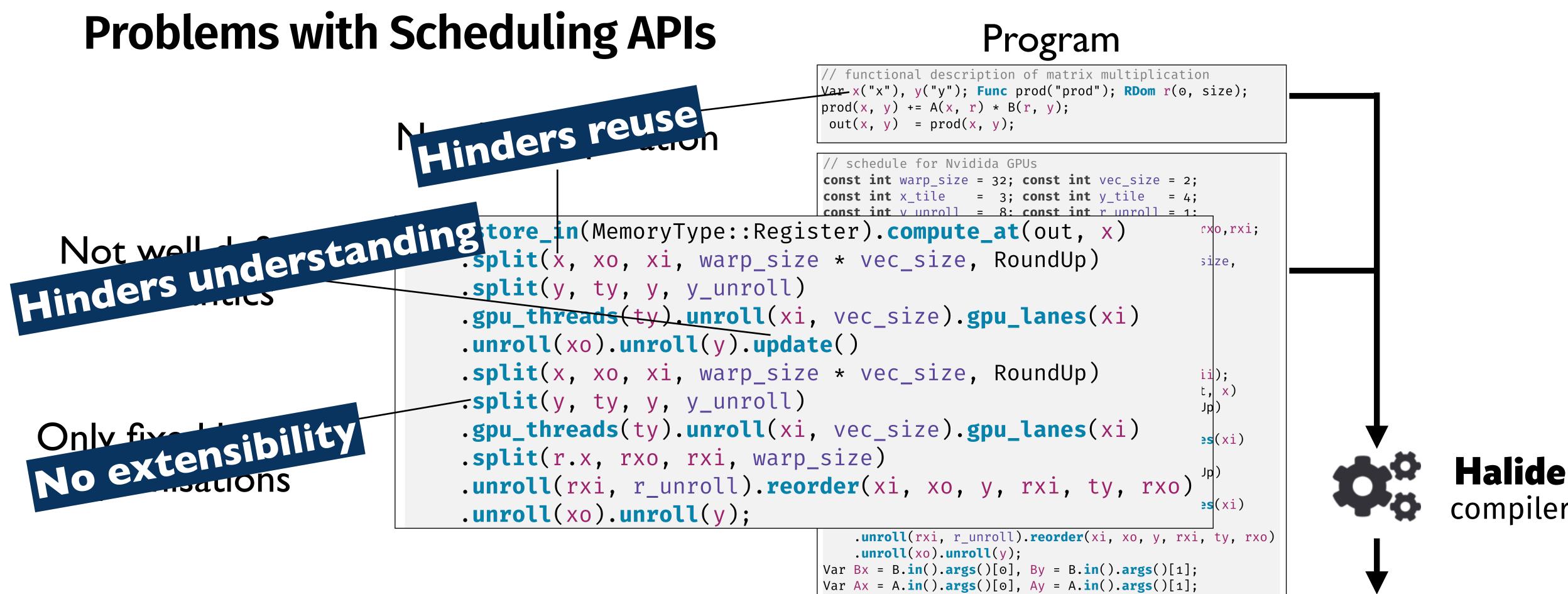
Program



Optimisation Schedule



Optimisation Schedule



We should aim for more principled ways to describe and apply optimisations lode

A.1n().1n().compute_at(prod, rx1).vectorize(Ax, vec_size) .split(Ax, xo, xi, warp_size).gpu_lanes(xi) .unroll(xo).unroll(Ay);

Optimisation Schedule

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Our goals:

Separate concerns

Computations should be expressed at a high abstraction level only. They should not be changed to express optimizations;

2. Facilitate reuse

Optimization strategies should be defined clearly separated from the computational program facilitating reusability of computational programs and strategies;

3. Enable composability

Computations *and* strategies should be written as compositions of user-defined building blocks (possibly domain-specific ones); both languages should facilitate the creation of higher-level abstractions;

4. Allow reasoning

Computational patterns, but also espression reasoning about them;

Implicit default behavior should be avoided to empower users to be in control.

Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Our goals: 1. Separate concerns Computations should be expressed at a high abstraction level only.

> Fundamentally we argue that a more principled high-performance code generation approach should be holistic by considering *computation* and *optimization strategies* **equally important.**

As a consequence, a strategy language should be built with the same standards as a language describing computation.

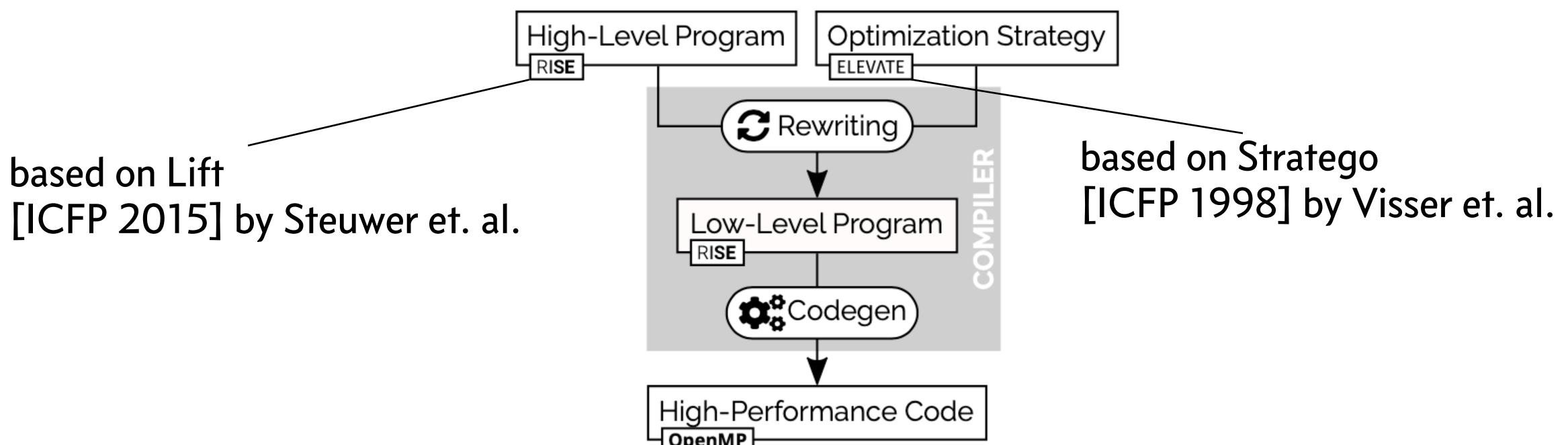
Computational patterns, but also espression reasoning about them;

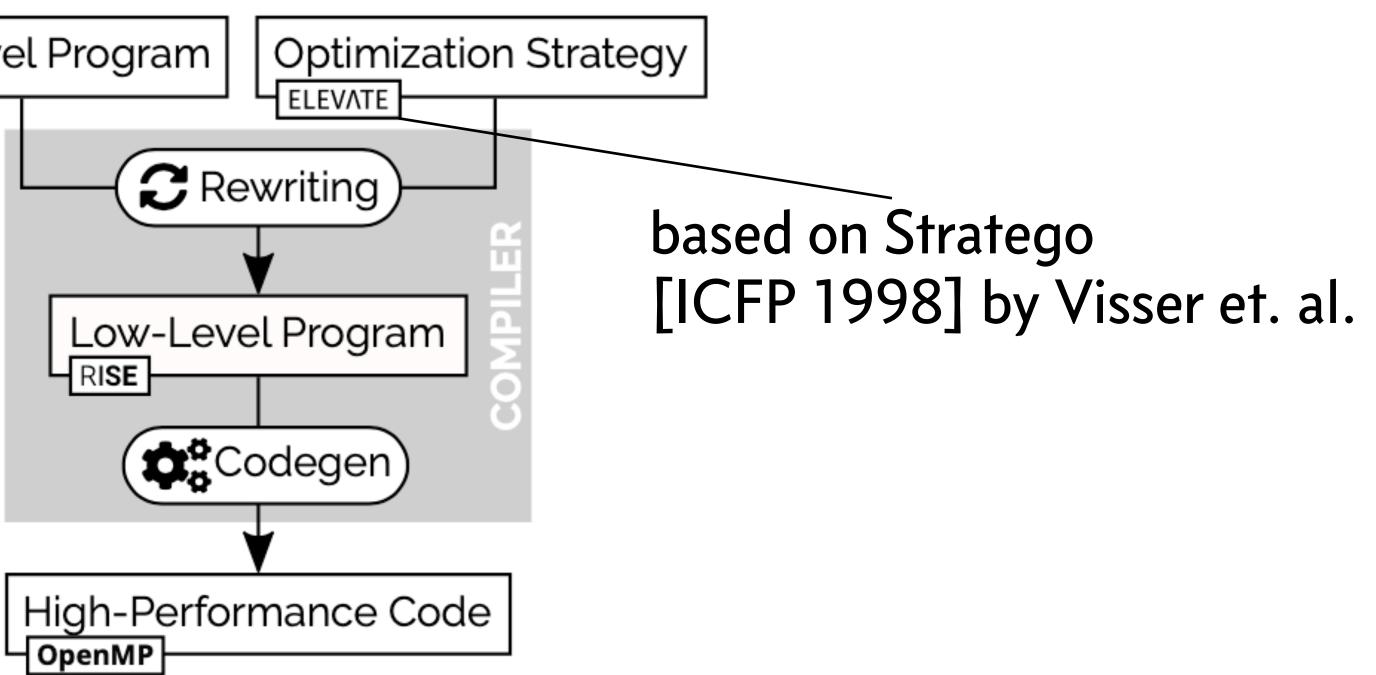
5. Be explicit

Implicit default behavior should be avoided to empower users to be in control.

Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing

Achieving High-Performance the Functional Way





ELEVATE A Language for Describing Optimisation Strategies

• A **Strategy** encodes a program transformation as a function:

• A **RewriteResult** encodes its success or failure:

RewriteResult[P] = Success[P](p: P)

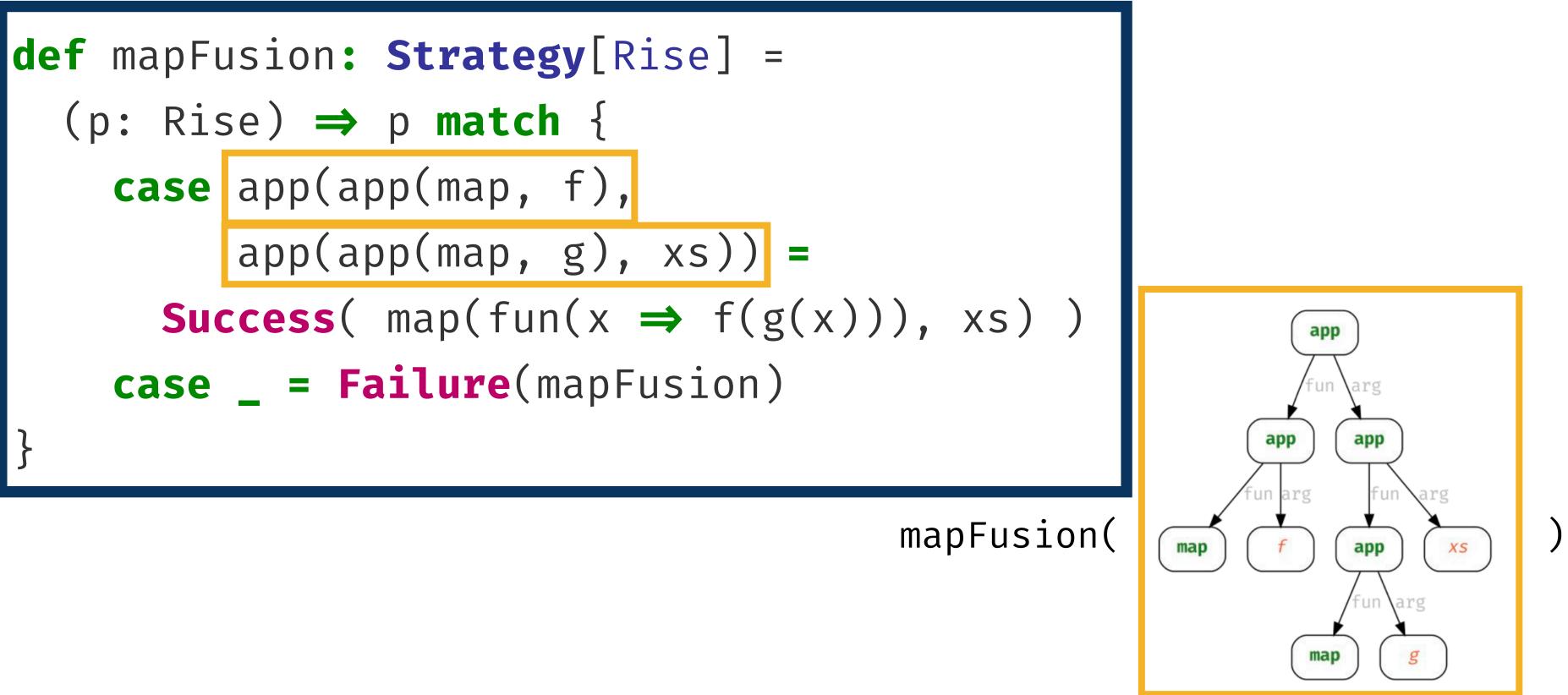
type Strategy[P] = P ⇒ RewriteResult[P]

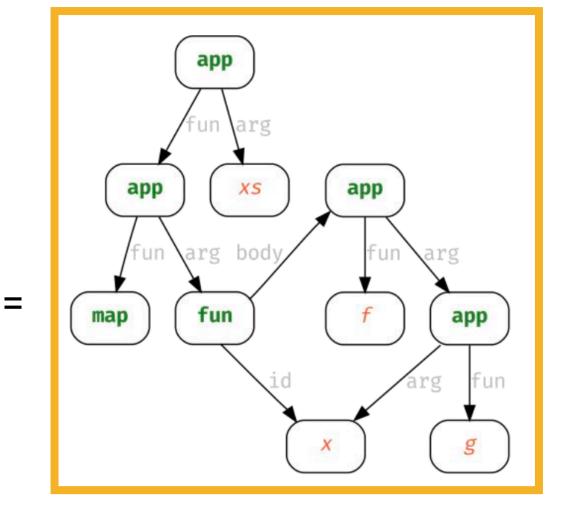
Failure[P](s: Strategy[P])

Rewrite Rules in ELEVATE

• *Rewrite rules* are basic strategies

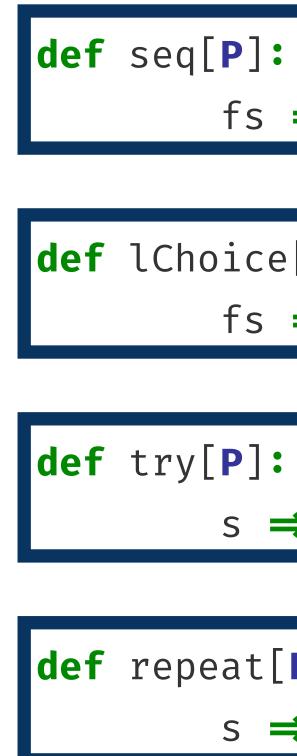
 $map(f) << map(g) \rightarrow map(f << g)$

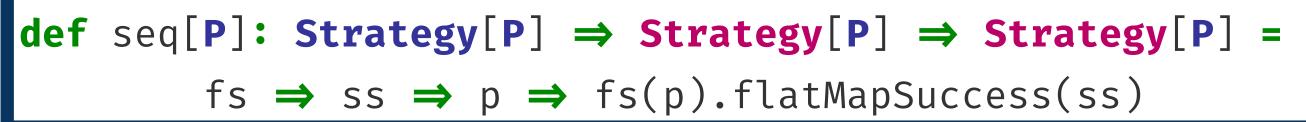


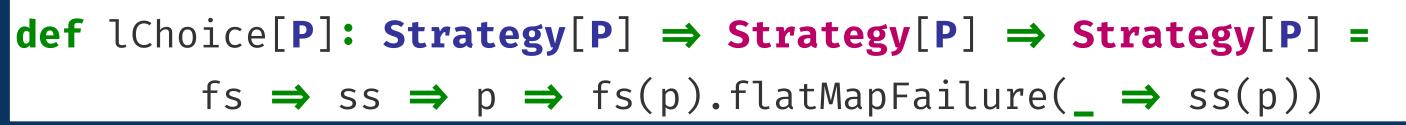


Combinators in ELEVATE

- Building more complex strategies from simpler once
- Sequential Composition (;)
- Left Choice (<+)
- Try
- Repeat







def try[P]: Strategy[P] ⇒ Strategy[P] =

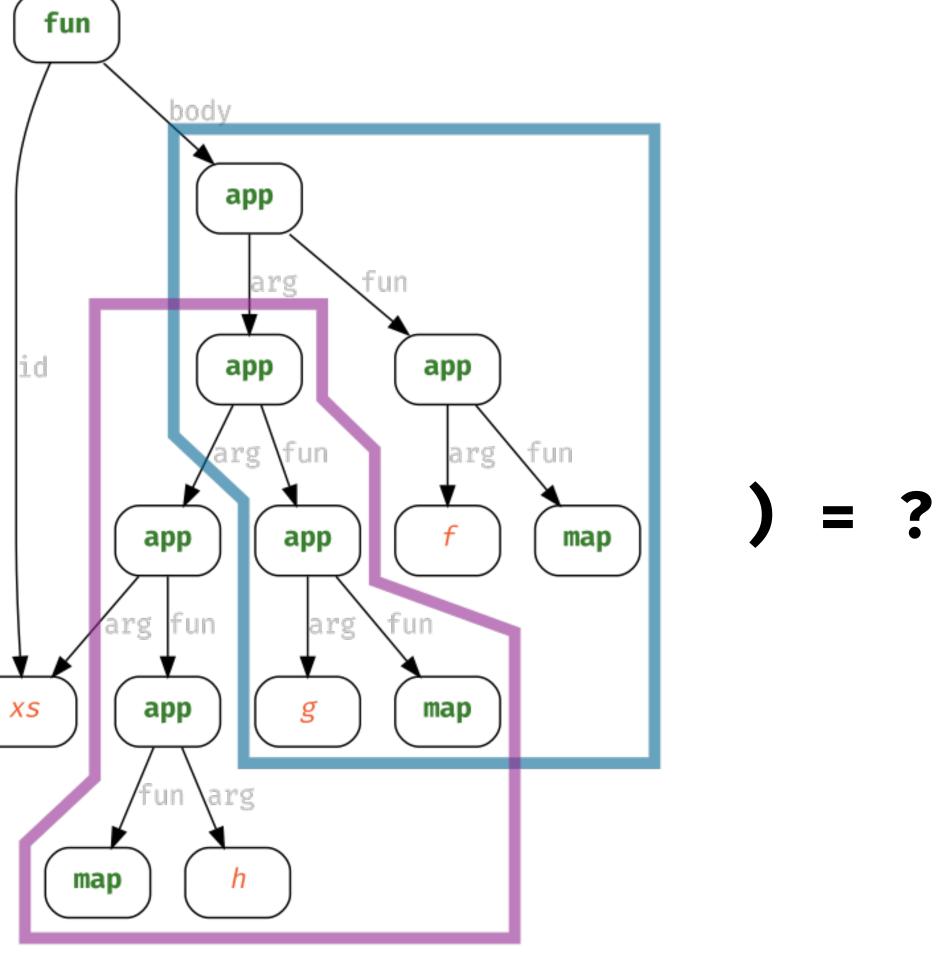
 $s \Rightarrow p \Rightarrow (s \leftrightarrow id)(p)$

def repeat[P]: Strategy[P] ⇒ Strategy[P] = $s \Rightarrow p \Rightarrow try(s ; repeat(s))(p)$

Traversals in ELEVATE

• Describing Precise Locations

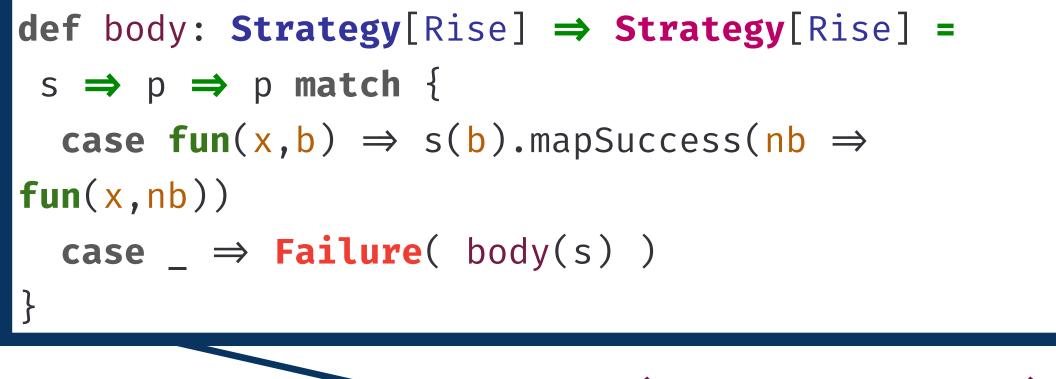
mapFusion (



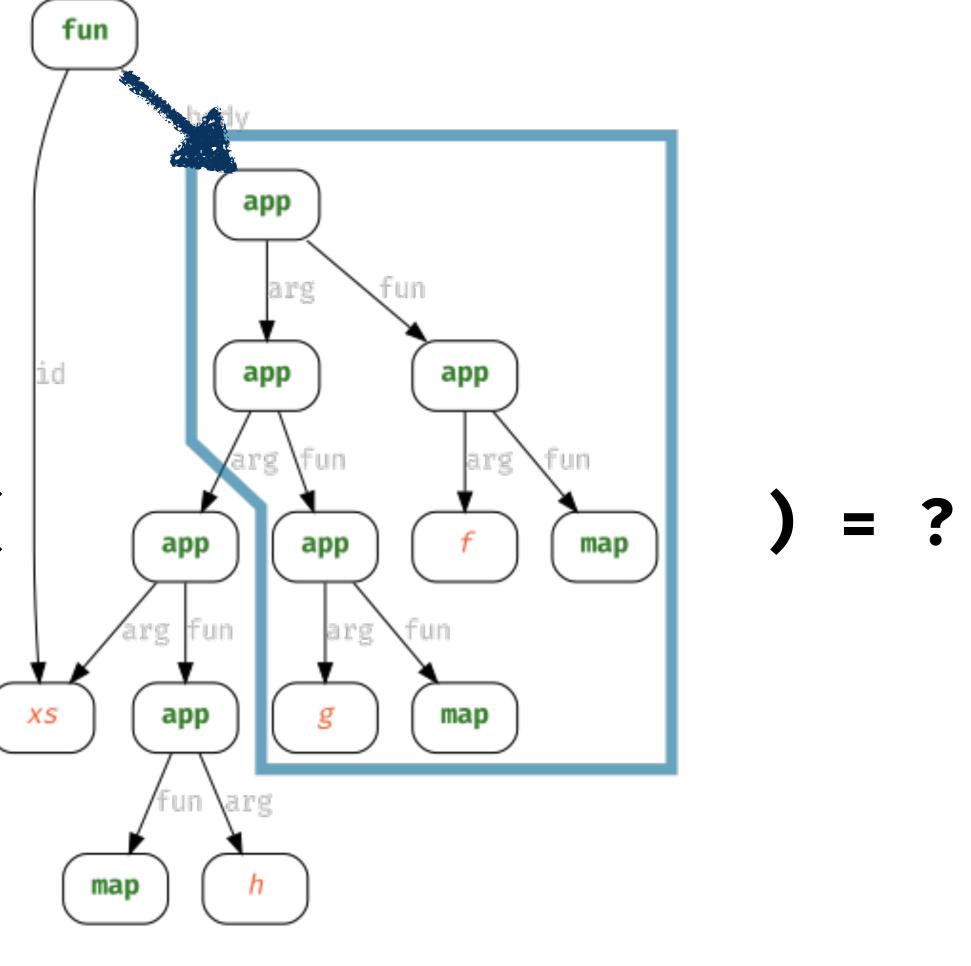
threemaps =fun(xs \Rightarrow map(f)(map(g)(map(h)(xs))))

Traversals in ELEVATE

• Describing Precise Locations



-body(mapFusion) (



threemaps = fun(xs, map(f)(map(g)(map(h)(xs))))

39

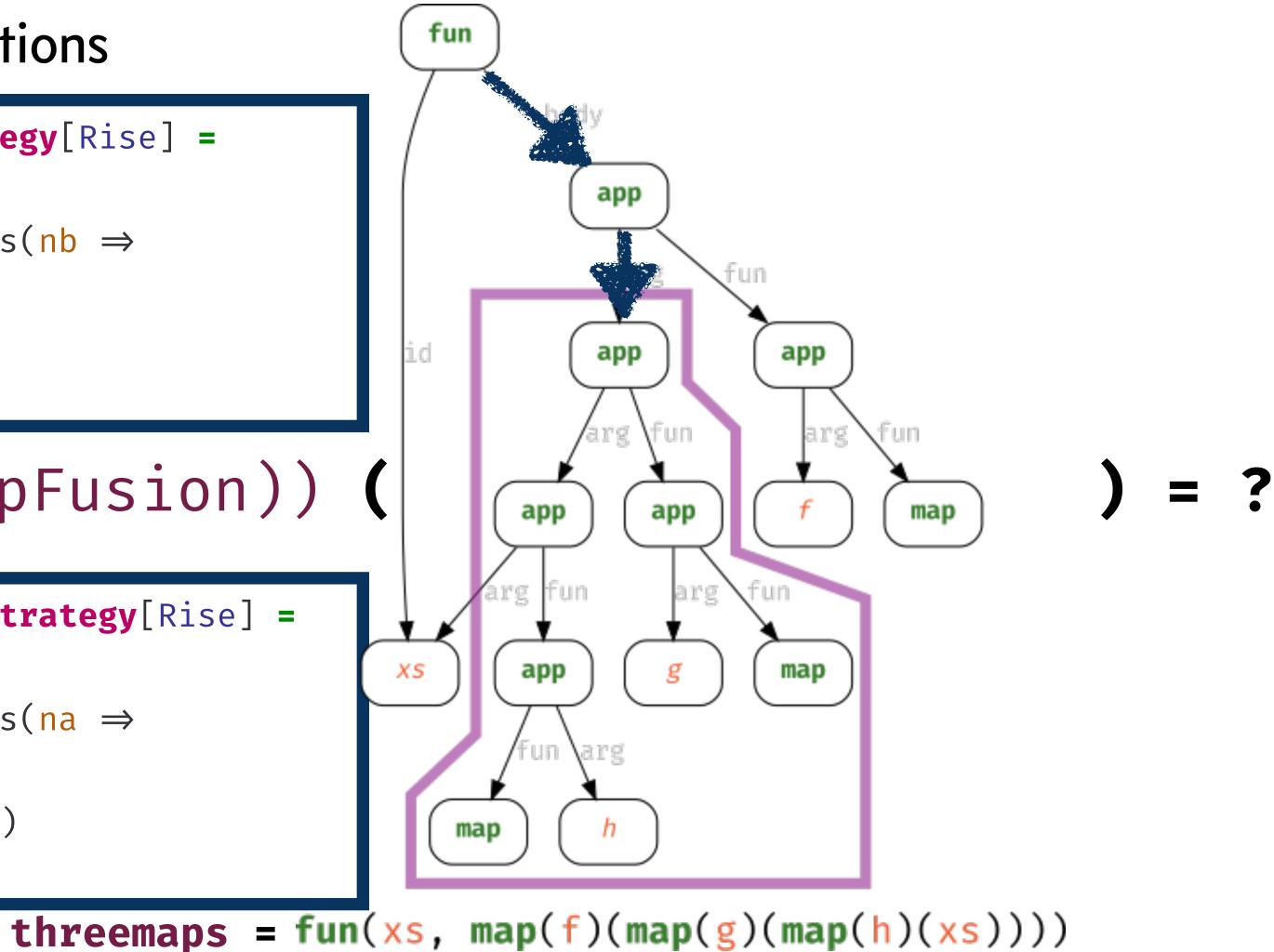
Traversals in **ELEVATE**

• Describing Precise Locations

```
def body: Strategy[Rise] ⇒ Strategy[Rise] =
  s ⇒ p ⇒ p match {
   case fun(x,b) ⇒ s(b).mapSuccess(nb ⇒
  fun(x,nb))
   case _ ⇒ Failure( body(s) )
}
```

body(argument(mapFusion)) (

```
def argument: Strategy[Rise] ⇒ Strategy[Rise] =
  s ⇒ p ⇒ p match {
   case app(f,a) ⇒ s(a).mapSuccess(na ⇒
  app(f,na))
   case _ ⇒ Failure( argument(s) )
}
```



Complex Traversals + Normalization in ELEVATE

• With three basic generic traversals

type Traversal[P] = Strategy[P] => Strategy[P] def all[P]: Traversal[P]; def one[P]: Traversal[P]; def some[P]: Traversal[P]

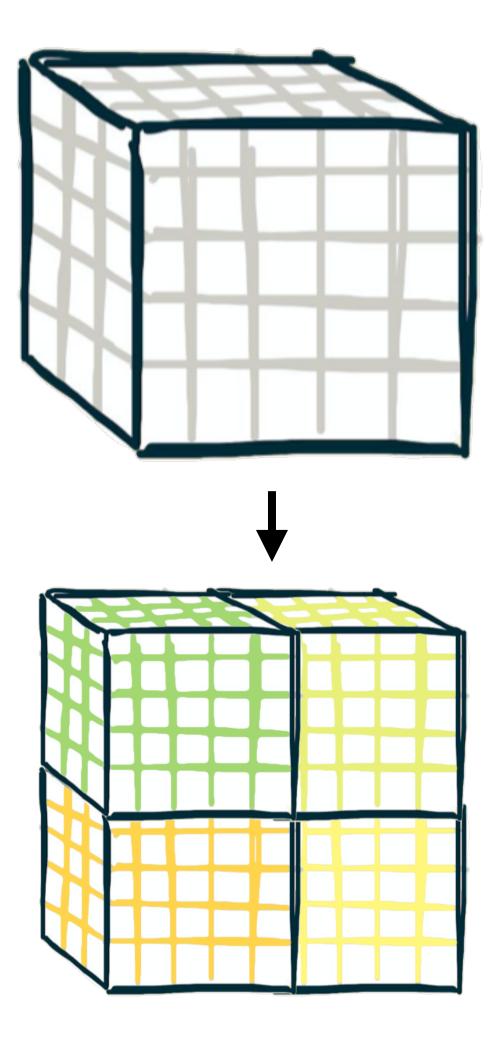
• we define more complex traversals:

def	<pre>topDown[P]:</pre>	<pre>Traversal[P]</pre>	=	S	=>	р
def	<pre>bottomUp[P]:</pre>	<pre>Traversal[P]</pre>	=	S	=>	р
def	<pre>allTopDown[P]:</pre>	Traversal [P]	=	S	=>	р
def	<pre>allBottomUp[P]:</pre>	<pre>Traversal[P]</pre>	=	S	=>	р
def	<pre>tryAll[P]:</pre>	Traversal [P]	=	S	=>	р

• With these traversals we define normal forms, e.g. $\beta\eta$ -normal-form: def normalize[P]: Strategy[P] => Strategy[P] = s => p => repeat(topDown(s))(p) **def** BENF = **normalize**(betaReduction <+ etaReduction)

```
=> (s <+ one(topDown(s)))(p)</pre>
=> (one(bottomUp(s)) <+ s)(p)</pre>
=> (s ';' all(allTopDown(s)))(p)
=> (all(allBottomUp(s)) ';' s)(p)
=> (all(tryAll(try(s))) ';' try(s))(p)
```

Complex optimisations defined as strategies



(dim) → case 1 case 2 case i	def	tile	•
case 2	((dim)	\Rightarrow
		case	1
case i }		case	2
}		case	j
	}		

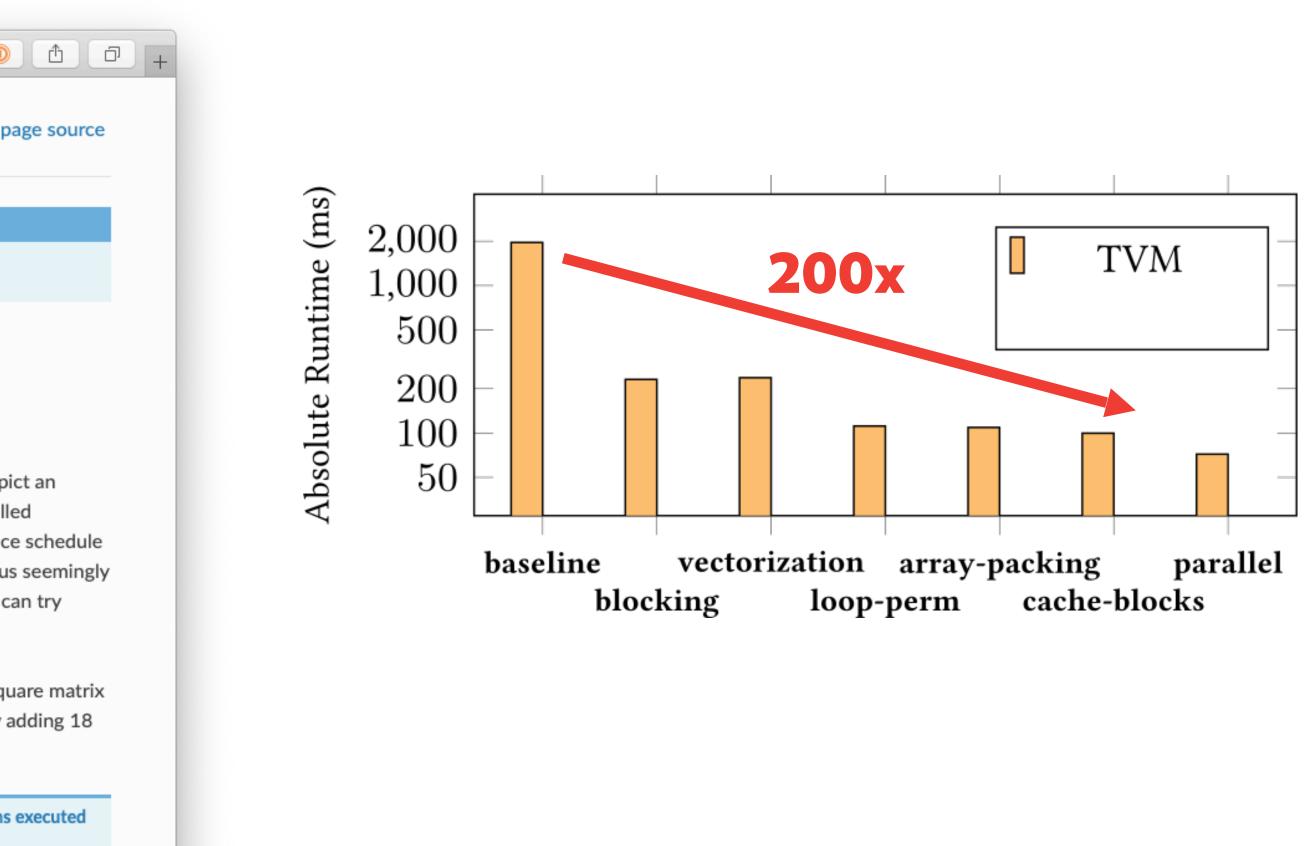
Tiling defined as composition of rewrites not a built-in!

- Int \rightarrow Int \rightarrow Strategy =
- \Rightarrow (n) \Rightarrow dim match {
- 1 = function(splitJoin(n))
- 2 = fmap(function(splitJoin(n)));
 function(splitJoin(n)); interchange(2)
- i = fmap(tile(dim-1, n));
 function(splitJoin(n)); interchange(n)

Case Study: Implementing TVM's Scheduling API

• We attempt to express the same optimizations described in the TVM tutorial:

	🗎 tvm.apache.org				
stvm	Docs » Tutorials » How to optimize GEMM on CPU View p				
0.7.dev1					
Search docs	Note				
Installation	Click here to download the full example code				
⊖ Tutorials	II				
Quick Start Tutorial for Compiling Deep Learning Models	How to optimize GEMM on CPU				
Cross Compilation and RPC	Author: Jian Weng, Ruofei Yu				
Get Started with Tensor Expression Compile Deep Learning Models Tensor Expression and Schedules	(TL;DR) TVM provides abstract interfaces which allows users to de algorithm and the algorithm's implementing organization (the so-co- schedule) separately. Typically, writing algorithm in high-performa- breaks the algorithm's readability and modularity. Also, trying varies promising schedules is time-consuming. With the help of TVM, we these schedules efficiently to enhance the performance.				
Optimize Tensor Operators How to optimize convolution on GPU					
□ How to optimize GEMM on CPU	In this tutorial, we will demonstrate how to use TVM to optimize sq				
Preparation and Baseline	multiplication and achieve 200 times faster than baseline by simply				
Blocking	extra lines of code.				
Vectorization					
Loop Permutation	There are two important optimizations on intense computation applications				
Array Packing	on CPU:				
Write cache for blocks	 Increase the cache hit rate of memory access. Both complex 				
Parallel	computation and hot-spot memory access can be accelerated				
Summary	cache hit rate. This requires us to transform the origin memo				

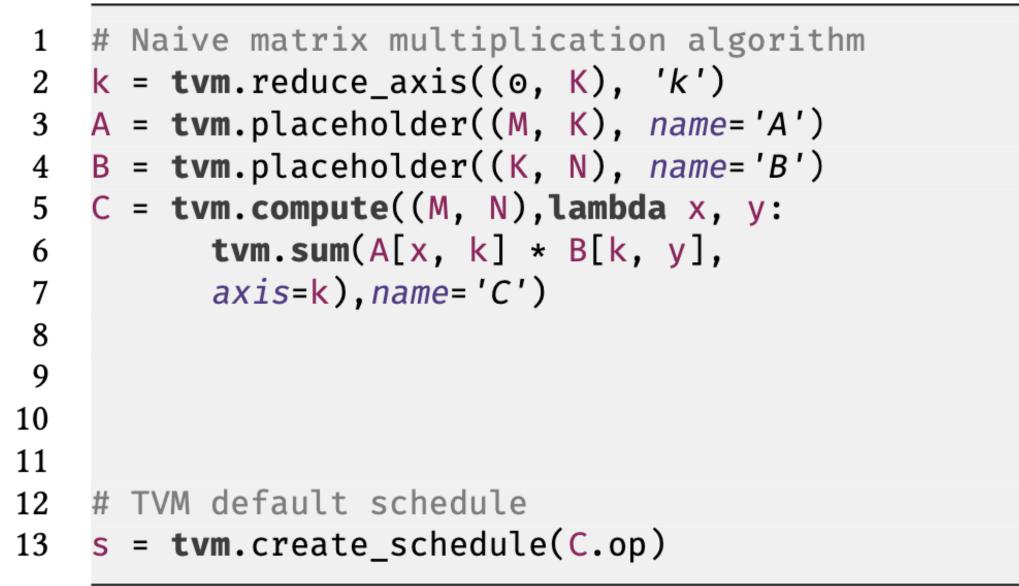


c numerical ed from hi**g** ory access

RISE

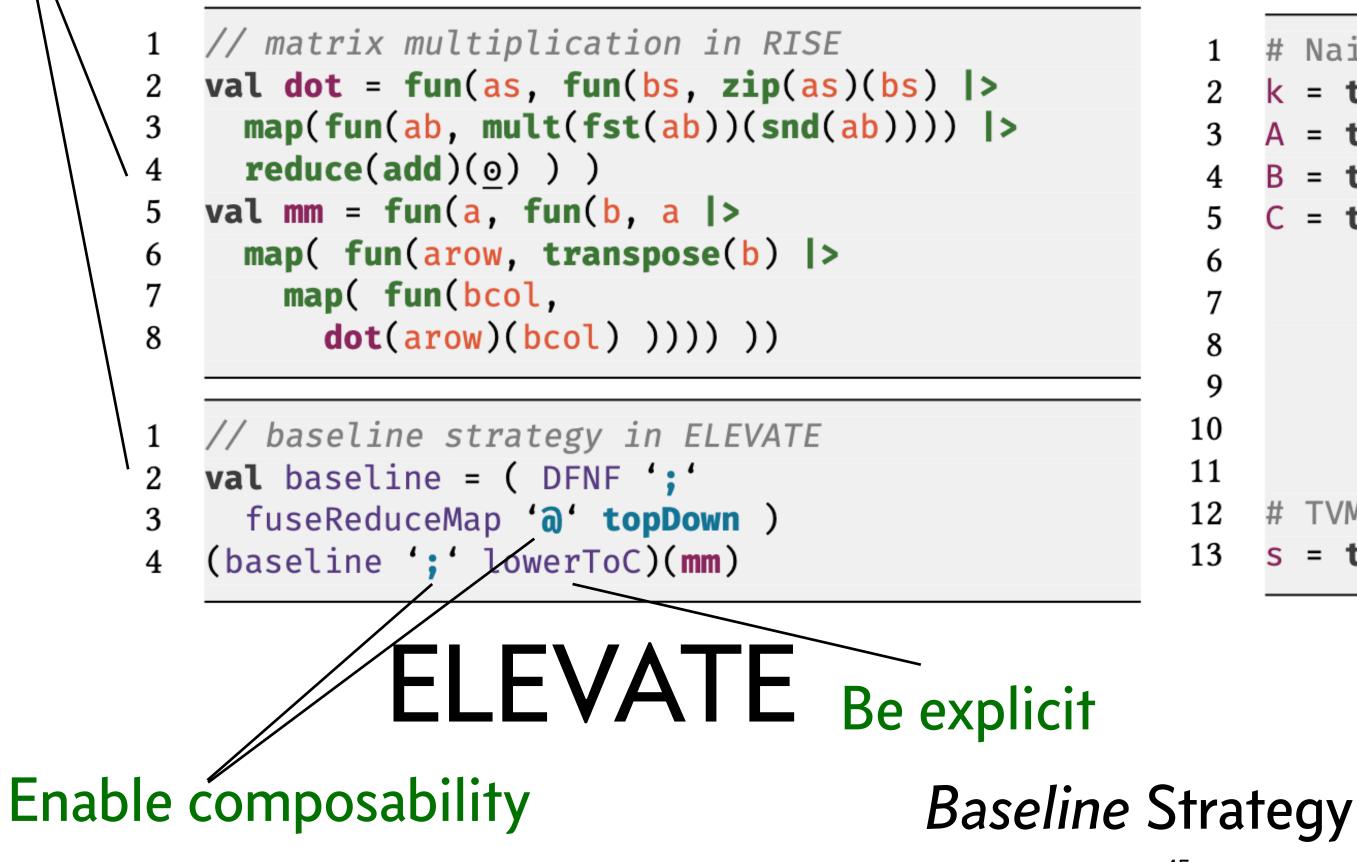
```
// matrix multiplication in RISE
  val dot = fun(as, fun(bs, zip(as)(bs) |>
2
    map(fun(ab, mult(fst(ab))(snd(ab)))) |>
3
    reduce(add)(0) ) )
4
  val mm = fun(a, fun(b, a |>
5
    map( fun(arow, transpose(b) |>
6
      map( fun(bcol,
7
         dot(arow)(bcol) )))) ))
8
  // baseline strategy in ELEVATE
  val baseline = ( DFNF ';'
2
    fuseReduceMap '@' topDown )
3
  (baseline ';' lowerToC)(mm)
4
```

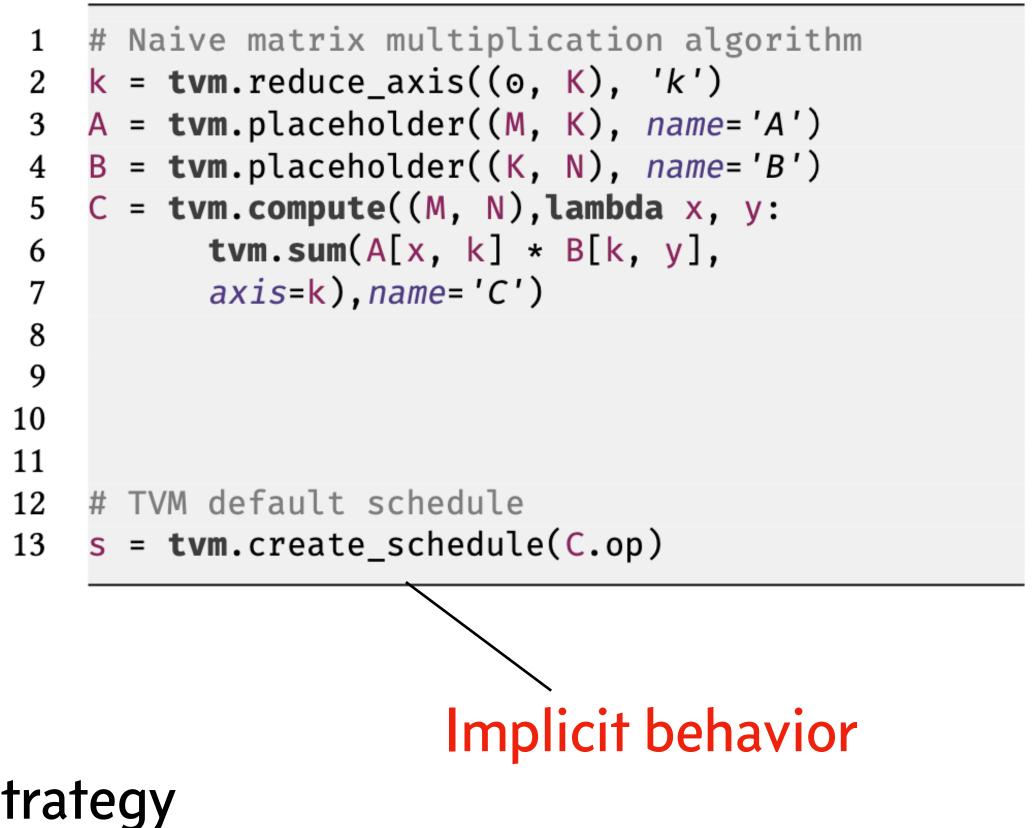
ELEVATE



Baseline Strategy

Clear separation of concerns RISE

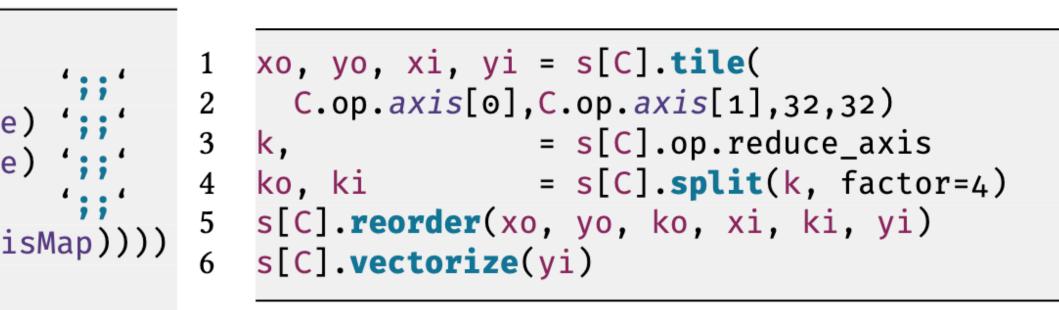


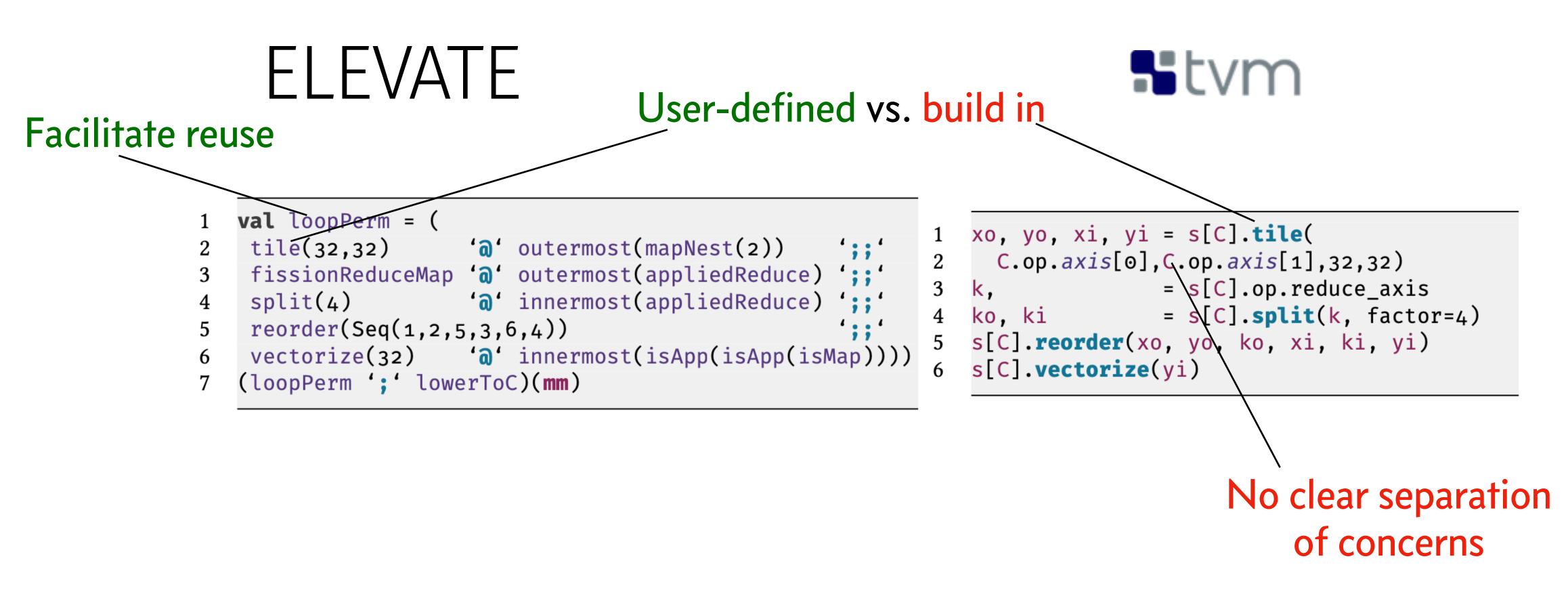


ELEVATE

```
val loopPerm = (
   tile(32,32) '@' outermost(mapNest(2))
2
  fissionReduceMap '@' outermost(appliedReduce)
   4
  reorder(Seq(1,2,5,3,6,4)) ';;'
vectorize(32) '@' innermost(isApp(isApp(isMap))))
5
6
  (loopPerm ';' lowerToC)(mm)
```

Loop Permutation with blocking Strategy





Loop Permutation with blocking Strategy

```
ELEVATE
```

```
val appliedMap = isApp(isApp(isMap))
   val isTransposedB = isApp(isTranspose)
 2
 3
   val packB = storeInMemory(isTransposedB,
 4
    permuteB ';;'
 5
    vectorize(32) '@' innermost(appliedMap) ';;'
 6
                   '@' outermost(isMap)
     parallel
    ) 'a' inLambda
 8
 9
   val arrayPacking = packB ';;' loopPerm
10
    (arrayPacking ';' lowerToC )(mm)
11
```

Ltvm

```
1 # Modified algorithm
2 bn = 32
   k = tvm.reduce_axis((0, K), 'k')
   A = tvm.placeholder((M, K), name='A')
   B = tvm.placeholder((K, N), name='B')
   pB = tvm.compute((N / bn, K, bn),
     lambda x, y, z: B[y, x * bn + z], name='pB')
   C = tvm.compute((M,N), lambda x,y:
 8
     tvm.sum(A[x,k] * pB[y//bn,k,
9
     tvm.indexmod(y,bn)], axis=k),name='C')
10
11 # Array packing schedule
12 s = tvm.create_schedule(C.op)
13 xo, yo, xi, yi = s[C].tile(
    C.op.axis[0], C.op.axis[1], bn, bn)
14
15 k,
                  = s[C].op.reduce_axis
16 ko, ki = s[C].split(k, factor=4)
17 s[C].reorder(xo, yo, ko, xi, ki, yi)
18 s[C].vectorize(yi)
                  = s[pB].op.axis
19 x, y, z
20 s[pB].vectorize(z)
   s[pB].parallel(x)
```

Array Packing Strategy

VS

Clear separation of concerns ELEVATE

```
val appliedMap = isApp(isApp(isMap))
   val isTransposedB = isApp(isTranspose)
 2
 3
    val packB = storeInMemory(isTransposedB,
 4
     permuteB ';;'
 5
     vectorize(32) '@' innermost(appliedMap) ';;'
 6
                   '@' outermost(isMap)
     parallel
    ) '@' inLambda
 8
 9
    val arrayPacking = packB ';; ' loopPerm
10
    (arrayPacking ';' lowerToC )(mm)
11
```

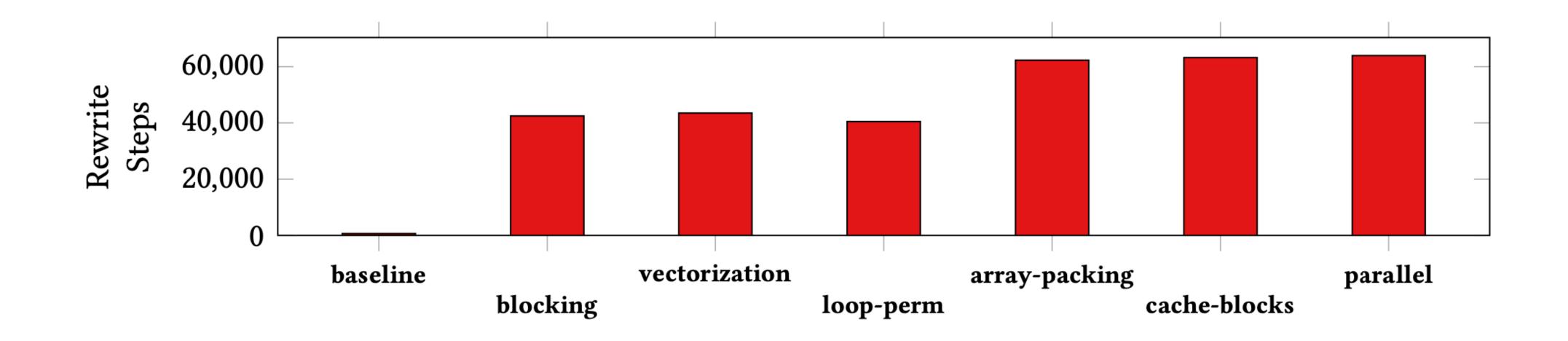
Facilitate reuse

No clear separation of concerns

```
# Modified algorithm
   bn = 32
 2
   k = tvm.reduce_axis((0, K), 'k')
   A = tvm.placeholder((M, K), name='A')
   B = tvm.placeholder((K, N), name='B')
   pB = tvm.compute((N / bn, K, bn),
     lambda x, y, z: B[y, x * bn + z], name='pB')
   C = tvm.compute((M,N), lambda x,y:
     tvm.sum(A[x,k] * pB[y//bn,k,
 9
     tvm.indexmod(y,bn)], axis=k),name='C')
10
11 # Array packing schedule
12 s = tvm.create_schedule(C.op)
13 xo, yo, xi, yi = s[C].tile(
     C.op.axis[0], C.op.axis[1], bn, bn)
14
                  = s[C].op.reduce_axis
   k,
15
   ko, ki = s[C].split(k, factor=4)
16
  s[C].reorder(xo, yo, ko, xi, ki, yi)
   s[C].vectorize(yi)
18
                   = s[pB].op.axis
   x, y, z
20 s[pB].vectorize(z)
   s[pB].parallel(x)
```

Stvm

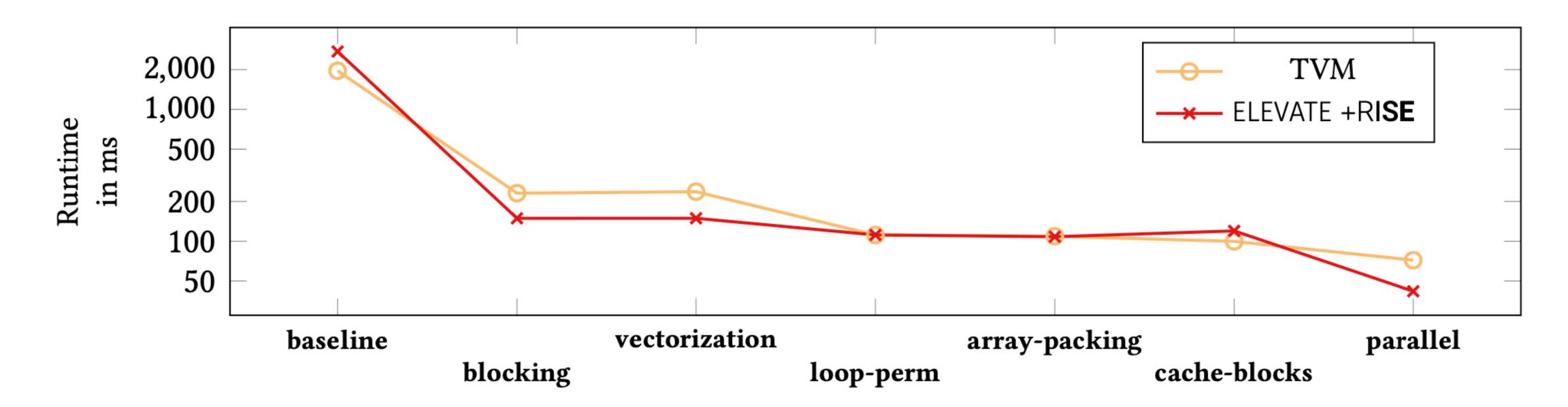
Array Packing Strategy



Rewriting took less than 2 seconds with our unoptimised implementation

Number of successful rewrite steps

Rewrite based approach scales to complex optimizations



Competitive performance compared to TVM compiler

Performance of generated code

Tradeoffs when optimizing with rewriting

Automatic rewriting

- No human needed in optimization process
- Costly & Lengthy search process
- Does not (yet) scale to all programs

Manual rewriting

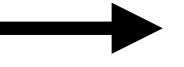
Extensive human effort needed

Expert is in control, no search required

Strategies are too sensitive \Rightarrow don't scale across applications \bigotimes

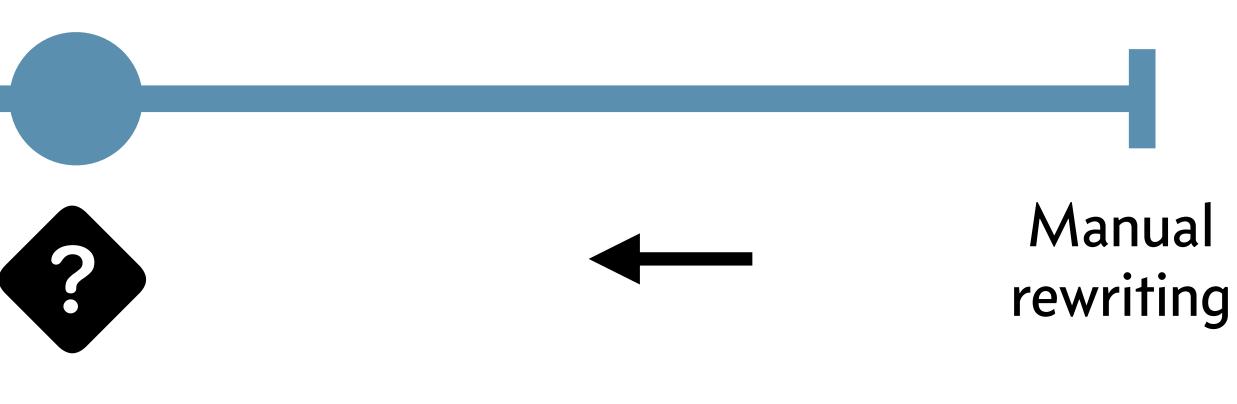
Tradeoffs when optimizing with rewriting

Automatic rewriting



No human needed in optimization process

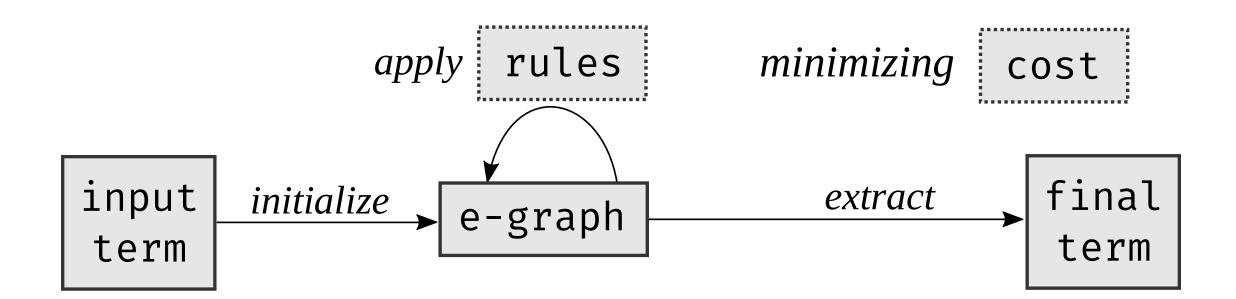
Does not (yet) scale to all programs



Extensive human effort needed

- Human is in control, no search required 🗸
 - Strategies are too sensitive \Rightarrow don't scale across applications \bigotimes

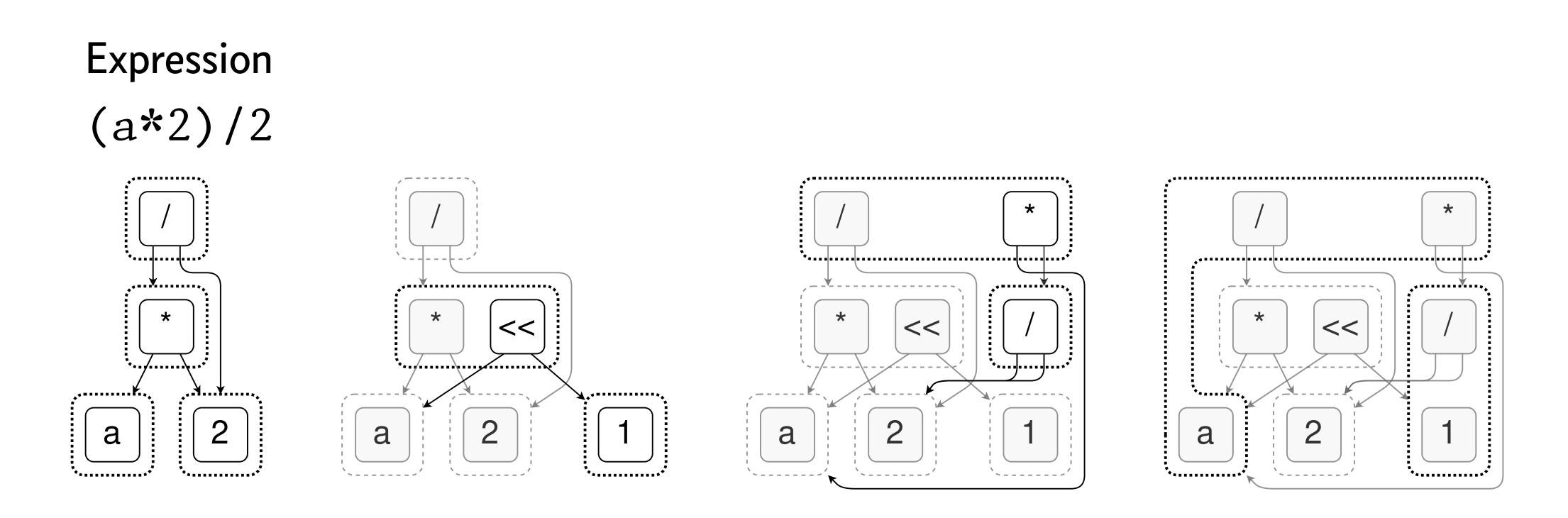
Equality Saturation



- Optimize programs by efficiently exploring many possible rewrites
- Many successful applications sparked from the recent egg library

Sketch-Guided Equality Saturation

1



 $x*2 \rightarrow x <<1 \qquad (x*y)/z \rightarrow$

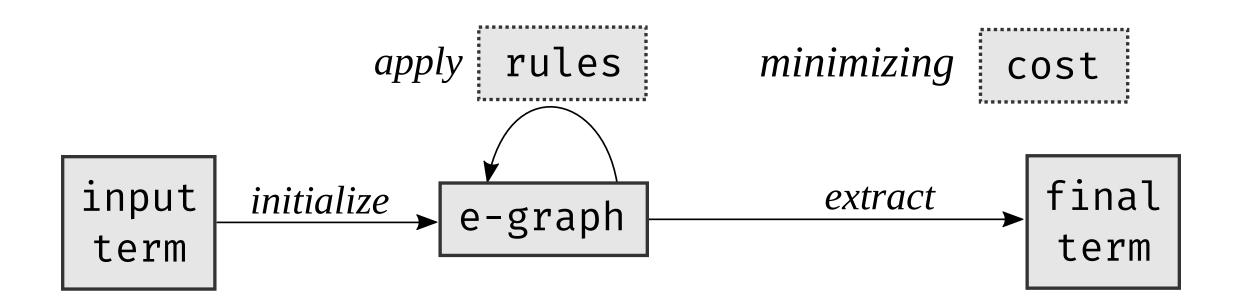
After applying Rewrites

E-Graph

$$x*(y/z)$$

 $x/x \rightarrow 1$ $1 * x \rightarrow x$

Equality Saturation



- Optimize programs by efficiently exploring many possible rewrites
- Many successful applications sparked from the recent egg library

Sketch-Guided Equality Saturation

Some optimizations remain out of reach as the e-graph grows too big

1

Case Study Matrix Multiplication Optimizations for CPU:

- transform loops
 - blocking, permutation, unrolling
- change data layout
- add parallelism
 - vectorization, multi-threading

Sketch-Guided Equality Saturation

Case Study

Matrix Multiplication Optimizations for CPU:

- transform loops
 - blocking, permutation, unrolling
- change data layout
- add parallelism
 - vectorization, multi-threading

Space of equivalent programs to consider is huge

Sketch-Guided Equality Saturation

Case Study

Rewritten language: RISE, a functional array language

```
def mm a b =
  map (\lambdaaRow.
    map (\lambdabCol.
      dot aRow bCol)
      (transpose b)) a
def dot xs ys =
  reduce + O
    (map (\lambda(x, y). x \times y) | acc += x × y
      (zip xs ys))
```

Sketch-Guided Equality Saturation

Matrix Multiplication in RISE:

```
for aRow in a:
   for bCol in transpose(b):
     ... = dot(aRow, bCol)
| for (x, y) in zip(xs, ys):
```


Case Study

Rewritten language: RISE, a functional array language

```
def mm a b =
  map (\lambdaaRow.
    map (\lambdabCol.
      dot aRow bCol)
      (transpose b)) a
def dot xs ys =
  reduce + O
    (map (\lambda(x, y), x \times y) | acc += x × y
      (zip xs ys))
```

RISE is designed for optimization via term rewriting

Sketch-Guided Equality Saturation

Matrix Multiplication in RISE:

```
for aRow in a:
     for bCol in transpose(b):
       ... = dot(aRow, bCol)
I for (x, y) in zip(xs, ys):
```


Achieve the same 7 optimization goa

goal	found?	runtime	RAM
baseline	\checkmark	0.5s	0.02 GB
blocking	\checkmark	>1h	35 GB
vectorization	×	>1h	>60 GB
loop-perm	×	>1h	>60 GB
array-packing	×	35mn	>60 GB
cache-blocks	×	35mn	>60 GB
parallel	X	35mn	>60 GB

Most goals are not found before exhausting 60 GB.

► For comparison, rewriting strategies take <2s and <1GB.

¹on Intel Xeon E5-2640 v2

Sketch-Guided Equality Saturation

Case Study

als	with	equality	satura	tion? ¹
μD		equality	Juluiu	

Achieve the same 7 optimization goal

goal	found?	runtime	RAM
baseline	\checkmark	0.5s	0.02 GB
blocking	\checkmark	>1h	35 GB
vectorization	×	>1h	>60 GB
loop-perm	×	>1h	>60 GB
array-packing	×	35mn	>60 GB
cache-blocks	×	35mn	>60 GB
parallel	×	35mn	>60 GB

¹on Intel Xeon E5-2640 v2

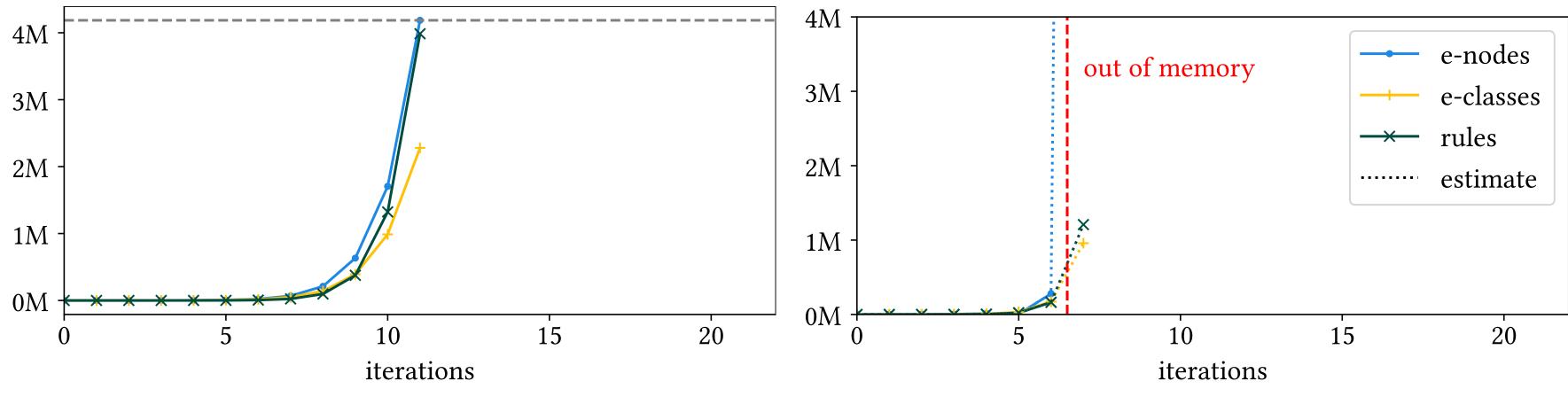
Sketch-Guided Equality Saturation

Case Study

al	S	with	equa	lity	satura	tion? ¹
			L	J		

Standard equality saturation does not scale to this optimization space

E-Graph Evolution



(a) *blocking*, found: \checkmark

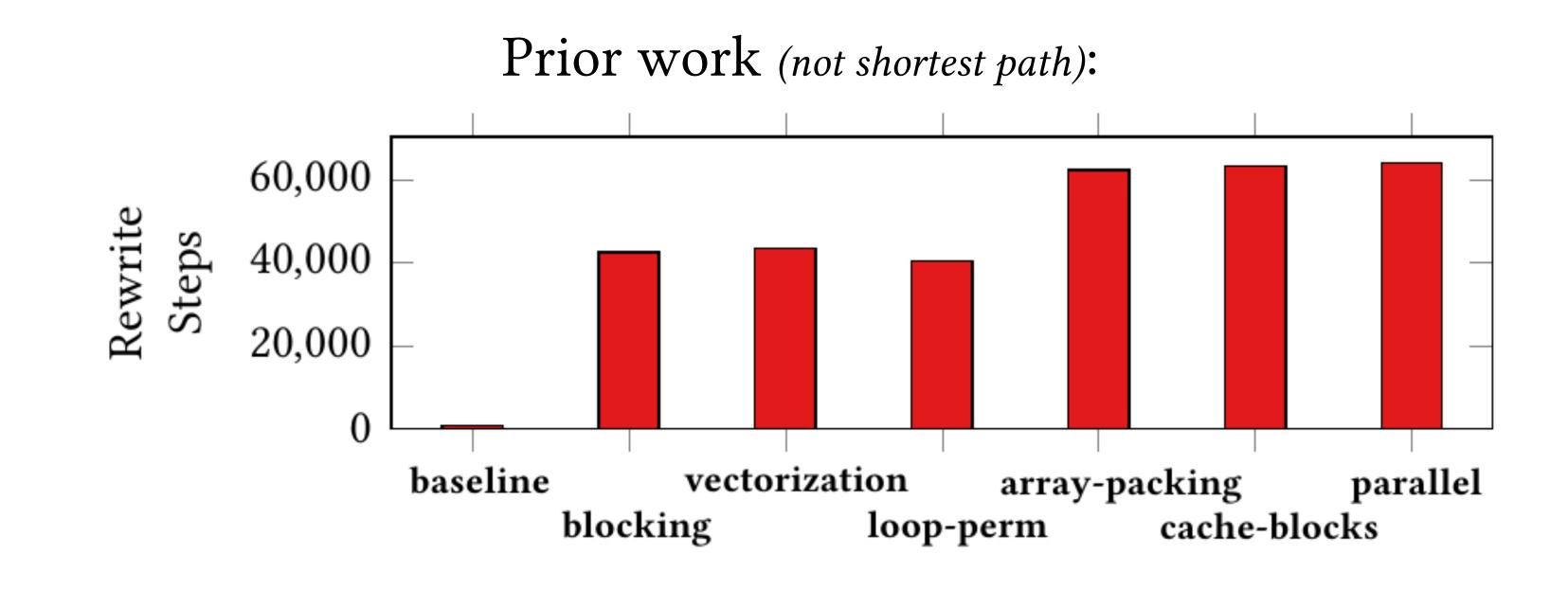
Two difficulties:

- 1. Long rewrite sequences \implies many iterations are required
- 2. Explosive combination of rewrite rules \implies exponential growth
 - millions of e-nodes and e-classes in less than 10 iterations
 - worse for *parallel*, memory is exhausted in the 7th iteration

(b) *parallel*, found: X

iterations are required les \implies exponential growth n less than 10 iterations austed in the 7th iteration

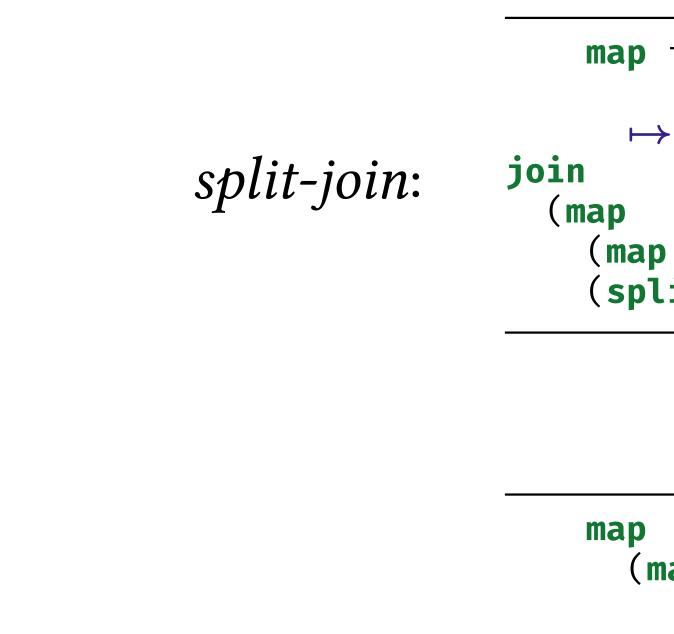
Difficulty 1. Long Rewrite Sequences



Sketch-Guided Equality Saturation

Difficulty 2. Explosive Combinations of Rewrite Rules

Two example rules that quickly generate many possibilities:



transpose-around-map-map:

transpo (map (ma (tr

apfx →	<pre>for m: = f()</pre>	
nap f) split n x))	<pre> for m / n: for n: for n: = f() </pre>	

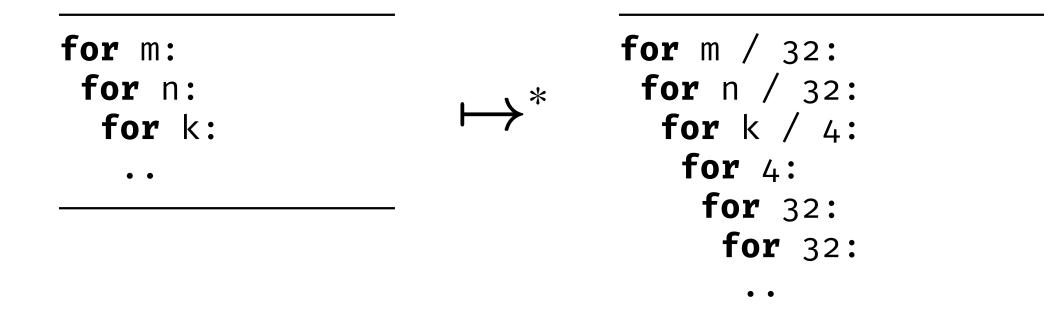
ap (map f) x	<pre> for m: for n: = f() </pre>
\mapsto	
oose	
0	for n:
nap f)	for m:
nap f) transpose x))	f()

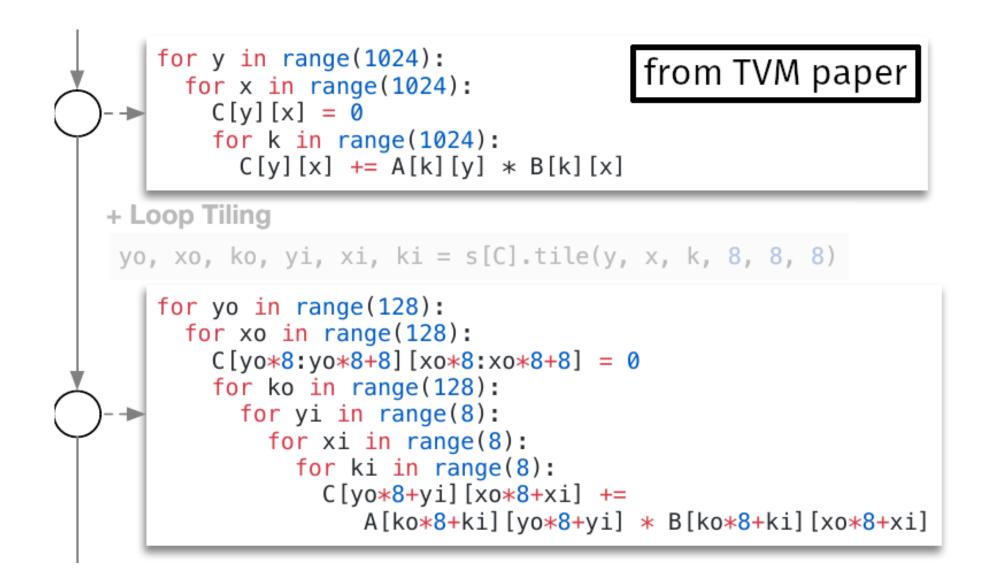
To overcome these difficulties, we came up with *sketch-guided equality saturation*

Sketch-Guided Equality Saturation

Observation:

► The *shape* of the optimised program is often used to explain optimizations:

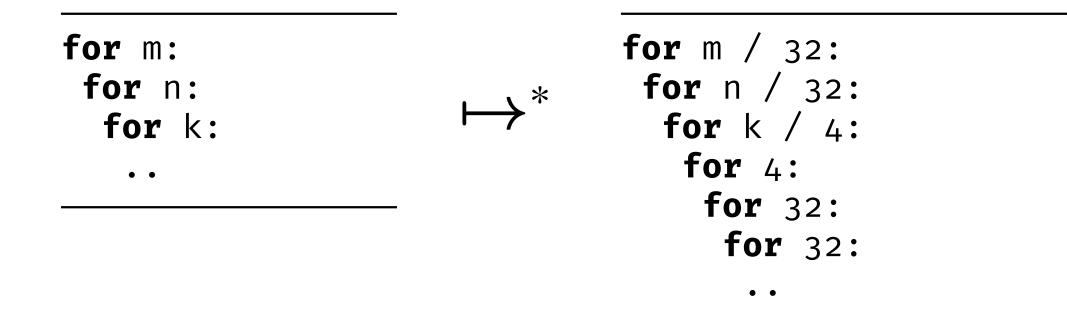




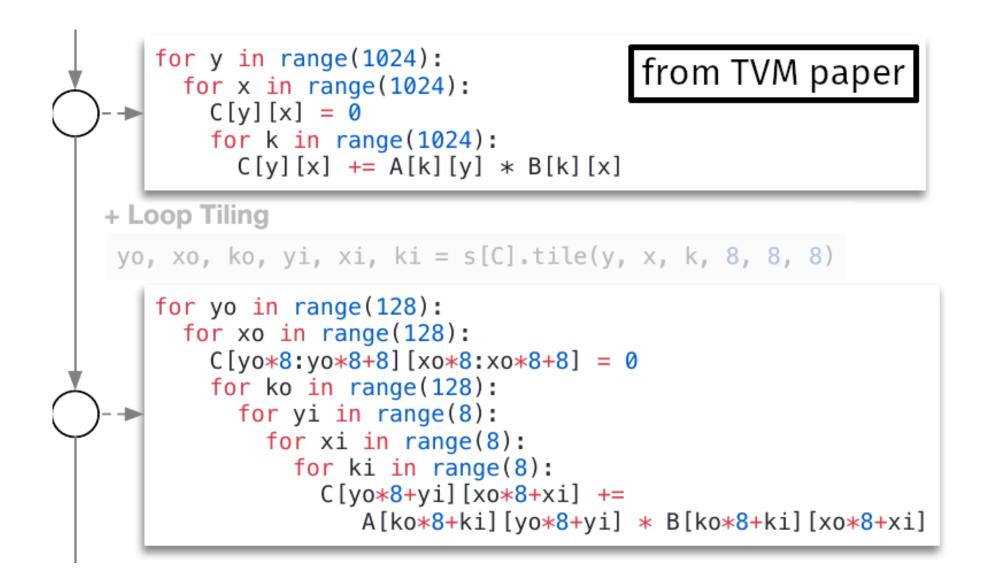
Sketch-Guided Equality Saturation

Observation:

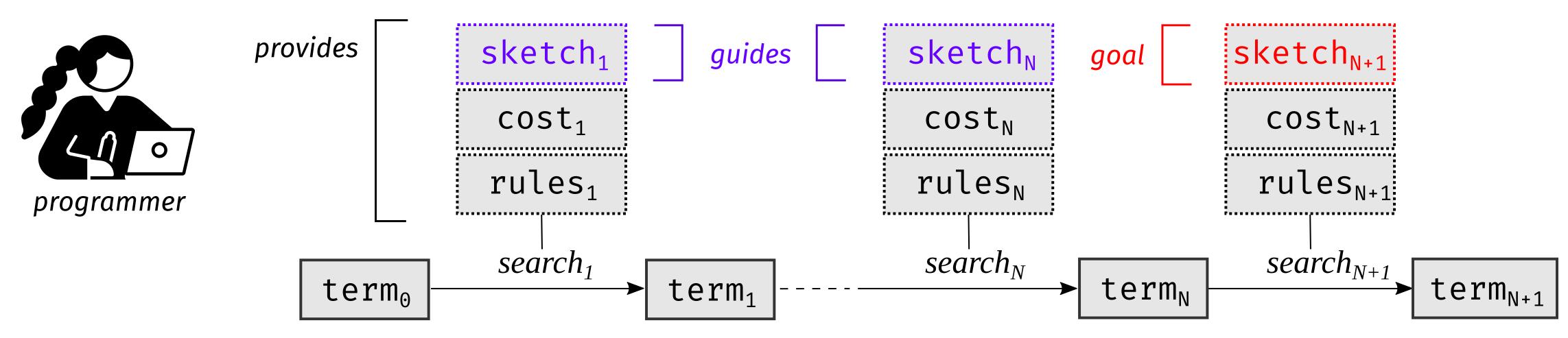
► The *shape* of the optimised program is often used to explain optimizations:



Explanatory shapes can be formalized as sketches and used to guide rewriting



Sketch-Guided Equality Saturation



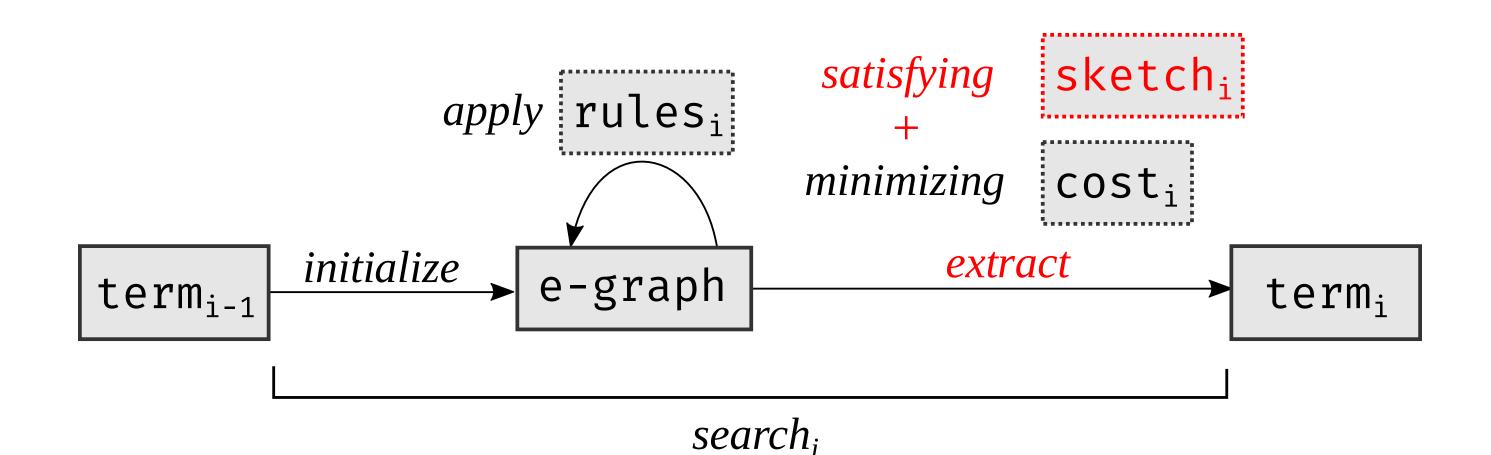
Factors an unfeasible search into a sequence of feasible ones: 1. Break long rewrite sequences

2. Isolate explosive combinations of rewrite rules

Sketch-Guided Equality Saturation

11

Sketch-Satisfying Equality Saturation



Terminates as soon as a program satisfying the sketch is found

baseline sketch:

contai conta conta con

Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch = contains(app(app(+, ?), contains(×)))

Sketch-Guided Equality Saturation

nsMap(m,	for m:
ninsMap(n,	for n:
<pre>cainsReduceSeq(k,</pre>	for k:
<pre>ntainsAddMul)))</pre>	••• ••• ו••

baseline sketch:

contai conta cont con

A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch = contains(app(app(+, ?), contains(×))) $\begin{array}{l} \mathsf{R}(\operatorname{containsAddMul}) = \{ \ \mathsf{R}(\operatorname{app}(\operatorname{app}(+, \, ?), \ \operatorname{contains}(\times))) \} \cup \\ \{ \ \mathsf{F}(\mathsf{t}_1, \ \ldots, \ \mathsf{t}_n) \mid \exists \mathsf{t}_i \in \mathsf{R}(\operatorname{containsAddMul}) \} \\ \mathsf{R}(\operatorname{app}(\operatorname{app}(+, \, ?), \ \operatorname{contains}(\times))) = \{ \ \operatorname{app}(\operatorname{app}(+, \ \mathsf{t}_1), \ \mathsf{t}_2) \mid \mathsf{t}_2 \in \mathsf{R}(\operatorname{contains}(\times)) \} \\ \mathsf{R}(\operatorname{contains}(\times)) = \{ \ \times \ \} \cup \{ \ \mathsf{F}(\mathsf{t}_1, \ \ldots, \ \mathsf{t}_n) \mid \exists \mathsf{t}_i \in \mathsf{R}(\operatorname{contains}(\times)) \} \\ \end{array}$

Sketch-Guided Equality Saturation

nsMap(m,	for m:
ninsMap(n,	for n:
<pre>cainsReduceSeq(k,</pre>	for k:
ntainsAddMul)))	I + ×

baseline sketch:

blocking sketch:

contain contai conta cont con CO

Sketch-Guided Equality Saturation

<pre>containsMap(m,</pre>	for m:
<pre>containsMap(n,</pre>	for n:
<pre>containsReduceSeq(k,</pre>	for k:
containsAddMul)))	$ \dots + \dots \times \dots$

nsMap (m / 32,	for m / 32:
insMap(n / 32,	for n / 32:
<pre>ainsReduceSeq(k / 4,</pre>	for k / 4:
<pre>tainsReduceSeq(4,</pre>	for 4:
<pre>ntainsMap(32,</pre>	for 32:
<pre>ontainsMap(32,</pre>	for 32:
<pre>containsAddMul))))))</pre>	••• ••• ו••

<i>baseline</i> sketch:	<pre>containsMap(m, containsMap(n, containsReduceSeq(k, containsAddMul)))</pre>	<pre> for m: for n: for k: + ×</pre>
sketch guide: how to split the loops before reordering them?	<pre>containsMap(m / 32, containsMap(32, containsMap(n / 32, containsMap(32, containsReduceSeq(k / 4, containsReduceSeq(4, containsAddMul)))))))</pre>	<pre> for m / 32: for 32: for n / 32: for 32: for k / 4: for 4: + ×</pre>
blocking sketch:	<pre>containsMap(m / 32, containsMap(n / 32, containsReduceSeq(k / 4, containsReduceSeq(4, containsMap(32, containsMap(32, containsAddMul))))))</pre>	<pre> for m / 32: for n / 32: for k / 4: for 4: for 32: for 32: + ×</pre>

Sketch-Guided Equality Saturation

► Equality Saturation without Sketch Guides²:

goal	found?	runtime	RAM
baseline	\checkmark	0.5s	0.02 GB
blocking	✓	>1h	35 GB
+ 5 others	×	>35mn	>60 GB

► Sketch-Guided Equality Saturation³:

goal	sketch guides	found?	runtime	RAM
baseline	0	\checkmark	0.5s	0.02 GB
blocking	1	✓	7s	0.3 GB
+ 5 others	2-3	\checkmark	$\leq 7s$	≤0.5 GB

²Intel Xeon E5-2640 v2 ³AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation

Evaluation

► Equality Saturation without Sketch Guides²:

goal	found?	runtime	RAM
baseline	\checkmark	0.5s	0.02 GB
blocking	✓	>1h	35 GB
+ 5 others	×	>35mn	>60 GB

► Sketch-Guided Equality Saturation³:

goal	al sketch guides		runtime	RAM
baseline	0	✓	0.5s	0.02 GB
blocking	1	✓	7s	0.3 GB
+ 5 others	2-3	\checkmark	$\leq 7s$	≤0.5 GB

²Intel Xeon E5-2640 v2 ³AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

Equality Saturation without Sketch Guides²:

go	oal	found?	runtin	ıe	RAM		
ba	seline	√	0.	5s	0.02 GB		
ble	ocking	✓		lh	35 GB)	
+ !	5 others	×	>35n	ın	>60 GB		
ty Sa	aturatio	n ³ :	58	2x			116x
	sketch	guides	found?	ru	intime	RAM	
e	0)	\checkmark		0.5s	0.02 GB	
g	1		\checkmark		7s	0.3 GB	
ers	2-	3	\checkmark		$\leq 7s$	≤0.5 GB	

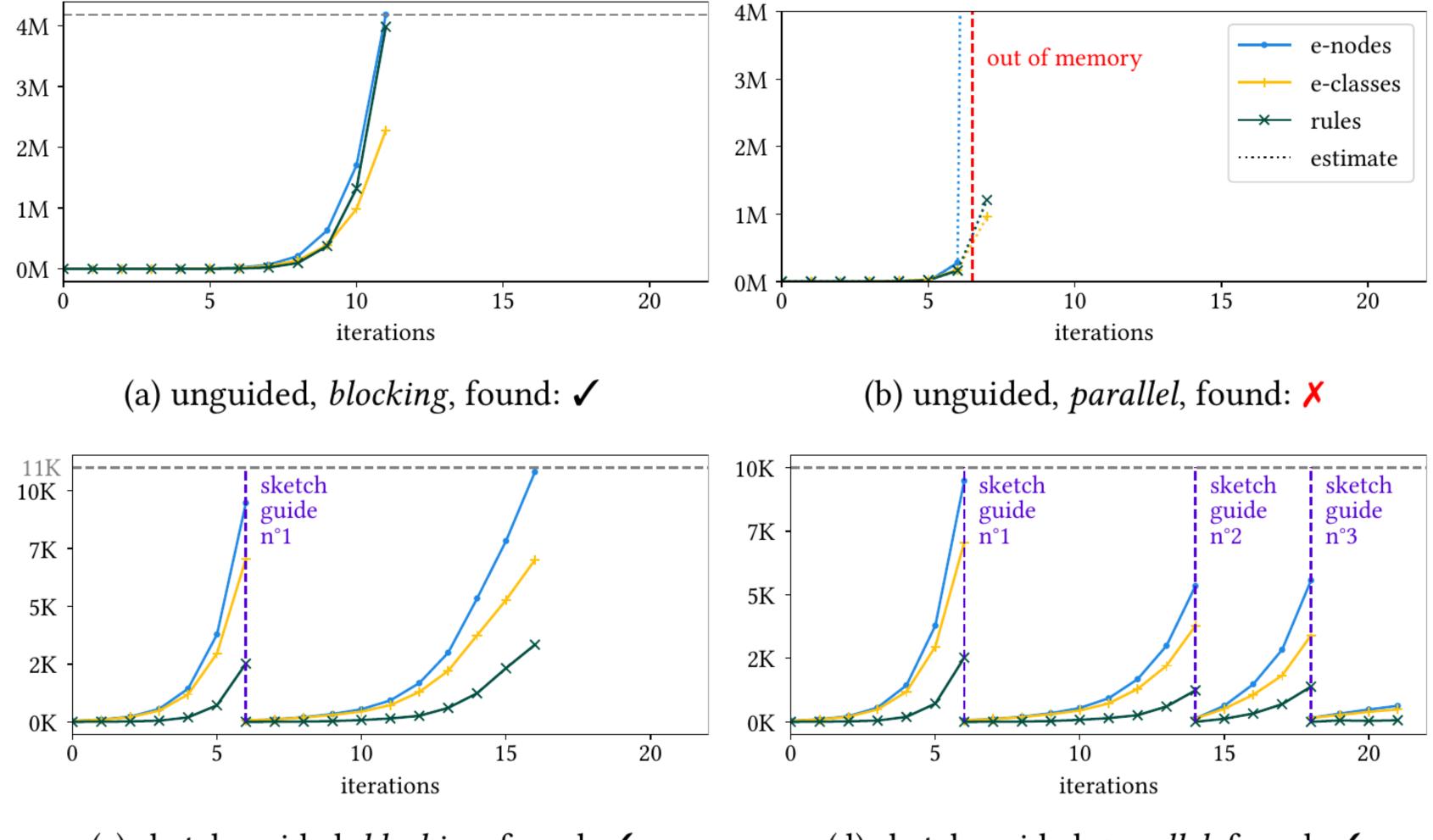
Sketch-Guided

	go	oal	found?	runtin	ıe	RAM	I	
	ba	seline	✓	0.	5s	0.02 GB		
	blocking		~	>1h		35 GB)	
	+ :	5 others	×	>35n	ın	>60 GB		
d Equal	ity S	aturatio	n ³ :	58	2x			116>
goal		sketch guides		found?	rı	intime	RAM	
baseline		0		\checkmark		0.5s	0.02 GB	
blocking		1		\checkmark		7s	0.3 GB	
+ 5 others		2-3		\checkmark		$\leq 7s$	≤0.5 GB	

²Intel Xeon E5-2640 v2 ³AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation

Evaluation

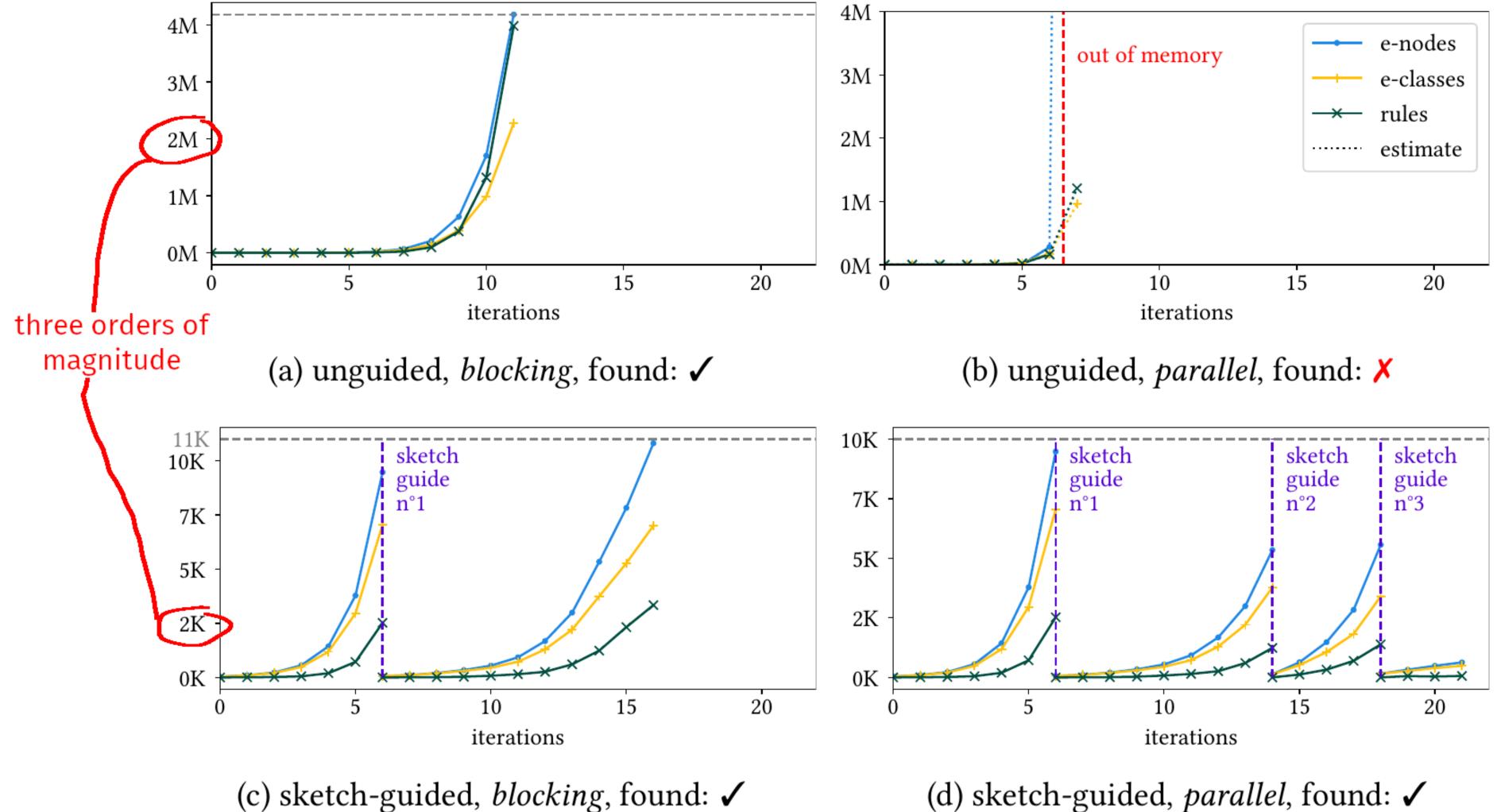


(c) sketch-guided, *blocking*, found: ✓

Evaluation

E-Graph Evolution

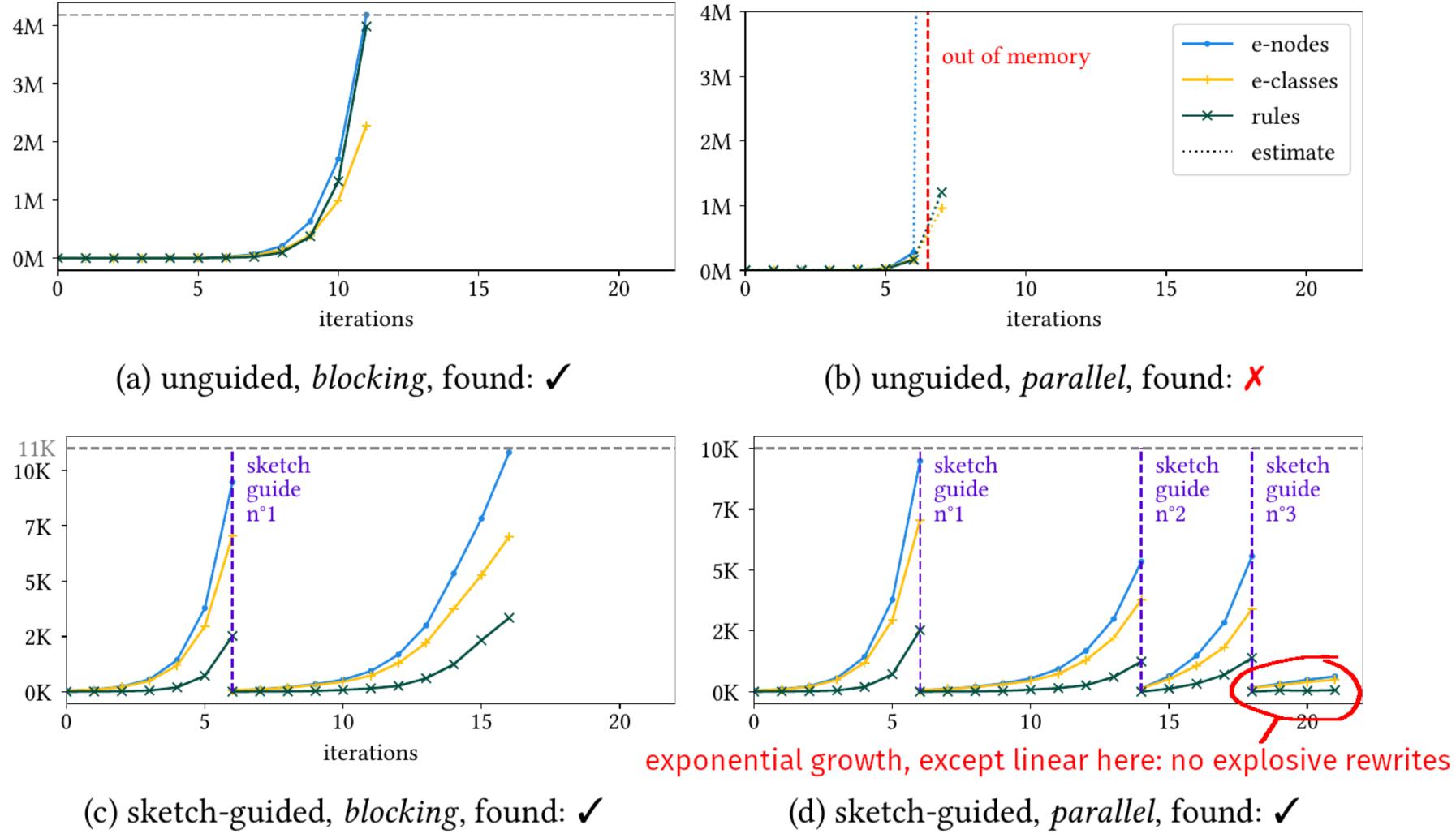
(d) sketch-guided, *parallel*, found:



(c) sketch-guided, *blocking*, found: ✓

Evaluation

E-Graph Evolution



Evaluation

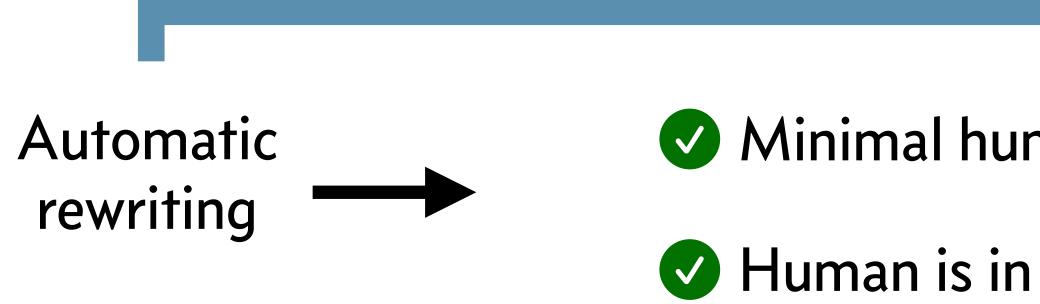
E-Graph Evolution

Evaluation Sketches vs Full Program

goal	sketch guides	sketch goal	sketch sizes	program size
blocking	split	reorder ₁	7	90
vectorization	split + reorder ₁	lower ₁	7	124
loop-perm	split + reorder ₂	lower ₂	7	104
array-packing	split + reorder ₂ + store	lower ₃	7-12	121
cache-blocks	split + reorder ₂ + store	lower ₄	7-12	121
parallel	split + reorder ₂ + store	lower ₅	7-12	121

- each sketch corresponds to a logical transformation step
- sketches elide around 90% of the program
- intricate details such as array reshaping patterns are not specified (e.g. split, join, transpose)

Tradeoffs when optimizing with rewriting



No human needed in optimization process

Does not (yet) scale to all programs

Minimal human effort needed

Units in control, fast searches required

Extensive human effort needed

Human is in control, no search required 🗸

Strategies are too sensitive \Rightarrow don't scale across applications \bigotimes

Thanks to all the PhD students

Johannes Lenfers

Martin Lücke

Bastian Hagedorn

Thomas Kœhler

Federico Pizzuti

Xueying Qin

Rongxiao Fu

Bastian Köpcke

How to design the next 700 optimizing compilers ELEVATE RISE

