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How do we build compilers to (automatically) optimise 
specialised software for specialised hardware?



COMPUTATION    OPTIMISATION



• > 500 different type of nodes in the TF IR 

• > 50 different type of nodes in the XLA IR 

• > 2.500.000 lines of code 

• Support for custom hardware: TPU 

๏  Hughe effort to build still highly specialised 

• Problem solved?

Domain Specific Example: TensorFlow
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Abstract
In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
programmability. Systems researchers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.
We explain how the evolution of hardware acceler-

ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but in�exible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.
We conclude by noting promising directions in the

�eld, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.
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1 Compiling for modern accelerators
We became interested in this paper’s subject when trying
to improve an implementation of Capsule networks [1] to
scale up to larger datasets. Capsule networks are an excit-
ing machine learning research idea where scalar-valued
“neurons” are replaced by small matrices, allowing them
to capture more complex relationships. Capsules may or
may not be the “next big thing” in machine learning, but
they serve as a representative example of a disruptive
ML research idea.
Although our convolutional Capsule model requires

around 4 times fewer �oating point operations (FLOPS)
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Figure 1. Conv2D operation with 3⇥3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow[2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives
We won’t discuss the full details of Capsule networks
in this paper1, but for our purposes it is su�cient to
consider a simpli�ed form of the inner loop, which is
similar to the computation in a traditional CNN layer but
operating on 4⇥4 matrices rather than scalars.
A basic building block of current machine learning

frameworks is the strided 2D convolution. Most frame-
works provide a primitive operation that accepts N input
images of sizeH⇥W , where each pixel has a “depth” ofCi
channels2. Informally, for a “kernel size”K=3 and “stride”
S=2, conv2d computes a weighted sum of overlapping
3⇥3 patches of pixels centered at every other (x ,�) co-
ordinate, to produce N smaller images with pixel depth
Co (Figure 1). Mathematically, this can be expressed as
follows:

8n,x ,�, co :On,co
x,� =
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’
ci

In,cisx+kx ,s�+k�
·Kci ,co

kx ,k�
(1)

where · denotes scalar multiplication, and O , I , and K
are all 4-dimensional arrays of scalars. The resulting
code is little more than 7 nested loops around a multiply-
accumulate operation, but array layout, vectorization,

1For an excellent tutorial on Capsule networks see [4].
2 Section 4 discusses why these dimensions are used.
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We should aim for more principled higher level intermediate representations
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https://rise-lang.org/

• Spiritual successor to the 
LIFT project 

• Functional language 
as foundation 

• Computations are 
expressed by 
computational 
patterns

![CGO'21, CC’21, GPGPU’22]

https://rise-lang.org/


Computational Patterns

Data parallel patterns



Computational Patterns

Data parallel patterns Dot product

zip(a, b) !|> map(*) !|> reduce(+, 0)



Computational Patterns

Data parallel patterns Matrix multiply

depFun((m:Nat, n:Nat, k:Nat) !=> 
 fun((A: Array[m,Array[k,f32]], 
      B: Array[k,Array[n,f32]]) !=> 
 
   A !|> map(fun(rowA !=> 
     B !|> transpose !|> map(fun(colB !=>  
       dot(rowA, colB) 
 
))))))



GEMM in RISE

13



GEMM in RISE High-Level 
functional primitives
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functional primitives 15



GEMM in RISE High-Level 
functional primitives

Low-Level 
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Low-Level 
imperative primitives
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GEMM in RISE High-Level 
functional primitives

Low-Level 
functional primitives

Low-Level 
imperative primitives

Low-Level 
imperative code
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Performance Results

 !  [CGO 2018]

Same performance as 
hand-optimised code!

 !  [CGO 2021]

Outperform Halide 
with two optimizations 
added as new patterns.



Extensibility!

• New patterns can be added 
at each abstraction layer: 

• Low-level imperative primitives 
to capture a hardware details 

• Low-level functional primitives 
to lift these abstractions into the functional world 

• High-level functional primitives 
to make these abstractions available to rewriting

Low-level imperative primitives

Low-level functional primitives

![GPGPU’22]
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Extensible Optimizations via Rewriting
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https://elevate-lang.org/

![ICFP’20, arXiv’22]

https://elevate-lang.org/


Tradeoffs when optimizing with rewriting
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Automatic 
rewriting

Manual 
rewriting

! No human needed in 
      optimization process
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Only few generated code with very good performance Still: One can expect to find a good performing kernel quickly!

Automatic Rewriting for Matrix Multiplication

Performance close or better than hand-tuned library code
! [GPGPU’16]
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Automatic 
rewriting

Manual 
rewriting

! No human needed in 
      optimization process 

! Costly & Lengthy search process 

! Does not (yet) scale to complex programs



Tradeoffs when optimizing with rewriting
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Automatic 
rewriting

Manual 
rewriting

! No human needed in 
      optimization process 

! Costly & Lengthy search process 

! Does not (yet) scale to all programs

Extensive human effort needed ! 

Expert is in control, no search required !  



Compilers with scheduling APIs

k = tvm.reduce_axis((0, K), 'k') 
A = tvm.placeholder((M, K), name='A') 
B = tvm.placeholder((K, N), name='B') 
C = tvm.compute((M, N), lambda x, y:  
 tvm.sum(A[x, k] * B[k, y], axis=k), 
 name='C') 

# blocking version 
xo, yo, xi, yi = s[C].tile( 
  C.op.axis[0],C.op.axis[1],32,32) 
k,     = s[C].op.reduce_axis 
ko, ki = s[C].split(k, factor=4) 
s[C].reorder(xo, yo, ko, ki, xi, yi) 
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Compilers with scheduling APIs

k = tvm.reduce_axis((0, K), 'k') 
A = tvm.placeholder((M, K), name='A') 
B = tvm.placeholder((K, N), name='B') 
C = tvm.compute((M, N), lambda x, y:  
 tvm.sum(A[x, k] * B[k, y], axis=k), 
 name='C') 

# "parallel schedule 
s = tvm.create_schedule(C.op) 
CC = s.cache_write(C, 'global') 
xo, yo, xi, yi = s[C].tile( 
  C.op.axis[0], C.op.axis[1], bn, bn) 

s[CC].compute_at(s[C], yo) 
xc, yc = s[CC].op.axis 
k, = s[CC].op.reduce_axis 
ko, ki = s[CC].split(k, factor=4) 
s[CC].reorder(ko, xc, ki, yc) 
s[CC].unroll(ki) 
s[CC].vectorize(yc) 
s[C].parallel(xo) 
x, y, z = s[packedB].op.axis 
s[packedB].vectorize(z) 
s[packedB].parallel(x) 

200x
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Compilers with scheduling APIs
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Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/
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abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
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We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
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2.1 Halide: Decoupling Algorithm from Schedules
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of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.
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ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing
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39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

We should aim for more principled ways to describe and apply optimisations

Only fixed built-in 
optimisations

Not well defined 
semantics

No clear separationHinders reuse

Hinders understanding

No extensibility



Our goals:

32

1. Separate concerns 
Computations should be expressed at a high abstraction level only. 
They should not be changed to express optimizations; 

2. Facilitate reuse 
Optimization strategies should be defined clearly separated from the computational program facilitating 
reusability of computational programs and strategies; 

3. Enable composability 
Computations and strategies should be written as compositions of user-defined building blocks (possibly 
domain-specific ones); both languages should facilitate the creation of higher-level abstractions;  

4. Allow reasoning 
Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing 
reasoning about them;  

5. Be explicit 
Implicit default behavior should be avoided to empower users to be in control. 

The Need for a Principled Way to Separate, Describe and Apply Optimizations  
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reasoning about them;  

5. Be explicit 
Implicit default behavior should be avoided to empower users to be in control. 

The Need for a Principled Way to Separate, Describe and Apply Optimizations  

 
Fundamentally we argue that a more principled high-performance 

code generation approach should be holistic by considering 
computation and optimization strategies equally important. 

 
As a consequence, a strategy language should be built with the 

same standards as a language describing computation. 



Achieving High-Performance the  Functional  Way

34

based on Lift 
[ICFP 2015] by Steuwer et. al.

based on Stratego 
[ICFP 1998] by Visser et. al.



ELEVATE A Language for Describing Optimisation Strategies

• A Strategy encodes a program transformation as a function: 
 

• A RewriteResult encodes its success or failure:

type Strategy[P] = P =>= RewriteResult[P]

RewriteResult[P] = Success[P](p: P) 
                 | Failure[P](s: Strategy[P])

35



Rewrite Rules in ELEVATE 
• Rewrite rules are basic strategies

def mapFusion: Strategy[Rise] = 
  (p: Rise) =>= p match { 
    case app(app(map, f), 
         app(app(map, g), xs)) = 
      Success( map(fun(x =>= f(g(x))), xs) ) 
    case _ = Failure(mapFusion) 
}

mapFusion( ) =

36



Combinators in ELEVATE 
• Building more complex strategies from simpler once 

• Sequential Composition (;) 

• Left Choice (<+) 

• Try 

• Repeat

def seq[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P] = 
        fs =>= ss =>= p =>= fs(p).flatMapSuccess(ss)

def lChoice[P]: Strategy[P] =>= Strategy[P] =>= Strategy[P] = 
        fs =>= ss =>= p =>= fs(p).flatMapFailure(_ =>= ss(p))

def try[P]: Strategy[P] =>= Strategy[P] = 
        s =>= p =>= (s <<+ id)(p)

def repeat[P]: Strategy[P] =>= Strategy[P] = 
        s =>= p =>= try(s ; repeat(s))(p)

37



Traversals in ELEVATE 
• Describing Precise Locations

mapFusion (                   ) = ? 

threemaps =
38



Traversals in ELEVATE 
• Describing Precise Locations

body(mapFusion) (                   ) = ? 

threemaps =
39

def body: Strategy[Rise] =>= Strategy[Rise] = 
 s =>= p =>= p match { 
  case fun(x,b) =>= s(b).mapSuccess(nb =>= 
fun(x,nb)) 
  case _ =>= Failure( body(s) ) 
}



Traversals in ELEVATE 
• Describing Precise Locations

body(argument(mapFusion)) (                   ) = ? 

threemaps =

def body: Strategy[Rise] =>= Strategy[Rise] = 
 s =>= p =>= p match { 
  case fun(x,b) =>= s(b).mapSuccess(nb =>= 
fun(x,nb)) 
  case _ =>= Failure( body(s) ) 
}

def argument: Strategy[Rise] =>= Strategy[Rise] = 
 s =>= p =>= p match { 
  case app(f,a) =>= s(a).mapSuccess(na =>= 
app(f,na)) 
  case _ =>= Failure( argument(s) ) 
}

40



Complex Traversals + Normalization in ELEVATE 
• With three basic generic traversals 

• we define more complex traversals: 

• With these traversals we define normal forms, e.g. 𝛽𝜂-normal-form:

41



Complex optimisations defined as strategies

42

def tile: Int ->- Int ->- Strategy = 
  (dim) =>= (n) =>= dim match { 
    case 1 = function(splitJoin(n)) 

    case 2 = fmap(function(splitJoin(n))) ;  
             function(splitJoin(n)) ; interchange(2) 
    case i = fmap(tile(dim-1, n)) ; 
             function(splitJoin(n)) ; interchange(n) 
  }

Tiling defined as composition of rewrites not a built-in!



Case Study: Implementing TVM's Scheduling API

200x

• We attempt to express the same optimizations described in the TVM tutorial:

43



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy
44



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy

Clear separation of concerns

Implicit behaviorBe explicit

Enable composability
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy
46



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy

User-defined vs. build in
Facilitate reuse

No clear separation 
of concerns

47



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy
48



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy

Clear separation of concerns No clear separation of concernsvs

Facilitate reuse

49



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Number of successful rewrite steps 

50

Rewrite based approach scales to complex optimizations

Rewriting took less than 2 seconds with our unoptimised implementation



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Performance of generated code

51

Competitive performance compared to TVM compiler



Tradeoffs when optimizing with rewriting

52

Automatic 
rewriting

Manual 
rewriting

! No human needed in 
      optimization process 

! Costly & Lengthy search process 

! Does not (yet) scale to all programs

Extensive human effort needed ! 

Expert is in control, no search required !  

Strategies are too sensitive   | 
=>= don’t scale across applications ! 
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Automatic 
rewriting

Manual 
rewriting

! No human needed in 
      optimization process 

! Costly & Lengthy search process 

! Does not (yet) scale to all programs

Extensive human effort needed ! 

Human is in control, no search required !  

Strategies are too sensitive   | 
=>= don’t scale across applications ! 

!



Equality Saturation

input
term e-graphinitialize

apply

extract

costminimizingrules 

final
term

! Optimize programs by efficiently exploring many possible rewrites
! Many successful applications sparked from the recent egg library

Some optimizations remain out of reach as the e-graph grows too big

Sketch-Guided Equality Saturation 1
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x*2 !-> x<<1 (x*y)/z !-> x*(y/z) x/x !-> 1 
1*x !-> x

Expression

After applying Rewrites



Equality Saturation

input
term e-graphinitialize

apply

extract

costminimizingrules 

final
term

! Optimize programs by efficiently exploring many possible rewrites
! Many successful applications sparked from the recent egg library

Some optimizations remain out of reach as the e-graph grows too big

Sketch-Guided Equality Saturation 1



Case Study
Matrix Multiplication Optimizations for CPU:

! transform loops
blocking, permutation, unrolling

! change data layout
! add parallelism

vectorization, multi-threading

Space of equivalent programs to consider is huge

Sketch-Guided Equality Saturation 2
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Case Study
! Rewritten language: RISE, a functional array language

Matrix Multiplication in RISE:

def mm a b =
map (!aRow. | for aRow in a:
map (!bCol. | for bCol in transpose(b):
dot aRow bCol) | ... = dot(aRow, bCol)
(transpose b)) a

def dot xs ys =
reduce + 0 | for (x, y) in zip(xs, ys):
(map (!(x, y). x × y) | acc += x × y
(zip xs ys))

RISE is designed for optimization via term rewriting

Sketch-Guided Equality Saturation 3
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RISE is designed for optimization via term rewriting
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Case Study

! Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline ! 0.5s 0.02 GB
blocking ! >1h 35 GB
vectorization " >1h >60 GB
loop-perm " >1h >60 GB
array-packing " 35mn >60 GB
cache-blocks " 35mn >60 GB
parallel " 35mn >60 GB

! Most goals are not found before exhausting 60 GB.
! For comparison, rewriting strategies take <2s and <1GB.

1on Intel Xeon E5-2640 v2
Sketch-Guided Equality Saturation 5



Case Study

! Achieve the same 7 optimization goals with equality saturation?1
goal found? runtime RAM
baseline ! 0.5s 0.02 GB
blocking ! >1h 35 GB
vectorization " >1h >60 GB
loop-perm " >1h >60 GB
array-packing " 35mn >60 GB
cache-blocks " 35mn >60 GB
parallel " 35mn >60 GB

Standard equality saturation does not scale to this optimization space

1on Intel Xeon E5-2640 v2
Sketch-Guided Equality Saturation 5



E-Graph Evolution

0 5 10 15 20
iterations

0M

1M

2M

3M

4M

(a) blocking, found: !

0 5 10 15 20
iterations

0M

1M

2M

3M

4M
out of memory e-nodes

e-classes
rules
estimate

(b) parallel, found: "

Two difficulties:
1. Long rewrite sequences =⇒ many iterations are required
2. Explosive combination of rewrite rules =⇒ exponential growth

! millions of e-nodes and e-classes in less than 10 iterations
! worse for parallel, memory is exhausted in the 7th iteration

Sketch-Guided Equality Saturation 6



Difficulty 1. Long Rewrite Sequences

Prior work (not shortest path):

Sketch-Guided Equality Saturation 7



Difficulty 2. Explosive Combinations of Rewrite Rules
Two example rules that quickly generate many possibilities:

split-join:

map f x | for m:
| ... = f(...)

!→
join
(map | for m / n:
(map f) | for n:
(split n x)) | ... = f(...)

transpose-around-map-map:

map | for m:
(map f) x | for n:

| ... = f(...)
!→

transpose
(map | for n:
(map f) | for m:
(transpose x)) | ... = f(...)

Sketch-Guided Equality Saturation 8



To overcome these difficulties, we came up with sketch-guided
equality saturation

Sketch-Guided Equality Saturation 9



Sketch-Guided Equality Saturation
Observation:

! The shape of the optimised program is often used to explain optimizations:

for m:
for n:
for k:
..

!→∗
for m / 32:
for n / 32:
for k / 4:
for 4:
for 32:
for 32:
..

Explanatory shapes can be formalized as sketches and used to guide rewriting

Sketch-Guided Equality Saturation 10
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Sketch-Guided Equality Saturation

programmer

term1

rules1

search1

cost1

sketch1

rulesN

searchN

costN

sketchN

termN

rulesN+1

searchN+1

costN+1

sketchN+1guides goalprovides

termN+1term0

! Factors an unfeasible search into a sequence of feasible ones:
1. Break long rewrite sequences
2. Isolate explosive combinations of rewrite rules

Sketch-Guided Equality Saturation 11



Sketch-Satisfying Equality Saturation

termi-1

sketchisatisfying

e-graphinitialize

apply

extract

costiminimizing
+rulesi

termi

searchi

! Terminates as soon as a program satisfying the sketch is found

Sketch-Guided Equality Saturation 12



Sketches

! Sketches are program patterns that leave details unspecified

baseline sketch:
containsMap(m, | for m:
containsMap(n, | for n:
containsReduceSeq(k, | for k:
containsAddMul))) | .. + .. × ..

! Abstractions defined in terms of smaller building blocks:

def containsAddMul: Sketch =
contains(app(app(+, ?), contains(×)))

sketch guide:
how to split the loops before reordering them?

containsMap(m / 32, | for m / 32:
containsMap(32, | for 32:
containsMap(n / 32, | for n / 32:
containsMap(32, | for 32:
containsReduceSeq(k / 4, | for k / 4:
containsReduceSeq(4, | for 4:
containsAddMul)))))) | .. + .. × ..

Sketch-Guided Equality Saturation 13
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blocking sketch:
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Evaluation

Sketch-guided equality saturation finds all 7 optimization goals

2Intel Xeon E5-2640 v2
3AMD Ryzen 5 PRO 2500U
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Evaluation
E-Graph Evolution
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Evaluation
Sketches vs Full Program

goal sketch guides sketch goal sketch sizes program size
blocking split reorder1 7 90
vectorization split + reorder1 lower1 7 124
loop-perm split + reorder2 lower2 7 104
array-packing split + reorder2 + store lower3 7-12 121
cache-blocks split + reorder2 + store lower4 7-12 121
parallel split + reorder2 + store lower5 7-12 121

! each sketch corresponds to a logical transformation step
! sketches elide around 90% of the program
! intricate details such as array reshaping patterns are not specified

(e.g. split, join, transpose)

Sketch-Guided Equality Saturation 16



Tradeoffs when optimizing with rewriting

82

Automatic 
rewriting

Manual 
rewriting

! Minimal human effort needed 

! Human is in control, fast searches required

! No human needed in 
      optimization process 

! Costly & Lengthy search process 

! Does not (yet) scale to all programs

Extensive human effort needed ! 

Human is in control, no search required !  

Strategies are too sensitive   | 
=>= don’t scale across applications ! 
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How to design the next 700 optimizing compilers
RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

 

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal  …

Computational
Patterns

stencil
conv3x3 …

Optimisation 
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Rewriting

Code Generation https://elevate-lang.org/

![ICFP’20, CGO’21, CC’21, GPGPU’22, arXiv’22]

https://rise-lang.org/

https://michel.steuwer.info

Michel Steuwer
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