
HOW TO DESIGN THE NEXT 700
OPTIMIZING COMPILERS

A framework for designing optimising domain-specific compilers
for specialised hardware in the era of ML and AI

Michel Steuwer

Hardware

Software

General purpose Specialised

General purpose Specialised

Halide

2

Hardware

Software

General purpose Specialised

General purpose Specialised

Halide

3

How do we build compilers to (automatically) optimise
specialised software for specialised hardware?

COMPUTATION OPTIMISATION

• > 500 different type of nodes in the TF IR

• > 50 different type of nodes in the XLA IR

• > 2.500.000 lines of code

• Support for custom hardware: TPU

๏ Hughe effort to build still highly specialised

• Problem solved?

Domain Specific Example: TensorFlow

5

XLA

Machine Learning Systems are Stuck in a Rut
Paul Barham
Google Brain

Michael Isard
Google Brain

Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:
Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators
We became interested in this paper’s subject when trying
to improve an implementation of Capsule networks [1] to
scale up to larger datasets. Capsule networks are an excit-
ing machine learning research idea where scalar-valued
“neurons” are replaced by small matrices, allowing them
to capture more complex relationships. Capsules may or
may not be the “next big thing” in machine learning, but
they serve as a representative example of a disruptive
ML research idea.
Although our convolutional Capsule model requires

around 4 times fewer �oating point operations (FLOPS)

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advantage
and that copies bear this notice and the full citation on the �rst page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6727-1/19/05.
h�ps://doi.org/10.1145/3317550.3321441

Input (depth Ci)

3x3 Patches
(depth Ci)

Kernel
3x3xCi→Co

Output (depth Co)

Co Pixel

Centers on
stride 2 grid

Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but
operating on 4⇥4 matrices rather than scalars.
A basic building block of current machine learning

frameworks is the strided 2D convolution. Most frame-
works provide a primitive operation that accepts N input
images of sizeH⇥W , where each pixel has a “depth” ofCi
channels2. Informally, for a “kernel size”K=3 and “stride”
S=2, conv2d computes a weighted sum of overlapping
3⇥3 patches of pixels centered at every other (x ,�) co-
ordinate, to produce N smaller images with pixel depth
Co (Figure 1). Mathematically, this can be expressed as
follows:

8n,x ,�, co :On,co
x,� =

’
kx

’
k�

’
ci

In,cisx+kx ,s�+k�
·Kci ,co

kx ,k�
(1)

where · denotes scalar multiplication, and O , I , and K
are all 4-dimensional arrays of scalars. The resulting
code is little more than 7 nested loops around a multiply-
accumulate operation, but array layout, vectorization,

1For an excellent tutorial on Capsule networks see [4].
2 Section 4 discusses why these dimensions are used.

6

Original authors
of TensorFlow

! [HotOS’19]

Machine Learning Systems are Stuck in a Rut
Paul Barham
Google Brain

Michael Isard
Google Brain

Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:
Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators

Input (depth Ci)

3x3 Patches
(depth Ci)

Kernel
3x3xCi→Co

Output (depth Co)

Co Pixel

Centers on
stride 2 grid

Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but

7

Machine Learning Systems are Stuck in a Rut
Paul Barham
Google Brain

Michael Isard
Google Brain

Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:
Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators
We became interested in this paper’s subject when trying
to improve an implementation of Capsule networks [1] to
scale up to larger datasets. Capsule networks are an excit-
ing machine learning research idea where scalar-valued
“neurons” are replaced by small matrices, allowing them
to capture more complex relationships. Capsules may or
may not be the “next big thing” in machine learning, but
they serve as a representative example of a disruptive
ML research idea.
Although our convolutional Capsule model requires

around 4 times fewer �oating point operations (FLOPS)

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advantage
and that copies bear this notice and the full citation on the �rst page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6727-1/19/05.
h�ps://doi.org/10.1145/3317550.3321441

Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but
operating on 4⇥4 matrices rather than scalars.
A basic building block of current machine learning

frameworks is the strided 2D convolution. Most frame-
works provide a primitive operation that accepts N input
images of sizeH⇥W , where each pixel has a “depth” ofCi
channels2. Informally, for a “kernel size”K=3 and “stride”
S=2, conv2d computes a weighted sum of overlapping
3⇥3 patches of pixels centered at every other (x ,�) co-
ordinate, to produce N smaller images with pixel depth
Co (Figure 1). Mathematically, this can be expressed as
follows:

8n,x ,�, co :On,co
x,� =

’
kx

’
k�

’
ci

In,cisx+kx ,s�+k�
·Kci ,co

kx ,k�
(1)

where · denotes scalar multiplication, and O , I , and K
are all 4-dimensional arrays of scalars. The resulting
code is little more than 7 nested loops around a multiply-
accumulate operation, but array layout, vectorization,

1For an excellent tutorial on Capsule networks see [4].
2 Section 4 discusses why these dimensions are used.

Machine Learning Systems are Stuck in a Rut
Paul Barham
Google Brain

Michael Isard
Google Brain

Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:
Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators

Input (depth Ci)

3x3 Patches
(depth Ci)

Kernel
3x3xCi→Co

Output (depth Co)

Co Pixel

Centers on
stride 2 grid

Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but

7

Machine Learning Systems are Stuck in a Rut
Paul Barham
Google Brain

Michael Isard
Google Brain

Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:
Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators
We became interested in this paper’s subject when trying
to improve an implementation of Capsule networks [1] to
scale up to larger datasets. Capsule networks are an excit-
ing machine learning research idea where scalar-valued
“neurons” are replaced by small matrices, allowing them
to capture more complex relationships. Capsules may or
may not be the “next big thing” in machine learning, but
they serve as a representative example of a disruptive
ML research idea.
Although our convolutional Capsule model requires

around 4 times fewer �oating point operations (FLOPS)

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advantage
and that copies bear this notice and the full citation on the �rst page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6727-1/19/05.
h�ps://doi.org/10.1145/3317550.3321441

Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but
operating on 4⇥4 matrices rather than scalars.
A basic building block of current machine learning

frameworks is the strided 2D convolution. Most frame-
works provide a primitive operation that accepts N input
images of sizeH⇥W , where each pixel has a “depth” ofCi
channels2. Informally, for a “kernel size”K=3 and “stride”
S=2, conv2d computes a weighted sum of overlapping
3⇥3 patches of pixels centered at every other (x ,�) co-
ordinate, to produce N smaller images with pixel depth
Co (Figure 1). Mathematically, this can be expressed as
follows:

8n,x ,�, co :On,co
x,� =

’
kx

’
k�

’
ci

In,cisx+kx ,s�+k�
·Kci ,co

kx ,k�
(1)

where · denotes scalar multiplication, and O , I , and K
are all 4-dimensional arrays of scalars. The resulting
code is little more than 7 nested loops around a multiply-
accumulate operation, but array layout, vectorization,

1For an excellent tutorial on Capsule networks see [4].
2 Section 4 discusses why these dimensions are used.

We should aim for more principled higher level intermediate representations

COMPUTATION

RISE & Shine an extensible compiler design
RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Rewriting

Code Generation

9

https://rise-lang.org/

• Spiritual successor to the
LIFT project

• Functional language
as foundation

• Computations are
expressed by
computational
patterns

![CGO'21, CC’21, GPGPU’22]

https://rise-lang.org/

Computational Patterns

Data parallel patterns

Computational Patterns

Data parallel patterns Dot product

zip(a, b) !|> map(*) !|> reduce(+, 0)

Computational Patterns

Data parallel patterns Matrix multiply

depFun((m:Nat, n:Nat, k:Nat) !=>
 fun((A: Array[m,Array[k,f32]],
 B: Array[k,Array[n,f32]]) !=>

 A !|> map(fun(rowA !=>
 B !|> transpose !|> map(fun(colB !=>
 dot(rowA, colB)

))))))

GEMM in RISE

13

GEMM in RISE High-Level
functional primitives

14

GEMM in RISE High-Level
functional primitives

Low-Level
functional primitives 15

GEMM in RISE High-Level
functional primitives

Low-Level
functional primitives

Low-Level
imperative primitives

16

GEMM in RISE High-Level
functional primitives

Low-Level
functional primitives

Low-Level
imperative primitives

Low-Level
imperative code

17

GEMM in RISE
RISE

DPIA

C

GEMM in RISE
RISE

DPIA

C
Optimization

Translation

Translation

Performance Results

 ! [CGO 2018]

Same performance as
hand-optimised code!

 ! [CGO 2021]

Outperform Halide
with two optimizations
added as new patterns.

Extensibility!

• New patterns can be added
at each abstraction layer:

• Low-level imperative primitives
to capture a hardware details

• Low-level functional primitives
to lift these abstractions into the functional world

• High-level functional primitives
to make these abstractions available to rewriting

Low-level imperative primitives

Low-level functional primitives

![GPGPU’22]

OPTIMISATION

Extensible Optimizations via Rewriting
RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Rewriting

Code Generation

23

https://elevate-lang.org/

![ICFP’20, arXiv’22]

https://elevate-lang.org/

Tradeoffs when optimizing with rewriting

24

Automatic
rewriting

Manual
rewriting

! No human needed in
 optimization process

Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated MAGMA cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated MAGMA cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

25

Only few generated code with very good performance Still: One can expect to find a good performing kernel quickly!

Automatic Rewriting for Matrix Multiplication

Performance close or better than hand-tuned library code
! [GPGPU’16]

Tradeoffs when optimizing with rewriting

26

Automatic
rewriting

Manual
rewriting

! No human needed in
 optimization process

! Costly & Lengthy search process

! Does not (yet) scale to complex programs

Tradeoffs when optimizing with rewriting

27

Automatic
rewriting

Manual
rewriting

! No human needed in
 optimization process

! Costly & Lengthy search process

! Does not (yet) scale to all programs

Extensive human effort needed !

Expert is in control, no search required !

Compilers with scheduling APIs

k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

blocking version
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0],C.op.axis[1],32,32)
k, = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

28

Compilers with scheduling APIs

k = tvm.reduce_axis((0, K), 'k')
A = tvm.placeholder((M, K), name='A')
B = tvm.placeholder((K, N), name='B')
C = tvm.compute((M, N), lambda x, y:
 tvm.sum(A[x, k] * B[k, y], axis=k),
 name='C')

"parallel schedule
s = tvm.create_schedule(C.op)
CC = s.cache_write(C, 'global')
xo, yo, xi, yi = s[C].tile(
 C.op.axis[0], C.op.axis[1], bn, bn)

s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)
s[C].parallel(xo)
x, y, z = s[packedB].op.axis
s[packedB].vectorize(z)
s[packedB].parallel(x)

200x

29

Compilers with scheduling APIs

30

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Halide

Fireiron

Compilers with scheduling APIs

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

No clear separation

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

No clear separationHinders reuse

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Not well defined
semantics

No clear separationHinders reuse

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Not well defined
semantics

No clear separationHinders reuse

Hinders understanding

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Only fixed built-in
optimisations

Not well defined
semantics

No clear separationHinders reuse

Hinders understanding

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Only fixed built-in
optimisations

Not well defined
semantics

No clear separationHinders reuse

Hinders understanding

No extensibility

Problems with Scheduling APIs

31

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

We should aim for more principled ways to describe and apply optimisations

Only fixed built-in
optimisations

Not well defined
semantics

No clear separationHinders reuse

Hinders understanding

No extensibility

Our goals:

32

1. Separate concerns
Computations should be expressed at a high abstraction level only.
They should not be changed to express optimizations;

2. Facilitate reuse
Optimization strategies should be defined clearly separated from the computational program facilitating
reusability of computational programs and strategies;

3. Enable composability
Computations and strategies should be written as compositions of user-defined building blocks (possibly
domain-specific ones); both languages should facilitate the creation of higher-level abstractions;

4. Allow reasoning
Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing
reasoning about them;

5. Be explicit
Implicit default behavior should be avoided to empower users to be in control.

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Our goals:

33

1. Separate concerns
Computations should be expressed at a high abstraction level only.
They should not be changed to express optimizations;

2. Facilitate reuse
Optimization strategies should be defined clearly separated from the computational program facilitating
reusability of computational programs and strategies;

3. Enable composability
Computations and strategies should be written as compositions of user-defined building blocks (possibly
domain-specific ones); both languages should facilitate the creation of higher-level abstractions;

4. Allow reasoning
Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing
reasoning about them;

5. Be explicit
Implicit default behavior should be avoided to empower users to be in control.

The Need for a Principled Way to Separate, Describe and Apply Optimizations

Fundamentally we argue that a more principled high-performance

code generation approach should be holistic by considering
computation and optimization strategies equally important.

As a consequence, a strategy language should be built with the

same standards as a language describing computation.

Achieving High-Performance the Functional Way

34

based on Lift
[ICFP 2015] by Steuwer et. al.

based on Stratego
[ICFP 1998] by Visser et. al.

ELEVATE A Language for Describing Optimisation Strategies

• A Strategy encodes a program transformation as a function:

• A RewriteResult encodes its success or failure:

type Strategy[P] = P =>= RewriteResult[P]

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

35

Rewrite Rules in ELEVATE
• Rewrite rules are basic strategies

def mapFusion: Strategy[Rise] =
 (p: Rise) =>= p match {
 case app(app(map, f),
 app(app(map, g), xs)) =
 Success(map(fun(x =>= f(g(x))), xs))
 case _ = Failure(mapFusion)
}

mapFusion() =

36

Combinators in ELEVATE
• Building more complex strategies from simpler once

• Sequential Composition (;)

• Left Choice (<+)

• Try

• Repeat

def seq[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P] =
 fs =>= ss =>= p =>= fs(p).flatMapSuccess(ss)

def lChoice[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P] =
 fs =>= ss =>= p =>= fs(p).flatMapFailure(_ =>= ss(p))

def try[P]: Strategy[P] =>= Strategy[P] =
 s =>= p =>= (s <<+ id)(p)

def repeat[P]: Strategy[P] =>= Strategy[P] =
 s =>= p =>= try(s ; repeat(s))(p)

37

Traversals in ELEVATE
• Describing Precise Locations

mapFusion () = ?

threemaps =
38

Traversals in ELEVATE
• Describing Precise Locations

body(mapFusion) () = ?

threemaps =
39

def body: Strategy[Rise] =>= Strategy[Rise] =
 s =>= p =>= p match {
 case fun(x,b) =>= s(b).mapSuccess(nb =>=
fun(x,nb))
 case _ =>= Failure(body(s))
}

Traversals in ELEVATE
• Describing Precise Locations

body(argument(mapFusion)) () = ?

threemaps =

def body: Strategy[Rise] =>= Strategy[Rise] =
 s =>= p =>= p match {
 case fun(x,b) =>= s(b).mapSuccess(nb =>=
fun(x,nb))
 case _ =>= Failure(body(s))
}

def argument: Strategy[Rise] =>= Strategy[Rise] =
 s =>= p =>= p match {
 case app(f,a) =>= s(a).mapSuccess(na =>=
app(f,na))
 case _ =>= Failure(argument(s))
}

40

Complex Traversals + Normalization in ELEVATE
• With three basic generic traversals

• we define more complex traversals:

• With these traversals we define normal forms, e.g. 𝛽𝜂-normal-form:

41

Complex optimisations defined as strategies

42

def tile: Int ->- Int ->- Strategy =
 (dim) =>= (n) =>= dim match {
 case 1 = function(splitJoin(n))

 case 2 = fmap(function(splitJoin(n))) ;
 function(splitJoin(n)) ; interchange(2)
 case i = fmap(tile(dim-1, n)) ;
 function(splitJoin(n)) ; interchange(n)
 }

Tiling defined as composition of rewrites not a built-in!

Case Study: Implementing TVM's Scheduling API

200x

• We attempt to express the same optimizations described in the TVM tutorial:

43

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy
44

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy

Clear separation of concerns

Implicit behaviorBe explicit

Enable composability
45

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy
46

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy

User-defined vs. build in
Facilitate reuse

No clear separation
of concerns

47

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy
48

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy

Clear separation of concerns No clear separation of concernsvs

Facilitate reuse

49

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Number of successful rewrite steps

50

Rewrite based approach scales to complex optimizations

Rewriting took less than 2 seconds with our unoptimised implementation

Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Performance of generated code

51

Competitive performance compared to TVM compiler

Tradeoffs when optimizing with rewriting

52

Automatic
rewriting

Manual
rewriting

! No human needed in
 optimization process

! Costly & Lengthy search process

! Does not (yet) scale to all programs

Extensive human effort needed !

Expert is in control, no search required !

Strategies are too sensitive |
=>= don’t scale across applications !

Tradeoffs when optimizing with rewriting

53

Automatic
rewriting

Manual
rewriting

! No human needed in
 optimization process

! Costly & Lengthy search process

! Does not (yet) scale to all programs

Extensive human effort needed !

Human is in control, no search required !

Strategies are too sensitive |
=>= don’t scale across applications !

!

Equality Saturation

input
term e-graphinitialize

apply

extract

costminimizingrules

final
term

! Optimize programs by efficiently exploring many possible rewrites
! Many successful applications sparked from the recent egg library

Some optimizations remain out of reach as the e-graph grows too big

Sketch-Guided Equality Saturation 1

E-Graph

/

a

*

2

/

a

*

2 1

<<

/

a

*

2 1

<<

*

/

/

a

*

2 1

<<

*

/

(a*2)/2

x*2 !-> x<<1 (x*y)/z !-> x*(y/z) x/x !-> 1
1*x !-> x

Expression

After applying Rewrites

Equality Saturation

input
term e-graphinitialize

apply

extract

costminimizingrules

final
term

! Optimize programs by efficiently exploring many possible rewrites
! Many successful applications sparked from the recent egg library

Some optimizations remain out of reach as the e-graph grows too big

Sketch-Guided Equality Saturation 1

Case Study
Matrix Multiplication Optimizations for CPU:

! transform loops
blocking, permutation, unrolling

! change data layout
! add parallelism

vectorization, multi-threading

Space of equivalent programs to consider is huge

Sketch-Guided Equality Saturation 2

Case Study
Matrix Multiplication Optimizations for CPU:

! transform loops
blocking, permutation, unrolling

! change data layout
! add parallelism

vectorization, multi-threading

Space of equivalent programs to consider is huge

Sketch-Guided Equality Saturation 2

Case Study
! Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (!aRow. | for aRow in a:
map (!bCol. | for bCol in transpose(b):
dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (!(x, y). x × y) | acc += x × y
(zip xs ys))

RISE is designed for optimization via term rewriting

Sketch-Guided Equality Saturation 3

Case Study
! Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (!aRow. | for aRow in a:
map (!bCol. | for bCol in transpose(b):
dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (!(x, y). x × y) | acc += x × y
(zip xs ys))

RISE is designed for optimization via term rewriting

Sketch-Guided Equality Saturation 3

Case Study

! Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline ! 0.5s 0.02 GB
blocking ! >1h 35 GB
vectorization " >1h >60 GB
loop-perm " >1h >60 GB
array-packing " 35mn >60 GB
cache-blocks " 35mn >60 GB
parallel " 35mn >60 GB

! Most goals are not found before exhausting 60 GB.
! For comparison, rewriting strategies take <2s and <1GB.

1on Intel Xeon E5-2640 v2
Sketch-Guided Equality Saturation 5

Case Study

! Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline ! 0.5s 0.02 GB
blocking ! >1h 35 GB
vectorization " >1h >60 GB
loop-perm " >1h >60 GB
array-packing " 35mn >60 GB
cache-blocks " 35mn >60 GB
parallel " 35mn >60 GB

Standard equality saturation does not scale to this optimization space

1on Intel Xeon E5-2640 v2
Sketch-Guided Equality Saturation 5

E-Graph Evolution

0 5 10 15 20
iterations

0M

1M

2M

3M

4M

(a) blocking, found: !

0 5 10 15 20
iterations

0M

1M

2M

3M

4M
out of memory e-nodes

e-classes
rules
estimate

(b) parallel, found: "

Two difficulties:
1. Long rewrite sequences =⇒ many iterations are required
2. Explosive combination of rewrite rules =⇒ exponential growth

! millions of e-nodes and e-classes in less than 10 iterations
! worse for parallel, memory is exhausted in the 7th iteration

Sketch-Guided Equality Saturation 6

Difficulty 1. Long Rewrite Sequences

Prior work (not shortest path):

Sketch-Guided Equality Saturation 7

Difficulty 2. Explosive Combinations of Rewrite Rules
Two example rules that quickly generate many possibilities:

split-join:

map f x | for m:
| ... = f(...)

!→
join
(map | for m / n:
(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
!→

transpose
(map | for n:
(map f) | for m:
(transpose x)) | ... = f(...)

Sketch-Guided Equality Saturation 8

To overcome these difficulties, we came up with sketch-guided
equality saturation

Sketch-Guided Equality Saturation 9

Sketch-Guided Equality Saturation
Observation:

! The shape of the optimised program is often used to explain optimizations:

for m:
for n:
for k:
..

!→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

Sketch-Guided Equality Saturation 10

Sketch-Guided Equality Saturation
Observation:

! The shape of the optimised program is often used to explain optimizations:

for m:
for n:
for k:
..

!→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

Sketch-Guided Equality Saturation 10

Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

! Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules

Sketch-Guided Equality Saturation 11

Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi

termi

searchi

! Terminates as soon as a program satisfying the sketch is found

Sketch-Guided Equality Saturation 12

Sketches

! Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

! Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Equality Saturation 13

Sketches

! Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

! A sketch s is satisfied by a set of terms R(s):

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

R(containsAddMul) = { R(app(app(+, ?), contains(×))) } ∪
{ F(t1, .., tn) | ∃ti ∈ R(containsAddMul) }

R(app(app(+, ?), contains(×))) = { app(app(+, t1), t2) | t2 ∈ R(contains(×)) }
R(contains(×)) = { × } ∪ { F(t1, .., tn) | ∃ti ∈ R(contains(×)) }

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Equality Saturation 13

Sketches

! Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Equality Saturation 13

Sketches

! Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

blocking sketch:

containsMap(m / 32, | for m / 32:
containsMap(n / 32, | for n / 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsMap(32, | for 32:
containsMap(32, | for 32:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Equality Saturation 13

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation 14

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation 14

Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U

Sketch-Guided Equality Saturation 14

Evaluation
E-Graph Evolution

Sketch-Guided Equality Saturation 15

Evaluation
E-Graph Evolution

Sketch-Guided Equality Saturation 15

Evaluation
E-Graph Evolution

Sketch-Guided Equality Saturation 15

Evaluation
Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

! each sketch corresponds to a logical transformation step
! sketches elide around 90% of the program
! intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Sketch-Guided Equality Saturation 16

Tradeoffs when optimizing with rewriting

82

Automatic
rewriting

Manual
rewriting

! Minimal human effort needed

! Human is in control, fast searches required

! No human needed in
 optimization process

! Costly & Lengthy search process

! Does not (yet) scale to all programs

Extensive human effort needed !

Human is in control, no search required !

Strategies are too sensitive |
=>= don’t scale across applications !

Johannes
Lenfers

Martin
Lücke

Federico
Pizzuti

Thomas
Kœhler

Bastian
Köpcke

Xueying
Qin

Rongxiao
Fu

Bastian
Hagedorn

Thanks to all the PhD students

How to design the next 700 optimizing compilers
RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Rewriting

Code Generation https://elevate-lang.org/

![ICFP’20, CGO’21, CC’21, GPGPU’22, arXiv’22]

https://rise-lang.org/

https://michel.steuwer.info

Michel Steuwer

https://elevate-lang.org/
https://rise-lang.org/
https://michel.steuwer.info

